用于电气传动智能控制研究的实验装置
- 格式:pdf
- 大小:198.33 KB
- 文档页数:4
SGDDZ-01电力电子技术及电机控制实验装置一、概述"SGDDZ-01型电力电子及电气传动技术实验装置"依据高等院校最新统编教材《电力电子技术》(第五版)(西安交通大学王兆安编著)、《电力拖动自动控制系统》(第三版)(上海大学陈伯时编著)等实验大纲的要求,吸收国内、外同类产品的优点,充分考虑了实验室的现状和发展趋势,精心研制而成。
在同类产品中结构合理、功能完善、可靠性好、性价比高。
二、特点1、综合性强本装置综合了目前国内各类学校电力电子、半导体变流、交直流调速、交流变频、电机控制、控制理论等实验项目。
2、适应性强能满足各类学校相应课程的实验教学,深度和广度可根据需要作灵活调整,普及与提高可根据教学的进程作有机的结合,装置采用积木式结构,更换便捷,如需要扩展功能或开发新实验,只需添加部件即可,永不淘汰。
3、整套性强从专用电源、电机及其它实验部件到实验连接专用导线配套齐全,配套部件的性能、规格等均密切结合实验的需要进行配套。
4、直观性强各实验挂件采用分隔结构形式,组件面板示意、图线分明,各挂件任务明确,操作、维护方便。
5、科学性强装置占地面积少,节约实验用房,减少基建投资;配套的小电机均经特殊设计,可模拟中小型电机的特性和参数;小电机耗电省,节约能源,实验噪声小,整齐美观,改善实验环境;实验内容丰富,设计合理,除了加深理论知识外还可结合实际开设设计性实验。
6、开放性强控制屏供电采用三相隔离变压器隔离,并设有电压型漏电保护装置和电流型漏电保护装置,确保操作者的安全;各电源输出均有监示及短路保护等功能,各测量仪表均有可靠的保护功能,使用安全可靠;控制屏还设有定时器兼报警记录仪,为学生实验技能的考核提供一个统一的标准。
由于整套装置经过精心设计,加上可靠的元器件质量及可靠的工艺作为保障,产品性能优良,所有这些均为开放性实验室,创造了条件。
7、先进性强本装置着重从新器件高度来考虑,在保留了晶闸管实验的基础上,加入了新器件的特性、新器件的驱动以及典型的新器件应用的大量现代电力电子技术实验,让学生对新器件有足够的认识和了解,紧跟时代步伐。
变频器在电气传动自动控制中的应用摘要:从电力半导体、控制技术和主电路拓扑结构等方面综述了变频调速技术的发展历史和现状,并总结了在变频控制中的主要控制技术。
关键词:矢量控制; 交流电动机; pwm 技术; 高压变频器中图分类号:o183 文献标识码:a 文章编号:国内外交流变频调速技术的现状早在国家“八五”科技攻关计划中,交流调速技术就被列为重点科技攻关项目,但是由于我国电力电子器件总体水平很低,igbt、gto 器件的生产虽引进了国外技术,但一直未形成规模经济效益,几乎不具备变频器新产品的独立开发能力,这在一定程度上影响了国内变频调速技术的发展。
在大功率交- 交变频技术、无换向器电机等方面,国内产品在数字化及系统可靠性方面与国外水平相比,还有相当差距。
在中小功率变频技术方面,国内几乎所有的产品都采用普通v/f 控制,仅有少量样机采用矢量控制,品种与质量不能满足市场需要。
而在国外,变频调速技术得到了充分的发展,并在各个方面取得了显著成就。
在功率器件方面,高电压、大电流容量的scr、gto、igbt、igct 器件的出现和并联、串联技术的应用,高压大功率变频器产品得到生产和推广应用。
在微电子技术方面,16 位、32 位高速微处理器以及dsp 和asic(application specific ic) 技术的快速发展,为实现变频器高精度、多功能化提供了硬件手段。
