【小初高学习]2017-2018学年高中数学 第三章 数系的扩充与复数的引入 3.1 数系的扩充与复
- 格式:doc
- 大小:108.50 KB
- 文档页数:2
2018高中数学第3章数系的扩充与复数的引入3.1数系的扩充(1)学案苏教版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第3章数系的扩充与复数的引入3.1数系的扩充(1)学案苏教版(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第3章数系的扩充与复数的引入3.1数系的扩充(1)学案苏教版(word版可编辑修改)的全部内容。
3.1 数系的扩充[学习目标]1。
了解引进虚数单位i的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念。
3。
掌握复数代数形式的表示方法,理解复数相等的充要条件.[知识链接]为解决方程x2=2,数系从有理数扩充到实数;数的概念扩充到实数集后,人们发现在实数范围内也有很多问题不能解决,如从解方程的角度看,x2=-1这个方程在实数范围内就无解,那么怎样解决方程x2=-1在实数系中无根的问题呢?答设想引入新数i,使i是方程x2=-1的根,即i·i=-1,方程x2=-1有解,同时得到一些新数.[预习导引]1.复数的有关概念(1)复数的概念:形如a+b i的数叫做复数,其中a,b∈R,i叫做虚数单位.a叫做复数的实部,b叫做复数的虚部.(2)复数的表示方法:复数通常用字母z表示,即z=a+b i。
(3)复数集定义:全体复数所构成的集合叫做复数集.通常用大写字母C表示.2.复数的分类及包含关系(1)复数(a+b i,a,b∈R)错误!(2)集合表示:3.复数相等的充要条件设a,b,c,d都是实数,那么a+b i=c+d i⇔a=c且b=d。
高中数学第三章数系的扩充与复数的引入3.1.1 数系的扩充和复数的概念教案新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入3.1.1 数系的扩充和复数的概念教案新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入3.1.1 数系的扩充和复数的概念教案新人教A 版选修1-2的全部内容。
数系的扩充和复数的概念一、教学内容数系的三次扩充过程,复数的引入过程,复数概念的知识二、教学目标三、教学重点引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件四、教学难点虚数单位i的引进和复数的概念五、学生分析学生在本章之前已经学习了《推理与证明》的内容,有了一定的推理与证明能力,有利于本节课运用类比思想对实数集进行扩充。
六、教学方法及教学用具启发引导、类比探究并运用多媒体课件展示相关知识七、教学过程(一)问题引入问题:若223+=,3x yxy=,求(1)x+y的值;(2)求x和y的值生(独立完成):求出x+y=3或-3师:既然和能够求出来,那能不能求出x和y的值呢?生:30∆=-<,我们求不了x、y的值师:事实上在实数范围内x和y确实不存在?为什么会这样呢?假设x和y是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数系的扩充和复数的引入》(二)回顾数系的扩充历程师:其实对于这种“数不够用”的情况,我们并不陌生.大家记得吗?从小学到现在,我们一直在经历着数的不断扩充.现在就让我们来回顾一下,看看我们以前是怎么解决“数不够用"的问题的。
第三章数系的扩充与复数的引入》教材分析广州市黄埔区教育局教研室肖凌戆数系的扩充与复数的引入是选修1-2与选修2-2 的内容,是高中生的共同数学基础之一.数系的扩充过程体现了数学的发现和创造过程,同时了数学产生、发展的客观需求,复数的引入襀了中学阶段数系的又一次扩充.《课标》将复数作为数系扩充的结果引入,体现了实际需求与数学内部的矛盾在数系扩充过程中的作用,以及数系扩充过程中数系结构与运算性质的变化.这部分内容的学习,有助于学生体会理论产生与发展的过程,认识到数学产生和发展既有来自外部的动力,也有来自数学内部的动力,从而形成正确的数学观;有助于发展学生的全新意识和创新能力.复数的内容是高中数学课程中的传统内容.对于复数,《课标》要求在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以数与现实世界的联系;理解复数的基本概念以及复数相等的充要条件;了解复数的代数表示法及其几何意义;能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.本章内容分为2节,教学时间约4 课时.第一节数系的扩充和复数的概念本节的主要教学内容是数系的扩充和复数的概念、复数的几何意义(几何表示和向量表示).•教学目标(1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程理论)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.(2)理解复数的基本概念以及复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.•教学重点(1)数系的扩充过程.