《三维设计》2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)函数的奇偶性及周期性(含解析)
- 格式:doc
- 大小:303.00 KB
- 文档页数:12
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第二节等差数列及其前n 项和[知识能否忆起]一、等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.二、等差数列的有关公式 1.通项公式:a n =a 1+(n -1)d . 2.前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 三、等差数列的性质1.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q . 2.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd . 3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为n 2d . 4.等差数列的增减性:d >0时为递增数列,且当a 1<0时前n 项和S n 有最小值.d <0时为递减数列,且当a 1>0时前n 项和S n 有最大值.5.等差数列{a n }的首项是a 1,公差为d .若其前n 项之和可以写成S n =An 2+Bn ,则A =d 2,B =a 1-d2,当d ≠0时它表示二次函数,数列{a n }的前n 项和S n =An 2+Bn 是{a n }成等差数列的充要条件.[小题能否全取]1.(2012·福建高考)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:选B 法一:设等差数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.故d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10,∴a 3=5. 又a 4=7,∴公差d =7-5=2.2.(教材习题改编)在等差数列{a n }中,a 2+a 6=3π2,则sin ⎝⎛⎭⎫2a 4-π3=( ) A.32B.12 C .-32D .-12解析:选D ∵a 2+a 6=3π2,∴2a 4=3π2.∴sin ⎝⎛⎭⎫2a 4-π3=sin ⎝⎛⎭⎫3π2-π3=-cos π3=-12. 3.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________. 解析:由a n +1=a n +2知{a n }为等差数列其公差为2. 故a n =1+(n -1)×2=2n -1. 答案:2n -15.(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.解析:设{a n }的公差为d ,由S 2=a 3知,a 1+a 2=a 3,即2a 1+d =a 1+2d , 又a 1=12,所以d =12,故a 2=a 1+d =1,S n =na 1+12n (n -1)d =12n +12(n 2-n )×12=14n 2+14n .答案:1 14n 2+14n1.与前n 项和有关的三类问题(1)知三求二:已知a 1、d 、n 、a n 、S n 中的任意三个,即可求得其余两个,这体现了方程思想.(2)S n =d2n 2+⎝⎛⎭⎫a 1-d 2n =An 2+Bn ⇒d =2A . (3)利用二次函数的图象确定S n 的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a -2d ,a -d ,a ,a +d ,a +2d ,…;若偶数个数成等差数列且和为定值时,可设为…,a -3d ,a -d ,a +d ,a +3d ,…,其余各项再依据等差数列的定义进行对称设元.等差数列的判断与证明典题导入[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *). (1)求a 2,a 3的值;(2)设b n =a n +32n (n ∈N *),证明:{b n }是等差数列.[自主解答] (1)∵a 1=-3,a n =2a n -1+2n +3(n ≥2,且n ∈N *),∴a 2=2a 1+22+3=1,a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *,∵b n +1-b n =a n +1+32n +1-a n +32n =12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.由题悟法1.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n (a 1+a n )2.2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.以题试法1.已知数列{a n }的前n 项和S n 是n 的二次函数,且a 1=-2,a 2=2,S 3=6. (1)求S n ;(2)证明:数列{a n }是等差数列. 解:(1)设S n =An 2+Bn +C (A ≠0), 则⎩⎪⎨⎪⎧-2=A +B +C ,0=4A +2B +C ,6=9A +3B +C ,解得A =2,B =-4,C =0.故S n =2n 2-4n . (2)证明:∵当n =1时,a 1=S 1=-2.当n ≥2时,a n =S n -S n -1=2n 2-4n -[2(n -1)2-4(n -1)]=4n -6. ∴a n =4n -6(n ∈N *).a n +1-a n =4, ∴数列{a n }是等差数列.等差数列的基本运算典题导入[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值. [自主解答] (1)设数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+2d =8,2a 1+4d =12,解得⎩⎪⎨⎪⎧a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n .