在理论方面,矢量控制、磁通控制、转矩控制、智能控制等新的控制理论都为高性能变频器的研制提供了相关理论基础。
可以看出,总体上我国交流变频调速技术水平较国际先进水平有着很大差距。
交流变频调速在控制中的主要应用交流变频调速技术在20 世纪得到了迅速发展。
这与一些关键性技术的突破性进展有关,它们是交流电动机的矢量控制技术、直接转矩控制技术、pwm 技术,以及以微型计算机和大规模集成电路为基础的全数字化控制技术、自整定技术等。
1.矢量控制技术矢量变换控制技术是西门子公司于1971 年提出的一种新的控制思想和控制理论。
电气传动自动化技术手册一. 引言电气传动自动化技术在现代工业中发挥着重要的作用。
随着工业自动化水平的不断提高,传统的机械传动已经无法满足高效率和精确控制的要求。
电气传动自动化技术的出现为实现工业过程的自动化控制提供了有力的支持。
该手册旨在介绍电气传动自动化技术的基本原理、应用范围及实施方案,希望能够对工程师和技术人员提供有价值的参考和指导。
二. 基本原理1. 电气传动自动化技术的定义与特点电气传动自动化技术是利用电力传动和控制来实现自动化控制的一种技术。
它通过电机、传感器、控制器等设备,将电能转换为机械能来进行工艺流程控制。
其特点具体包括高效率、高速度、高精度、灵活性好等。
2. 电气传动自动化技术的基本原理电气传动自动化技术的基本原理是通过电机驱动机械装置运动,电气控制系统对电机进行控制,实现各种工艺过程的自动化控制。
此外,还包括传感器感知环境的变化,并将信号传递给控制系统实现反馈控制,从而实现自动化控制的闭环。
三. 应用范围1. 电气传动自动化技术在工业生产中的应用电气传动自动化技术在工业生产中应用广泛。
它可以用于各种生产流程的控制,如自动化生产线、自动化机床、自动化装配等。
此外,还可以用于各类机械设备的控制,如输送机、搬运机、起重机等。
2. 电气传动自动化技术在交通运输中的应用电气传动自动化技术也在交通运输领域起着重要作用。
例如,自动驾驶汽车、轨道交通系统中的自动驾驶、机器人交通导向等都是利用电气传动自动化技术实现的。
3. 电气传动自动化技术在家用电器中的应用电气传动自动化技术也逐渐应用于家用电器领域。
例如,智能家居系统、智能厨房设备、智能洗衣机等都是通过电气传动自动化技术实现智能控制和自动化操作。
四. 实施方案1. 设备选型与系统设计在实施电气传动自动化技术时,需要根据具体的需求选择合适的设备和系统。
包括电机选型、传感器选型、控制器选型等。
同时,还需要进行系统设计,包括电气布线设计、控制逻辑设计、安全保护设计等。
电气传动系统的智能控制前言:随着科学技术的发展,人工智能系统已逐步取代传统的机械系统,人工智能的应用,可以实现电气自动化传统系统,电气自动化传统系统的实现,不仅可以提高电气传统的速率,也可以提高传动质量,因此,本文对智能控制技术进行概述,探讨智能控制在电气传动系统中的应用。
一.智能控制简介智能控制是现代自动控制领域内一个全新的词汇,但是其凭借着自己独特的控制优势已经迅速的发展起来,如今已经广泛的应用到了各个领域中。
相信在不久的将来,智能控制系统也能为电力行业带来崭新的面貌。
与大多数理论产生的背景一样,智能控制也是为了解决工程技术问题而在实践中产生并发展起来的一个理论。
随着“自动化”理念的逐渐深入以及社会对控制要求的不断提高,以前的控制理念早已不能跟上社会发展的脚步,随之,智能控制理念就逐渐出现了。
按以往的经验来看,在电力等行业中,手动控制虽然控制效率差但其效果很好,只要技术熟练,工作人员就能操作自如,因此人们就想到了用计算机模拟人的操作来进行控制的方法,这就是我们所说的智能控制。