(2)复数的概念、复数的分类和复数相等的充要条件.(3)复数的几何意义.•教学难点(1)虚数单位i 的引进.(2)复数的几何意义.•教学时数本节教学,建议用2 课时.第1 课时处理数系的扩充和复数的概念;第 2 课时研究复数的几何意义.•课标对本节内容的处理特点数系的扩充和复数的概念,《课标》与《大纲》教学内容相同,但在处理方式和目标定位上存在差异:(1)《课标》将复数作为数系扩充的结果引入.《大纲》教科书先安排复数的概念,再研究复数的运算,最后介绍数系的扩充.《课标》实验教科书在介绍数系扩充的思想方法的基础上引入复数的概念,力求还原复数的发现与建构过程.(2)《课标》强调在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.从这上点上看,《课标》要求提高了.(3)在复数的代数表示法及其几何意义上,《课标》的教学定位是“了解”,而《大纲》要求“掌握”.从这上点上看,《课标》要求降低了.•教学建议1 •关于“数系的扩充的复数的概念”的教学建议(1)课题的引入•教学时,可从方程在给定范围内是否有解提出问题:①在自然数集N中,方程x= 0有解吗?②在整数集Z中,方程2x =1有解吗?③在有理数集Q中,方程x2= 2有解吗?④在实数集R中,方程•有解吗?(2)回顾从自然数集N扩充到实数集R的过程•帮助学生认识数系扩充的主要原因和共同特征•可让学生思考如下问题:①从自然数集N扩充到实数集R经历了几次扩充?②每一次扩充的主要原因是什么?③每一次扩充的共同特征是什么?然后师生共同归纳总结:扩充原因:① 满足实际问题解决的需要;② 满足数学自身完善和发展的需要. 扩充特征:① 引入新的数;② 原数集中的运算规则在新数集中得到保留和扩展.(3)提出新的问题:如何对实数集进行扩充,使方程x2T=0在新的数集中的解?(4)引入虚数单位i .(5)学习复数的概念.(6 )规定复数相等的意义.(7)研究复数的分类.(8)告诉学生“两个复数只能说相等或不相等,不能比较大小”的理由:①a,bi=c,di=a=c, b = d ;在a=c b c两式中,只要有一个不成立,则a bi = c di .②如果两个复数都是实数,则可以比较大小;否则,不能比较大小.③“不能比较大小”的确切含义是指:不论怎样定义两个复数之间的一个关系“v”,都不能使这种关系同时满足实数集中大小关系的四条性质:对于任意实数a , b来说,a ::: b , a = b , b . a这种情况有且只有一种成立;如果a : b, b c,那么a c ;女口果a :: b,那么a c :: b c ;如果a : b, 0 :::c,那么ac ::: bc.2 •关于“复数的几何意义”的教学建议(1 )帮助学生认识复数的几何表示.复数的几何表示就是指用复平面内的点Z ( a,b)来表示复数z = a bi .①明确“复平面”的概念.②建立复数集C和复平面内所有的点所成的集合之间的—对应关系,即J一一对应、复数z=a,bi = "复平面内的点Z ( a,b).(2 )帮助学生认识复数的向量表示•复数的向量表示就是指用复平面内的向量OZ 来表示复数z = a bi •①认识复平面内的点Z ( a,b )与向量OZ 的■对应关系.② 在相互联系中把握复数的向量表示:复数z = a bi——对应戸' .兀、——对应点 Z ( a,b —— 对应 > 向量OZ(3 )用数形结合的思想方法,强化对复数几何意义的认识.在复平面内,实数与实轴上的点一一对应,纯虚数与虚轴上的点(原点除外)一一对应,非纯虚数的 虚数与象限内的点一一对应•可通过一组练习题来强化这一认识.第二节 复数代数形式的四则运算本节的主要教学内容是复数代数形式的加减运算及其几何意义,复数代数形式的乘除运算. •教学目标(1 )掌握复数代数形式的加减运算法则. (2 )了解复数代数形式的加减运算的几何意义. (3 )理解复数代数形式的乘除运算法则. (4)体验复数问题实数化的思想方法. •教学重点(1) 复数代数形式的加减运算及其几何意义. (2) 复数代数形式的乘除运算.(3) 复数问题实数化的思想方法复数的理解与运用. •教学难点(1) 复数代数形式的加减运算的规定.(2) 复数代数形式的加减运算的几何意义的理解. (3) 复数代数形式的乘除运算法则的运用. •教学时数本节教学,建议用 2课时•第1课时处理复数代数形式的加减运算及其几何意义;第 2课时研究复数代数形式的乘除运算.•课标对本节内容的处理特点复数代数形式的四则运算, 《课标》与《大纲》教学内容与要求基本相同,但在目标定位上存在差异:(1) 《课标》要求了解复数代数形式的加减运算的几何意义,对复数的向量表示提出了要求,强化了 数形结合思想方法; (2) 《课标》明确强调“淡化烦琐的计算和技巧性训练,突出了复数问题实数化的思想方法. •教学建议1 •复数代数形式的加法和乘法的运算法则是一种规定,要让学生理解其合理性•这种合理性应从数 系扩充的角度来理解:这种规定与实数加法、乘法的法则是一致的,而且实数加法、乘法的有关运算律在 这里仍然成立.2 •复数的减法、除法分别规定为复数的加法和乘法的逆运算,要让学生按照这种规定自主得出复数 减法和除法的运算法则. 3•复数代数形式的四则运算可以类比代数运算中的“合并同类项”“分母有理化”,利用i 2二-1,将它们归结为实数的四则运算•在具体运算情境中,弓I 入共轭复的概念,明确公式(a - bi)(a_bi)二a 2 • b 2是复数除法中“分母实数化”的基础,不必让学生专门计忆复数除法法则•从而让学生体验复数问题实数 化的思想方法.4 •要引领学生从平面向量的加法、减法的平行四边形或三角形法则来认识并理解复数代数形式的加 减运算的几何意义.附录一:《数系的扩充与复数的引入》章末复习学案一、本章复习要求:(1)复数的概念:①理解复数的基本概念;②理解复数相等的充要条件;③了解复数的代数表示法及其几何意义•(2)复数的四则运算:①会进行复数代数形式的四则运算;②了解复数代数形式的加、减运算的几何意义二、基础知识回顾:1 •虚数单位“ i ”的两条规定:①i2=-1, ②i与实数在一起,可以进行通常的四则运算。