(2)由(1)可得S n =n (a 1+a n )2=n (2+2n )2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去),因此k =6.由题悟法1.等差数列的通项公式a n =a 1+(n -1)d 及前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.以题试法2.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=________.(2)(2012·江西联考)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析:(1)∵a 6=10,S 5=5,∴⎩⎪⎨⎪⎧a 1+5d =10,5a 1+10d =5. 解方程组得⎩⎪⎨⎪⎧a 1=-5,d =3.则S 8=8a 1+28d =8×(-5)+28×3=44. (2)依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案:(1)44 (2)6等差数列的性质典题导入[例3] (1)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于( )A .66B .99C .144D .297(2)(2012·天津模拟)设等差数列{a n }的前n 项和S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( )A .18B .17C .16D .15[自主解答] (1)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.(2)设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.[答案] (1)B (2)A由题悟法1.等差数列的性质是等差数列的定义、通项公式以及前n 项和公式等基础知识的推广与变形,熟练掌握和灵活应用这些性质可以有效、方便、快捷地解决许多等差数列问题.2.应用等差数列的性质解答问题的关键是寻找项的序号之间的关系.以题试法3.(1)(2012·江西高考)设数列{a n },{b n }都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.(2)(2012·海淀期末)若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:(1)设两等差数列组成的和数列为{c n },由题意知新数列仍为等差数列且c 1=7,c 3=21,则c 5=2c 3-c 1=2×21-7=35.(2)∵a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n-1)×(-3)=22-3n .设前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,解得193≤k ≤223.∵k ∈N *,∴k =7.故满足条件的n 的值为7.答案:(1)35 (2)B1.(2011·江西高考){a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1=( )A .18B .20C .22D .24解析:选B 由S 10=S 11,得a 11=S 11-S 10=0,a 1=a 11+(1-11)d =0+(-10)×(-2)=20.2.(2012·广州调研)等差数列{a n }的前n 项和为S n ,已知a 5=8,S 3=6,则S 10-S 7的值是( )A .24B .48C .60D .72解析:选B 设等差数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 5=a 1+4d =8,S 3=3a 1+3d =6,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 10-S 7=a 8+a 9+a 10=3a 1+24d =48.3.(2013·东北三校联考)等差数列{a n }中,a 5+a 6=4,则log 2(2a 1·2a 2·…·2a 10)=( ) A .10 B .20 C .40D .2+log 25解析:选B 依题意得,a 1+a 2+a 3+…+a 10=10(a 1+a 10)2=5(a 5+a 6)=20,因此有log 2(2a 1·2a 2·…·2a 10)=a 1+a 2+a 3+…+a 10=20.4.(2012·海淀期末)已知数列{a n }满足:a 1=1,a n >0,a 2n +1-a 2n =1(n ∈N *),那么使a n <5成立的n 的最大值为( )A .4B .5C .24D .25解析:选C ∵a 2n +1-a 2n =1,∴数列{a 2n }是以a 21=1为首项,1为公差的等差数列.∴a 2n =1+(n -1)=n .又a n >0,∴a n =n .∵a n <5,∴n <5.即n <25.故n 的最大值为24.5.已知等差数列{a n }的前n 项和为S n ,并且S 10>0,S 11<0,若S n ≤S k 对n ∈N *恒成立,则正整数k 的值为( )A .5B .6C .4D .7解析:选A 由S 10>0,S 11<0知a 1>0,d <0,并且a 1+a 11<0,即a 6<0,又a 5+a 6>0,所以a 5>0,即数列的前5项都为正数,第5项之后的都为负数,所以S 5最大,则k =5.6.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.7.(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________.解析:设等差数列公差为d ,∵由a 3=a 22-4,得1+2d =(1+d )2-4,解得d 2=4,即d=±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1. 