计算机技术可以在判断,推理,计算,数据处理,信息收集等诸多方面模仿人的思维模式,这也是智能控制实现的基础。
二.人工智能控制系统的内涵及优势分析1.智能控制概述和系统特点智能控制是指通过智能控制器实现的自动化控制,通过借助计算机技术、智能自动化控制技术按照人的意愿来实现对生产过程的控制,由于传统的控制技术对数学模型框架有更高的要求,而智能控制可以有效解决传统控制系统中所存在的问题,通过高效的信息处理和自动调节,从而实现系统自动优化的控制过程。
因此,智能控制系统的生产控制有效解决了复杂的系统控制,智能控制系统具有以下特点:第一,智能控制具有高效处理的能力,尤其是控制系统中的数学模型,智能控制系统可以结合数学理论和被控制对象的实际情况来控制生产过程,采用定性、定量的方式来分析被控制对象的现有参数。
从而实现复杂的生产控制;第二,智能控制与传统的控制方法相比,更具有灵活性、智能化的特点,其主要按照人的意愿和思维方式来实现生产的控制;第三,智能控制系统可以自动调节和改变控制结构,对控制结构的变化参数进行分析,当发现控制结构的参数发生偏差时,智能控制系统可以通过调节参数变化来改变控制结构;第四,智能控制系统就苦于信息分析、处理功能,智能控制的基本工作原理是根据人的大脑思维方式来实现对生产过程中的信息处理,通过对被控制对象的信息进行判断,最终做出决策内容。
电气自动化技术专业教学标准一、引言电气自动化技术是一门涵盖电气工程、自动控制技术、计算机技术等多学科交叉的综合性专业。
随着科技的不断发展和工业化的进程,电气自动化技术在各个领域的应用越来越广泛。
为了培养具备扎实的理论知识和实践能力的电气自动化技术专业人才,制定电气自动化技术专业教学标准具有重要意义。
二、教学目标1. 知识与能力目标:(1)掌握电气自动化技术的基本理论知识,包括电气工程、自动控制技术、计算机技术等方面的知识;(2)了解电气自动化技术的最新发展动态,掌握相关前沿技术;(3)具备电气自动化系统设计与调试的能力;(4)具备电气自动化设备维护与故障排除的能力。
2. 能力培养目标:(1)培养学生的创新思维和工程实践能力,使其能够独立进行电气自动化系统的设计与实施;(2)培养学生的团队合作精神和沟通能力,使其能够与他人协作完成电气自动化项目;(3)培养学生的问题分析与解决能力,使其能够独立进行电气自动化设备的维护与故障排除。
三、课程设置1. 专业基础课程:(1)电路与电子技术(2)数字电子技术(3)自动控制原理(4)电气工程基础(5)计算机编程技术(6)传感器与检测技术2. 专业核心课程:(1)电气传动与控制技术(2)PLC控制技术(3)工业网络与通信技术(4)电气自动化系统设计与调试(5)电力电子技术(6)机器视觉与图像处理技术3. 专业选修课程:(1)工业机器人技术(2)智能控制技术(3)工业过程自动化技术(4)电气安全与可靠性技术(5)电气设备维护与故障排除四、教学方法1. 理论教学:(1)以教师讲授为主,结合案例分析、实例演示等方式,帮助学生理解和掌握基本理论知识;(2)引导学生进行文献查阅和信息检索,了解电气自动化技术的最新发展动态。
2. 实践教学:(1)开设实验课程,引导学生进行电气自动化系统的设计、调试和实验;(2)组织学生参与实际工程项目,锻炼其实践能力和团队合作精神。
3. 计算机辅助教学:(1)利用计算机软件模拟电气自动化系统的运行过程,帮助学生理解和掌握相关技术;(2)引导学生使用计算机进行电气自动化系统的设计和仿真。