3.1.1 实数系 3.1.2 复数的引入(一) 明目标、知重点 1.了解引入虚数单位i 的必要性,了解数集的扩充过程.2.理解在数系的扩充中由实数集扩展到复数集出现的一些基本概念.3.掌握复数代数形式的表示方法,理解复数相等的充要条件.1.复数的有关概念(1)复数①定义:设a ,b 都是实数,形如a +b i 的数叫做复数,i 叫做虚数单位.a 叫做复数的实部,b 叫做复数的虚部.②表示方法:复数通常用字母z 表示,即z =a +b i(a ,b ∈R ).(2)复数集 ①定义:全体复数所构成的集合叫做复数集.②表示:通常用大写字母C 表示.2.复数的分类及包含关系(1)复数(a +b i ,a ,b ∈R )⎩⎨⎧ 实数b =虚数b ⎩⎪⎨⎪⎧ 纯虚数a =非纯虚数a(2)集合表示:3.复数相等的充要条件设a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔a =c 且b =d .[情境导学]为解决方程x 2=2,数系从有理数扩充到实数.数的概念扩充到实数集后,人们发现在实数范围内很多问题还不能解决,如从解方程的角度看,x 2=-1这个方程在实数范围内就无解,那么怎样解决方程x 2=-1在实数系中无根的问题呢?我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?本节我们就来研究这个问题.探究点一 复数的概念思考1 为解决方程x 2=2,数系从有理数扩充到实数;那么怎样解决方程x 2+1=0在实数系中无根的问题呢?答 设想引入新数i ,使i 是方程x 2+1=0的根,即i·i=-1,方程x 2+1=0有解,同时得到一些新数.思考2 如何理解虚数单位i?答 (1)i 2=-1.(2)i 与实数之间可以运算,亦适合加、减、乘的运算律.(3)由于i 2<0与实数集中a 2≥0(a ∈R )矛盾,所以实数集中很多结论在复数集中,不再成立.(4)若i 2=-1,那么i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i.思考3 什么叫复数?怎样表示一个复数?什么叫虚数?什么叫纯虚数?答 形如a +b i(a ,b ∈R )的数叫做复数,复数通常用字母z 表示,即z =a +b i ,这一表示形式叫做复数的代数形式,其中a 、b 分别叫做复数z 的实部与虚部.对于复数z =a +b i(a ,b ∈R ),当b ≠0时叫做虚数;当a =0且b ≠0时,叫做纯虚数. 例1 请说出下列复数的实部和虚部,并判断它们是实数、虚数还是纯虚数.①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0. 解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为12,是虚数;③的实部为2,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-3,是纯虚数;⑥的实部为0,虚部为0,是实数.反思与感悟 复数a +b i 中,实数a 和b 分别叫做复数的实部和虚部.特别注意,b 为复数的虚部而不是虚部的系数,b 连同它的符号叫做复数的虚部.跟踪训练1 符合下列条件的复数一定存在吗?若存在,请举出例子;若不存在,请说明理由.(1)实部为-2的虚数;(2)虚部为-2的虚数;(3)虚部为-2的纯虚数;(4)实部为-2的纯虚数.解 (1)存在且有无数个,如-2+i 等;(2)存在且不唯一,如1-2i 等;(3)存在且唯一,即-2i ;(4)不存在,因为纯虚数的实部为0.例2 求当实数m 为何值时,z =m 2-m -6m +3+(m 2+5m +6)i 分别是:(1)实数;(2)虚数;(3)纯虚数.解 由已知得复数z 的实部为m 2-m -6m +3,虚部为m 2+5m +6. (1)复数z 是实数的充要条件是⎩⎪⎨⎪⎧m 2+5m +6=0,m +3≠0⇔⎩⎪⎨⎪⎧ m =-2或m =-3,m ≠-3⇔m =-2. ∴当m =-2时,复数z 是实数. (2)复数z 是虚数的充要条件是⎩⎪⎨⎪⎧ m 2+5m +6≠0,m +3≠0⇔m ≠-3且m ≠-2.∴当m ≠-3且m ≠-2时,复数z 是虚数.(3)复数z 是纯虚数的充要条件是⎩⎪⎨⎪⎧ m 2-m -6m +3=0,m 2+5m +6≠0⇔⎩⎪⎨⎪⎧ m =-2或m =3,m ≠-3且m ≠-2⇔m =3.∴当m =3时,复数z 是纯虚数.反思与感悟 利用复数的概念对复数分类时,主要依据实部、虚部满足的条件,可列方程或不等式求参数.跟踪训练2 实数m 为何值时,复数z =m m +m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.解 (1)要使z 是实数,m 需满足m 2+2m -3=0,且m m +m -1有意义即m -1≠0,解得m =-3.(2)要使z 是虚数,m 需满足m 2+2m -3≠0,且m m +m -1有意义即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 是纯虚数,m 需满足m m +m -1=0,m -1≠0, 且m 2+2m -3≠0,解得m =0或m =-2.探究点二 两个复数相等思考1 两个复数能否比较大小?答 如果两个复数不全是实数,那么它们不能比较大小.思考2 两个复数相等的充要条件是什么?答 复数a +b i 与c +d i 相等的充要条件是a =c 且b =d (a ,b ,c ,d ∈R ).例3 已知x ,y 均是实数,且满足(2x -1)+i =-y -(3-y )i ,求x 与y .解 由复数相等的充要条件得⎩⎪⎨⎪⎧ 2x -1=-y ,1=y -3.解得⎩⎪⎨⎪⎧ x =-32,y =4.反思与感悟 两个复数相等,首先要分清两复数的实部与虚部,然后利用两个复数相等的充要条件可得到两个方程,从而可以确定两个独立参数.跟踪训练3 已知M ={1,(m 2-2m )+(m 2+m -2)i},P ={-1,1,4i},若M ∪P =P ,求实数m 的值.解 ∵M ∪P =P ,∴M ⊆P ,∴(m 2-2m )+(m 2+m -2)i =-1或(m 2-2m )+(m 2+m -2)i =4i.由(m 2-2m )+(m 2+m -2)i =-1,得⎩⎪⎨⎪⎧m 2-2m =-1,m 2+m -2=0,解得m =1; 由(m 2-2m )+(m 2+m -2)i =4i ,得⎩⎪⎨⎪⎧ m 2-2m =0,m 2+m -2=4,解得m =2.综上可知m =1或m =2.1.已知复数z =a 2-(2-b )i 的实部和虚部分别是2和3,则实数a ,b 的值分别是( ) A.2,1 B.2,5 C.±2,5 D.±2,1 答案 C解析 令⎩⎪⎨⎪⎧ a 2=2-2+b =3,得a =±2,b =5.2.下列复数中,满足方程x 2+2=0的是( )A.±1B.±iC.±2iD.±2i答案 C3.如果z =m (m +1)+(m 2-1)i 为纯虚数,则实数m 的值为( )A.1B.0C.-1D.-1或1 答案 B解析 由题意知⎩⎪⎨⎪⎧ m m +=0m 2-1≠0,∴m =0.4.下列几个命题:①两个复数相等的一个必要条件是它们的实部相等;②两个复数不相等的一个充分条件是它们的虚部不相等;③1-a i(a ∈R )是一个复数;④虚数的平方不小于0;⑤-1的平方根只有一个,即为-i ;⑥i 是方程x 4-1=0的一个根; ⑦2i 是一个无理数.其中正确命题的个数为( )A.3B.4C.5D.6 答案 B解析 命题①②③⑥正确,④⑤⑦错误.[呈重点、现规律]1.对于复数z =a +b i(a ,b ∈R ),可以限制a ,b 的值得到复数z 的不同情况;2.两个复数相等,要先确定两个复数的实、虚部,再利用两个复数相等的充要条件进行判断.。
3.1数系的扩充和复数的引入【教材分析】教材地位和作用:数系扩充的过程体现了数学的发现和创造过程,体现了数学发生发展的客观需求.通过学习,学生在问题情景中了解数系扩充的过程以及引入虚数的必要性,体会人类理性思维在数系扩充中的作用,有助于提高学生的数学素养.复数的引入是中学阶段数系的最后一次扩充.学习复数的一些基本知识,为学习复数的四则运算和几何意义做好知识储备.教材处理办法:精心设计制作教学课件,直观形象地展示数系扩充的过程.化抽象为具体,使学生真实体验数系扩充的必要性及数系扩充要遵循的法则.在这个过程中了解复数、虚数、纯虚数、复数的实部、虚部等相关概念就水到渠成了.重点:数系扩充的过程和方法,复数的相关概念.难点:数系扩充的过程和方法,虚数的引入.【教学目标】知识目标:了解数系的扩充过程,感受人类理性思维的作用以及数与现实世界的联系;了解复数的相关概念.能力目标:发展学生独立获取数学知识的能力和创新意识.情感目标:初步认识数学的应用价值、科学价值和人文价值,崇尚数学具有的理性精神和科学态度,树立辩证唯物主义世界观.【教学方法】教学模式:“4+1”教学模式教学方法:开放式探究,启发式引导,互动式讨论,反馈式评价.学习方法:自主探究,观察发现,合作交流,归纳总结。
教学手段:结合多媒体网络教学环境,构建学生自主探究的教学平台【教学程序】以问题为载体,以学生活动为主线.自主学习合作探究成果展示精讲点拨巩固提高小结与作业1、【自主学习】(课前完成)阅读教材《§3.1.1 数系的扩充与复数的概念》内容,思考:(1) 你对数的发展的了解(2) 由得你有,何困惑?(3)方根2-=0无实根的原因是什么?如果扩充数系,使之有解,如何扩充?(4)虚数单位i的性质?i与实数的运算性质?(5)复数的有关概念?(6)实数集R与复数C的关系?2、【合作探究】探究任务一:数系的扩充过程。
问题1:回顾归纳从小学到昨天为止数系的扩充过程。
高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章数系的扩充与复数的引入3.2 复数代数形式的四则运算3.2.1 复数代数形式的加、减运算及其几何意义教案2 新人教A版选修1-2的全部内容。