电气传动控制系统电气传动控制系统是一种用于控制电机和传动系统的技术。
它将电气信号转化为机械运动,并能够产生准确的输出。
在各种工业和商业领域中,电气传动控制系统都具有重要的应用价值。
本文将介绍电气传动控制系统的构成、原理、应用和发展趋势。
一、构成电气传动控制系统主要由电源、控制器、传感器、执行器和驱动器组成。
电源提供动力输出;控制器接收输入信号并对输出进行逻辑判断;传感器用于监测机器的运行状态;执行器将电气信号转化为机械运动;驱动器将控制信号转化为电能输出。
这些组件之间的相互作用协同工作,形成了完整的电气传动控制系统。
二、原理电气传动控制系统的基本原理是将电气信号转化为机械运动,实现对传动系统的控制。
在操作过程中,控制器接收输入信号并进行逻辑判断,然后将信号发送到执行器上。
执行器将信号转化为电机的转矩和速度输出,从而控制传动系统的运行。
在这个过程中,传感器用于监测机器的运行状态,反馈信息给控制器。
三、应用电气传动控制系统广泛应用于各种机械和设备上,例如机床、自动化生产线、水泵、风力发电机、机器人等。
电气传动控制系统能够提高机械设备的工作效率和生产质量,实现自动化生产和智能化控制。
同时,该系统还能够在能源消耗和环境保护方面发挥积极作用。
四、发展趋势随着科技的不断发展,电气传动控制系统也在不断演进和改进。
未来的趋势将更加注重智能化和高效性能。
一方面,将更多的传感器和监测设备集成到系统中,实现更加精确和实时的监测和控制;另一方面,还将采用更加高效和可靠的驱动器和执行器,实现更加精准和快速的响应。
总之,电气传动控制系统在未来的应用前景将是十分广阔的。
电气传动控制系统引言电气传动控制系统是现代工业自动化中的重要组成部分。
它通过使用电力和电子技术,将电能转化为机械能,并通过传动装置将机械能传递给相应的执行器,从而实现对设备或机器的精准控制。
本文将介绍电气传动控制系统的基本原理、工作方式以及在工业领域的应用。
1. 电气传动控制系统的基本原理电气传动控制系统的基本原理是将电能转化为机械能,并将机械能传递给执行器,从而实现对设备或机器的控制。
它主要由以下几个组成部分构成:1.1 电源系统电源系统是电气传动控制系统的核心部分,它提供了所需的电能。
电源系统通常包括电源输入单元、电源变换器、电源控制器等。
1.2 传动系统传动系统用于将电能转化为机械能,并将机械能传递给执行器。
传动系统通常包括电动机、减速器、联轴器、传动带或链条等。
1.3 控制系统控制系统用于控制电气传动系统的运行状态和工作方式。
控制系统通常采用计算机或PLC控制器,并通过编程来实现对传动系统的控制。
2. 电气传动控制系统的工作方式电气传动控制系统的工作方式可以分为以下几个步骤:电气传动控制系统首先通过传感器或其他输入设备接收输入信号,例如温度、压力、位置等。
这些输入信号可以用来检测设备或机器的状态。
2.2 处理输入信号接收到输入信号后,电气传动控制系统会对输入信号进行处理,通常包括滤波、放大、调理等操作。
2.3 控制输出信号经过处理的输入信号将被送到控制器中,控制器通过编程来控制传动系统的运行状态和工作方式。
控制器会根据输入信号和设定参数计算出对应的输出信号。
控制器计算出的输出信号将被送到执行器,执行器通过接收控制信号来实现相应的动作或运动。
例如,电动机将根据输出信号的控制来启动、停止、正转或反转等。
2.5 监测和反馈电气传动控制系统在运行过程中会不断地监测设备或机器的状态,并通过传感器反馈实际状态信息给控制器。
控制器可以根据反馈信息进行调整,以实现对设备或机器的精确控制。