3.2.1复数代数形式的加、减运算及其几何意义教学过程一、推进新课1.复数的加法探究新知我们规定,复数的加法法则如下:设bi a z +=1,di c z +=2是任意两个复数,那么()()()()i d b c a di c bi a +++=+++提出问题问题1:两个复数的和是个什么数,值唯一确定吗?问题2:当b=0,d=0时,与实数加法法则一致吗?问题3:它的实质是什么?类似于实数的哪种运算方法?活动设计:学生独立思考,口答。
活动成果:1.仍然是个复数,且是一个确定的复数。
2.一致。
3.实质是实部与实部相加,虚部与虚部相加,类比于实数运算中的合并同类项。
设计意图:加深对复数加法法则的理解,且与实数类比,了解规定的合理性。
提出问题:实数加法有交换律、结合律,复数满足吗?并试着证明。
活动设计:学生先独立思考,然后小组交流.活动成果:满足,对任意的,,,321C z z z ∈有交换律:1221z z z z +=+结合律:()()321321z z z z z z ++=++证明:设bi a z +=1,di c z +=2,()()i d b c a z z +++=+21x O y()b a Z ,1 ()d c Z ,2 Z ()()i b d a c z z +++=+12显然,1221z z z z +=+同理可得,()()321321z z z z z z ++=++设计意图:引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,提高学生的建构能力及主动发现问题,探究问题的能力。
第三章 数系的扩充与复数的引入[自我校对]①i 2=-1 ②a =c ,b =d ③z =a -b i ④Z (a ,b ) ⑤OZ →⑥a +c ⑦(b +d )i ⑧(a -c )+(b -d )i1.复数a +b i(a ,b ∈R )⎩⎨⎧实数b =虚数b⎩⎪⎨⎪⎧纯虚数a =非纯虚数a2.复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部、虚部满足的方程(或不等式)即可.当实数a 为何值时,z =a 2-2a +(a 2-3a +2)i : (1)为实数; (2)为纯虚数;(3)对应的点在第一象限内; (4)对应的点在直线x -y =0上.【精彩点拨】 解答本题可根据复数的分类标准,列出方程(不等式)求解. 【规范解答】 (1)由z ∈R ,得a 2-3a +2=0, 解得a =1或a =2.(2)z 为纯虚数,⎩⎪⎨⎪⎧a 2-2a =0,a 2-3a +2≠0,即⎩⎪⎨⎪⎧a =0或a =2,a ≠1且a ≠2.故a =0.(3)z 对应的点在第一象限,则⎩⎪⎨⎪⎧a 2-2a >0,a 2-3a +2>0,∴⎩⎪⎨⎪⎧a <0或a >2,a <1或a >2,∴a <0或a >2.∴a 的取值范围是(-∞,0)∪(2,+∞). (4)依题得(a 2-2a )-(a 2-3a +2)=0, ∴a =2. [再练一题]1.当实数m 为何值时,复数z =m 2+m -6m+(m 2-2m )i 为(1)实数; (2)虚数; (3)纯虚数.【解】 (1)当⎩⎪⎨⎪⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数. (2)当m 2-2m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.别相加减,而乘法类比多项式乘法,除法实质上是分母实数化,可类比分式的分子分母有理化,注意i 2=-1.计算:⎝⎛⎭⎪⎫-32-12i 12+⎝ ⎛⎭⎪⎫2+2i 1-3i 8. 【精彩点拨】 先由-32-12i =i ⎝ ⎛⎭⎪⎫-12+32i ,1-3i =(-2)⎝ ⎛⎭⎪⎫-12+32i ,将原式化简,再利用-12+32i 的特殊性进行求解.【规范解答】 原式=i 12⎝ ⎛⎭⎪⎫-12+32i 12++8⎝ ⎛⎭⎪⎫-12+32i 8=1×1+4⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫-12+32i 9=1+16⎝ ⎛⎭⎪⎫-12+32i =-7+83i.[再练一题] 2.计算:(1)+4-35;(2)-1+33+6--2+i 1+2i. 【解】 (1)原式=24+4-25⎝ ⎛⎭⎪⎫-12+32i 5=-12·2⎝ ⎛⎭⎪⎫-12+32i ⎝ ⎛⎭⎪⎫-12+32i 6=-12·(-4)·⎝ ⎛⎭⎪⎫-12+32i=-1+3i.(2)原式=⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+32i 3+2]3--2+-5=23⎝ ⎛⎭⎪⎫-12+32i 33--2+4i +i +25 =8-8i-i =i -i =0.除用共轭复数定义与模的计算公式解题外,也常用下列结论简化解题过程:(1)|z |=1⇔z =1z.(2)z ∈R ⇔z =z .(3)z ≠0,z 为纯虚数⇔z =-z .设z 是虚数,且|z |=1,求证:u =1-z1+z 为纯虚数.【精彩点拨】 利用共轭复数的性质证明u +u =0.【规范解答】 ∵z 为虚数,且|z |=1,∴z ·z =1,即z =1z.∵u +u =1-z 1+z +1-z 1+z =1-z1+z +1-1z 1+1z=1-z 1+z +z -11+z =0, ∴u 为纯虚数. [再练一题]3.设|z |=1,且z ≠±i,求证:z1+z 2为实数.【证明】 由条件可知z ≠0,则z ·z =|z |2=1, 所以z =1z=z -1,⎝ ⎛⎭⎪⎫z 1+z 2=z 1+z 2=z 1+z 2=z1+z2=z -11+z -12=z z 2+1,所以z1+z2为实数.1.点Z (a ,b )或向量OZ 称为复数z =a +b i(a ,b ∈R )的几何表示,因此复平面的点与复平面的向量是复数的两个几何形象.2.复数形式的基本轨迹(1)当|z -z 1|=r 时,表示复数z 对应的点的轨迹是以z 1对应的点为圆心,半径为r 的圆;单位圆|z |=1.(2)当|z -z 1|=|z -z 2|时,表示以复数z 1,z 2的对应点为端点的线段的垂直平分线. (3)|z 1-z 2|表示两点间的距离,即表示复数z 1与z 2对应点间的距离.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( ) A .2 B .3 C .4D .5【精彩点拨】 常规方法是运用复数的代数形式,把复数最值问题转化为一般函数最值问题再解决,而运用|z -z 0|的几何意义解决更为简便.【规范解答】 如图,|z +2-2i|=1表示以C (-2,2)为圆心,1为半径的圆,则|z -2-2i|的最小值是指点A (2,2)到圆的最短距离,显然|AB |=|AC |-1=3,即为最小值,故选B.【答案】 B [再练一题]4.已知|z |=2,则|z +1+3i|的最大值和最小值分别为________.【导学号:81092053】【解析】 设z =x +y i(x ,y ∈R ),则由|z |=2知x 2+y 2=4, 故z 对应的点在以原点为圆心,2为半径的圆上, 又|z +1+3i|表示点(x ,y )到点(-1,-3)的距离.又因为点(-1,-3)在圆x 2+y 2=4上,所以圆上的点到点(-1,-3)的距离的最小值为0,最大值为圆的直径4,即|z +1+3i|的最大值和最小值分别为4和0. 【答案】 4,01.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)【解析】 由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).【答案】 A2.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2【解析】 ∵(1+i)x =1+y i ,∴x +x i =1+y i.又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B. 【答案】 B3.复数1+2i2-i =( )A .iB .1+iC .-iD .1-i 【解析】 方法1:1+2i2-i =++-+=5i5=i. 方法2:1+2i2-i =+-=+2i +1=i.【答案】 A4.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则a b的值为________. 【解析】 因为(1+i)(1-b i)=1+b +(1-b )i =a ,又a ,b ∈R ,所以1+b =a 且1-b =0,得a =2,b =1,所以a b=2.【答案】 25.设a ∈R ,若复数(1+i)(a +i)在复平面内对应的点位于实轴上,则a =________. 【解析】 (1+i)(a +i)=a -1+(a +1)i. ∵其对应点在实轴上, ∴a +1=0,即a =-1. 【答案】 -1章末综合测评(三) 数系的扩充与复数的引入 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设复数z 满足z +i =3-i ,则z =( ) A .-1+2i B .1-2i C .3+2iD .3-2i【解析】 由z +i =3-i 得z =3-2i ,∴z =3+2i ,故选C. 【答案】 C2.若复数z =i(3-2i)(i 是虚数单位),则z =( )A .2-3iB .2+3iC .3+2iD .3-2i【解析】 ∵z =i(3-2i)=3i -2i 2=2+3i ,∴z =2-3i. 【答案】 A3.若i(x +y i)=3+4i(x ,y ∈R ),则复数x +y i 的模是( ) A .2 B .3 C .4D .5【解析】 由i(x +y i)=3+4i ,得-y +x i =3+4i ,解得x =4,y =-3,所以复数x +y i 的模为42+-2=5.【答案】 D4.若复数z =21-i ,其中i 为虚数单位,则z =( )A .1+iB .1-iC .-1+iD .-1-i【解析】 ∵z =21-i =+-+=+2=1+i ,∴z =1-i.【答案】 B5.“m =1”是“复数z =(1+m i)(1+i)(m ∈R ,i 为虚数单位)为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 z =(1+m i)(1+i)=1+i +m i -m =(1-m )+(1+m )i ,若m =1,则z =2i 为纯虚数;若z 为纯虚数,则m =1.故选C.【答案】 C6.