3. 电气传动控制系统的应用电气传动控制系统在工业领域有广泛的应用,以下是几个常见的应用领域:在机床中,电气传动控制系统可以用于控制机床的各种运动,例如主轴转速、进给速度、刀具换向等。
电气传动系统的智能控制作者:张明达陈晓曦来源:《城市建设理论研究》2013年第04期【摘要】随着自动化技术的飞速发展,电气传动控制系统也日新月异,电气传动控制系统的概念从出现以来,电气传动控制系统又有了新的发展。
本文对电气传动系统的智能控制做了简要的探究。
【关键词】电气传动系统智能控制人工智能中图分类号:TU976+.1文献标识码: A 文章编号:一、电气传动自动控制系统电气传动系统又称电力拖动系统,是以电动机作为原动机的机械系统的总称。
其目的是为了通过对电动机合理的控制,实现生产机械的起动,停止,速度、位置调节以及各种生产工艺的要求。
随着技术的进步及社会对环保、节能要求的日渐严格,电气传动系统在社会各方面的使用越来越广泛。
如何优化、设计电气传动系统,以实现更低廉的成本、更好的性能就具有十分重要的意义。
近年来许多新理论新策略应用于电气传动系统中,并获得了良好的效果。
但对大部分系统而言,其基本的闭环控制结构、利用调节器对控制对象进行校正以使系统符合要求的方法基本未变。
所以,我国电气传动系统设计领域的权威专家陈伯时教授总结出的调节器的“工程设计方法”,目前在实际设计中仍然是主流设计方法。
如何设计出优秀的调节器依然是电气传动系统优化设计的主要内容。
因此借鉴了“工程设计方法”的基本思想,以电气传动系统的优化设计为目的,在现有的调节器“工程设计方法”基础上,采用其采用少量典型系统、分步设计的基本设计思路,以系统闭环幅频特性峰值、调节时间最小为最优化原则,分别针对典型Ⅰ、Ⅱ、Ⅲ型系统研究出一套更能满足实际工程需要的设计方法。
并总结出了便于设计者使用的参数、性能指标值计算公式及图表。
针对交流电机矢量控制系统鲁棒性差的问题则进行了研究并提出了优化方案。
利用MATLAB编程和SIMULINK仿真对所设计的系统进行验证,结果表明针对典型Ⅰ、Ⅱ型系统的设计方法所设计出的系统性能指标及设计灵活性均好于“工程设计方法”;针对典型Ⅲ型系统的设计方法则是“工程设计方法”所未涉及而又实际需要的,故填补了“工程设计方法”的空白;在交流电机矢量控制系统中引入复合磁链观测器及双层模糊控制器后,系统的鲁棒性及性能得到了提高。
智能控制在电气传动系统中的应用研究摘要:本文对电气传动系统智能控制应用进行了分析,首先对智能控制概念及特点进行了阐述,其后对电气传动系统智能控制应用方法进行探讨,最后对智能控制在电气传动系统中的具体应用进行了分析。
关键词:电气传动系统;智能控制;应用电气传动系统具有电源、控制设备、传动机构、电动机四个部分,在运行电源促使电动机工作,将电能转化为机械能,进一步由传动机构传递,传动机构利用机械能实施控制作业,以此达成生产机械化的效果[1]。
电气传动系统的智能控制实现,对于生产控制作业的发展有着重大意义。
一、智能控制特点及其在电气传动系统中的应用1、智能控制特点智能控制较自动化控制而言,具有以下特点:其一,智能控制成功脱离依赖数学模型控制的模式,以实际控制作为的目标,在进行控制的过程中并不依靠任何数学模型;智能控制具有人类思维模式模拟的能力,采取非线性控制模式;按照系统工作状况进行控制模式调整,以此提升系统工作效果;具有自我评估、在线决策、在线识别的能力,促使整体控制系统效果、效率提升;智能控制使用的是分层信息处理方法进行信息的处理工作,因此在反应的速度上更快。