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( )【导学号:81092054】A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对【解析】 设z =a +b i(a ,b ∈R ),∵z 2=a 2-b 2+2ab i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-b 2=0,ab ≠0.∴a =±b ,即z 在复平面上的对应点在直线y =±x (x ≠0)上.【答案】 C7.设复数z 满足1-z1+z =i ,则|1+z |=( )A .0B .1 C. 2D .2【解析】 ∵1-z1+z =i ,∴z =1-i 1+i=-2+-=-i ,∴|z +1|=|1-i|= 2. 【答案】 C8.设i 是虚数单位,z 是复数z 的共轭复数,若z ·z i +2=2z ,则z =( ) A .1+i B .1-i C .-1+iD .-1-i【解析】 设z =a +b i(a ,b ∈R ),由z ·z i +2=2z ,得(a +b i)(a -b i)i +2=2(a+b i),即(a 2+b 2)i +2=2a +2b i ,由复数相等的条件得⎩⎪⎨⎪⎧a 2+b 2=2b ,2=2a ,得⎩⎪⎨⎪⎧a =1,b =1,∴z =1+i. 【答案】 A9.若z =cos θ+isin θ(i 为虚数单位),则使z 2=-1的θ值可能是( ) A.π6 B.π4 C.π3D.π2【解析】 z 2=(cos θ+isin θ)2=(cos 2θ-sin 2θ)+2isin θcos θ=cos 2θ+isin 2θ=-1,∴⎩⎪⎨⎪⎧sin 2θ=0,cos 2θ=-1,∴2θ=2k π+π(k ∈Z ),∴θ=k π+π2(k ∈Z ),令k =0知选D.【答案】 D10.当z =-1-i 2时,z 100+z 50+1的值是( )A .1B .-1C .iD .-i【解析】 原式=⎝ ⎛⎭⎪⎫-1-i 2100+⎝ ⎛⎭⎪⎫-1-i 250+1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-i 2250+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-i 2225+1=(-i)50+(-i)25+1=-i.故应选D.【答案】 D11.在复平面上,正方形OBCA 的三个顶点A ,B ,O 对应的复数分别为1+2i ,-2+i,0,则这个正方形的第四个顶点C 对应的复数是( )A .3+iB .3-iC .1-3iD .-1+3i【解析】 ∵正方形的三个顶点的坐标分别是A (1,2),B (-2,1),O (0,0), ∴设第四个顶点C 的坐标为(x ,y ), 则BC →=OA →,∴(x +2,y -1)=(1,2).∴⎩⎪⎨⎪⎧x +2=1,y -1=2,∴⎩⎪⎨⎪⎧x =-1,y =3,∴第四个顶点C 的坐标为(-1,3). 【答案】 D12.复数z =(x -2)+y i(x ,y ∈R )在复平面内对应向量的模为2,则|z +2|的最大值为( )A .2B .4C .6D .8【解析】 由于|z |=2,所以x -2+y 2=2,即(x -2)2+y 2=4,故点(x ,y )在以(2,0)为圆心,2为半径的圆上,而|z +2|=|x +y i|=x 2+y 2,它表示点(x ,y )与原点的距离,结合图形易知|z +2|的最大值为4,故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上.) 13.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 【解析】 因为z =(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5. 【答案】 5 14.复数z 1=⎝ ⎛⎭⎪⎫1-i 1+i 2,z 2=2-i 3分别对应复平面内的点P ,Q ,则向量PQ→对应的复数是________.【解析】 ∵z 1=⎝⎛⎭⎪⎫1-i 1+i 2=-1,z 2=2-i 3=2+i ,∴P (-1,0),Q (2,1),∴PQ →=(3,1),即PQ →对应的复数为3+i. 【答案】 3+i 15.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,则对复数z =x +y i(x ,y ∈R )符合条件⎪⎪⎪⎪⎪⎪z 1z 2i =3+2i 的复数z 等于_________.【导学号:81092055】【解析】 由定义运算,得⎪⎪⎪⎪⎪⎪z 1z 2i =2z i -z =3+2i ,则z =3+2i -1+2i =+-1--1+-1-=15-85i. 【答案】 15-85i16.复数z =(a -2)+(a +1)i ,a ∈R 对应的点位于第二象限,则|z |的取值范围是________.【解析】 复数z =(a -2)+(a +1)i 对应的点的坐标为(a -2,a +1),因为该点位于第二象限,所以⎩⎪⎨⎪⎧a -2<0,a +1>0,解得-1<a <2.由条件得|z |=a -2+a +2=2a 2-2a +5 =2⎝⎛⎭⎪⎫a 2-a +14+92=2⎝ ⎛⎭⎪⎫a -122+92, 因为-1<a <2,所以|z |∈⎣⎢⎡⎭⎪⎫322,3. 【答案】 ⎣⎢⎡⎭⎪⎫322,3 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知复数x 2+x -2+(x 2-3x +2)i(x ∈R )是4-20i 的共轭复数,求实数x 的值.【解】 ∵复数4-20i 的共轭复数为4+20i ,∴x 2+x -2+(x 2-3x +2)i =4+20i ,∴⎩⎪⎨⎪⎧ x 2+x -2=4,x 2-3x +2=20,∴x =-3.18.(本小题满分12分)已知复数z =(2+i)m 2-6m 1-i -2(1-i),当实数m 取什么值时,复数z 是:(1)虚数;(2)纯虚数.【解】 z =(2+i)m 2-3m (1+i)-2(1-i)=(2m 2-3m -2)+(m 2-3m +2)i ,(1)当m 2-3m +2≠0,即m ≠2且m ≠1时,z 为虚数.(2)当⎩⎪⎨⎪⎧ 2m 2-3m -2=0,m 2-3m +2≠0,即m =-12时,z 为纯虚数. 19.(本小题满分12分)设复数z =+2+-2+i ,若z 2+az +b =1+i ,求实数a ,b 的值.【解】 z =+2+1-2+i =2i +-2+i =3-i 2+i =--+-=1-i. 将z =1-i 代入z 2+az +b =1+i ,得(1-i)2+a (1-i)+b =1+i ,(a +b )-(a +2)i =1+i ,所以⎩⎪⎨⎪⎧ a +b =1,-a +=1. 所以⎩⎪⎨⎪⎧ a =-3,b =4.20.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .【解】 设z =x +y i ,x ,y ∈R ,因为OA ∥BC ,|OC |=|BA |,所以k OA =k BC ,|z C |=|z B -z A |,即⎩⎪⎨⎪⎧ 21=y -6x +2,x 2+y 2=32+42,解得⎩⎪⎨⎪⎧ x 1=-5,y 1=0或⎩⎪⎨⎪⎧ x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去),故z =-5.21.(本小题满分12分)已知复数z 满足|z |=1+3i -z ,求+2+22z 的值.【解】 设z =a +b i(a ,b ∈R ),而|z |=1+3i -z ,即a 2+b 2-1-3i +a +b i =0, 则⎩⎨⎧ a 2+b 2+a -1=0, b -3=0,解得⎩⎪⎨⎪⎧a =-4,b =3.,∴z =-4+3i , ∴+2+22z =-7+-4+=24+7i 4-3i=3+4i. 22.(本小题满分12分)已知关于x 的方程:x 2-(6+i)x +9+a i =0(a ∈R )有实数根b .(1)求实数a ,b 的值;(2)若复数z 满足|z -a -b i|-2|z |=0,求z 为何值时,|z |有最小值,并求出|z |的值. 【导学号:81092056】【解】 (1)∵b 是方程x 2-(6+i)x +9+a i =0(a ∈R )的实根,∴(b 2-6b +9)+(a -b )i =0,∴⎩⎪⎨⎪⎧ b 2-6b +9=0,a =b ,解得a =b =3. (2)设z =x +y i(x ,y ∈R ),由|z -3-3i|=2|z |,得(x -3)2+(y +3)2=4(x 2+y 2),即(x +1)2+(y -1)2=8,∴复数z对应的点Z的轨迹是以O1(-1,1)为圆心,22为半径的圆,如图所示.当点Z在OO1的连线上时,|z|有最大值或最小值,∵|OO1|=2,半径r=22,∴当z=1-i时,|z|有最小值且|z|min= 2.。
3.1.1 数系的扩充和复数的概念
课时达标训练
1.下列命题中:
①两个复数不能比较大小;②若z=a+bi(a,b∈R),则当且仅当a=0且b≠0时,z为纯虚数;③(z1-z2)2+(z2-z3)2=0,则z1=z2=z3;④x+yi=1+i⇔x=y=1(x,y∈R);⑤若实数a与ai对应,则实数集与纯虚数集一一对应.
其中正确命题的个数为( )
A.0
B.1
C.2
D.3
【解析】选C.根据对复数相等的充要条件的认识及复数概念判断此题.
2.“复数a+bi(a,b∈R)为纯虚数”是“a=0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
【解析】选A.当a+bi(a,b∈R)为纯虚数时,则a=0,b≠0,但当a=0时,a+bi不一定是纯虚数,因为
时,a+bi=0为实数.
3.如果z=m(m+1)+(m2-1)i为纯虚数,则实数m的值为( )
A.1
B.0
C.-1
D.-1或1
【解析】选B.因为m(m+1)+(m2-1)i为纯虚数,所以解得m=0.
4.已知a,b∈R,i为虚数单位,若a-i=2+bi,则a+b=________.
【解析】因为a-i=2+bi,a,b∈R,所以a=2,b=-1,所以a+b=1.
答案:1
5.设复数z=(m2+2m-3)+(m-1)i,试求实数m取何值时,满足
(1)z是实数.
(2)z是纯虚数.
【解题指南】(1)复数为实数需满足虚部为零.(2)纯虚数需满足实部为零虚部不为零.
【解析】(1)由m-1=0得m=1,即m=1时z是实数.
(2)由解得m=-3,即m=-3时z是纯虚数.。