2、智能控制在电气传动系统中应用的作用2.1系统性能优越一般而言,因为在控制目标上的不仅相同,智能控制方法也较为不同。
智能控是非线性控制技术,通过神经网络、模糊控制、遗传算法等控制方法在电气传动系统中的应用,能够有效突破传统函数估算器对于控制目标的局限性,进而使系统响应时间得到缩短,提升控制系统性能。
比如采用模糊逻辑控制器,较传统最优化控制器而言,在上升和下降时间上都得到响应改善。
2.2系统灵活性强监督学习型神经网络与自适应神经网络试探法,是智能控制器中常用的两种方法,不过进行智能控制系统的调整时,监督学习型神经网络因为常规模糊控制器学习算法基本定型,且选择的是拓扑结构,使用既定a-priori型信息处理器,所以在系统调整上的效果一般。
同时监督学习型神经网络不能使模糊控制器处于正常工作的状态。
GCK2000-Z智能型交流低压开关柜GCK2000-Z智能型交流低压成套设备是以天津电气传动设计研究所按照国家重点技术创新项目计划的要求,联合十几家行业成套厂组成全国联合设计组,结合国内行业的具体情况而开发出的最新一代通过型式试验的智能型低压成套设备。
该产品全面符合GB7251.1-1997《低压成套开关设备和控制设备第一部分:型式试验和部分型式试验成套设备》等标准要求的各项要求。
本产品适用于交流50HZ,额定电压660V及以下,额定电流至4000A的各级电网,可作为马达控制中心、动力中心、无功功率补偿、主配电装置和分配电装置。
使用条件周围空气温度不得超过+40℃,不低于-5℃,而且在24h内平均温度不得超过+35℃。
空气清洁,在最高温度为+40℃时,其相对湿度不得超过50%,在较低温度时,允许有较大的相对湿度。
污染等级3。
安装场地的海拔不得超过2000m。
基本电气参数额定工作电压主电路Ue:380V,690V辅助电路Ue:220V,380V(两极之间相隔一个空触点),24V(直流)额定绝缘电压(Ui):800V额定冲击耐受电压(Uimp):8000V工作耐受电压(1min):3000V额定电流水平主母线le:2000A,2500A,3150A,4000A垂直母线le:1000A额定短时耐受电流水平母线lcw:100KA垂直母线lcw:65KA额定峰值耐受电流水平母线lpk:220KA垂直母线lpk:143KA抽出式柜抽屉单元主触头额定电流:35A~500A电容补偿柜单柜最大功率:300kvar内部隔离:形式1至形式4防护等级产品外壳防护等级分为:1P30、1P40,抽出式部件在试验位置和分离位置以及由一个位置向另一个位置转移时仍保持如同连接位置时的防护等级。
GCK型低压抽屉式开关柜用途GCK系列开关柜适用于工矿企业,三相交流频率50HZ、额定电压380V至600V,电力系统的一次配电和以异步电动机为主要控制对象的二次配电或控制设备;亦适用于车站、码头、高层建筑,尤其适用于发电厂、变电站、石油、化工、冶金、机械、轻工生产线的电动机的群控系统和现场控制装置,如配以适当的接口还可与PC(程序控制器)或微机处理器组成供配自动控制系统。
电气传动课程设计班级:06111102姓名:古海君学号:73其它小组成员:余德本梁泽鹏王鹏宇2014.10.2摘要本次课程设计要求设计并调试出直流双闭环调速系统。
通过搭建电流环(内环)和转速环(外环)使系统稳态无静差,动态时电流超调量小于5%,并且空载启动到额定转速时的转速超调量小于10%。
系统的驱动装置选用晶闸管,执行机构为直流伺服电动机。
本文首先明确了课程设计任务书,对其中的相关概念进行分析。
之后对课题的发展状况进行调研,了解双闭环调速系统在现代工业中的应用意义和价值。
然后对实验条件作了详细介绍,包括实验台各个组成部分以及实验设备的选型和工作原理。
以上内容均为课程设计准备工作,之后重点记录了实验的测试、仿真和调试过程。
其中,测试部分详细介绍了各个电机参数和系统参数测试方法和数据结果,并利用这些数据计算调节器的参数;仿真部分利用matlab软件通过已经求得的参数得出计算机仿真结果,并观察是否满足任务书要求;调试部分是核心,给出了现场调试全部过程并配以图片加以说明。
文章最后给出测试结果从而得出结论,并论述了实验注意事项并加以总结。
转速电流双闭环直流调速系统是性能优良,应用广泛的直流调速系统,,它可以在保证系统稳定性的基础上实现转速无静差,并且具有调速范围广、精度高、动态性能好和易于控制等优点。
转速电流双闭环直流调速系统的控制规律、性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础,值得更加深入的学习研究。
目录一、课程设计任务书设计并调试出直流双闭环调速系统。
通过搭建电流环(内环)和转速环(外环),同时使用两个PI调节器,使系统稳态下转速无静差,动态时电流超调量小于5%,并且空载启动到额定转速时的转速超调量小于10%。
系统的驱动装置选用晶闸管,执行机构选用直流伺服电动机。
二、课题的发展状况研究意义在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。
据资料统计,现在有90%以上的动力源来自于电动机。
电气传动中人工智能的应用摘要:在电气自动化的发展过程中,人工智能的控制系统逐渐发挥出了相较传统控制系统更多的优点。
虽然我国的电气传动当中对于人工智能的应用还只限于电气的交流传动系统与直流传动系统当中,但其在电气传动领域的发展空间是巨大的。
本文通过对人工智能的优点进行简要的介绍,分析了电气传动系统当中人工智能的应用。
关键词:电气传动;人工智能;应用人工智能主要是研究智能化机器与智能化系统构造的一项技术,在目前主要运用于专家系统、识别模式、机器模仿以及自然语言的理解等领域。
其在电气自动化过程的运用引起电气行业革命性的改变。
因此,要促进电气行业的发展,必须积极地在电气传动系统中加深人工智能的运用,要在实践中总结经验,合理完善,以此达到电气自动化的不断发展。
一、人工智能应用的优点人工智能控制系统相对于传统控制系统具有明显的优势。
传统的控制系统在设计时需要依靠控制对象模型,然而设计时实际控制对象模型常常存在许多例如参数与非线性时等不固定的因素,则系统很难获得准确的动态方程式。
而人工智能系统在设计方面却不需要依靠实际控制对象的具体模型来完成。
并且人工智能系统只需要根据系统的响应反应时间、系统下降的时间以及鲁棒的性能等方面来适当进行调整,就可以获取更优化的性能。
例如在模糊逻辑下的控制器比传统的控制器在上升的时间上快一点五倍,下降的时间更是要快3.5倍,在过冲方面也会更小。
此外,该系统比传统的控制器更方便进行调节。
甚至在不需要具备专家性知识的情况下也能根据相应数据来对其进行设计。
另外,其一致性十分突出,在陌生数据输入时也能估计良好,这和驱动器的特殊性质没有关联。
然而传统的控制系统对于其特定的对象可以做到良好的控制行为,但对于陌生对象就容易出现偏差,所以其运行必须依靠对象的具体设计。
同时人工智能还对全新的数据信息具有很强的适应能力。
对于传统控制系统来说,监督学习型的神经网络控制系统在学习计算功能与拓朴结构方面已经完全定型,给系统带来不少的限制性因素,导致计算应用功能较弱并且时间很长,而人工高智能系统的适应性神经网络就能避免这些问题。