答案:2n -18.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析:a 7-a 5=2d =4,则d =2.a 1=a 11-10d =21-20=1, S k =k +k (k -1)2×2=k 2=9.又k ∈N *,故k =3.答案:39.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:∵{a n },{b n }为等差数列, ∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,∴a 6b 6=1941.答案:194110.(2011·福建高考)已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.11.设数列{a n }的前n 项积为T n ,T n =1-a n ,(1)证明⎩⎨⎧⎭⎬⎫1T n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫a n T n 的前n 项和S n .解:(1)证明:由T n =1-a n 得,当n ≥2时,T n =1-T nT n -1,两边同除以T n 得1T n -1T n -1=1.∵T 1=1-a 1=a 1, 故a 1=12,1T 1=1a 1=2.∴⎩⎨⎧⎭⎬⎫1T n 是首项为2,公差为1的等差数列. (2)由(1)知1T n =n +1,则T n =1n +1,从而a n =1-T n =n n +1.故a nT n=n .∴数列⎩⎨⎧⎭⎬⎫a n T n 是首项为1,公差为1的等差数列.∴S n =n (n +1)2. 12.已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22.(1)求S n ;(2)这个数列的前多少项的和最大,并求出这个最大值.解:(1)∵S 10=a 1+a 2+…+a 10,S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0,即12(a 11+a 22)2=0,故a 11+a 22=2a 1+31d =0. 又∵a 1=31,∴d =-2,∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2. (2)法一:由(1)知S n =32n -n 2,故当n =16时,S n 有最大值,S n 的最大值是256.法二:由S n =32n -n 2=n (32-n ),欲使S n 有最大值,应有1<n <32,从而S n ≤⎝ ⎛⎭⎪⎫n +32-n 22=256, 当且仅当n =32-n ,即n =16时,S n 有最大值256.1.等差数列中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是( )A .156B .52C .26D .13解析:选C ∵a 3+a 5=2a 4,a 7+a 10+a 13=3a 10,∴6(a 4+a 10)=24,故a 4+a 10=4.∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=26. 2.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84解析:选C 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,故T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.3.数列{a n }满足a n +1+a n =4n -3(n ∈N *).(1)若{a n }是等差数列,求其通项公式;(2)若{a n }满足a 1=2,S n 为{a n }的前n 项和,求S 2n +1.解:(1)由题意得a n +1+a n =4n -3,①a n +2+a n +1=4n +1,②②-①得a n +2-a n =4,∵{a n }是等差数列,设公差为d ,∴d =2.∵a 1+a 2=1,∴a 1+a 1+d =1,∴a 1=-12, ∴a n =2n -52. (2)∵a 1=2,a 1+a 2=1,∴a 2=-1.又∵a n +2-a n =4,∴数列的奇数项与偶数项分别成等差数列,公差均为4, ∴a 2n -1=4n -2,a 2n =4n -5,S 2n +1=(a 1+a 3+…+a 2n +1)+(a 2+a 4+…+a 2n )=(n +1)×2+(n +1)n 2×4+n ×(-1)+n (n -1)2×4 =4n 2+n +2.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1. ∴n ≥2时,b n -b n -1=1a n -1-1a n -1-1=1⎝ ⎛⎭⎪⎫2-1a n -1-1-1a n -1-1 =a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52. ∴数列{b n }是以-52为首项,1为公差的等差数列. (2)由(1)知,b n =n -72, 则a n =1+1b n =1+22n -7, 设函数f (x )=1+22x -7, 易知f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞内为减函数. 故当n =3时,a n 取得最小值-1;当n =4时,a n 取得最大值3.2.已知等差数列{a n }的前n 项和为S n ,且满足:a 2+a 4=14,S 7=70.(1)求数列{a n }的通项公式;(2)设b n =2S n +48n,数列{b n }的最小项是第几项,并求出该项的值. 解:(1)设等差数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =14,7a 1+21d =70, 即⎩⎪⎨⎪⎧ a 1+2d =7,a 1+3d =10,解得⎩⎪⎨⎪⎧ a 1=1,d =3.所以a n =3n -2.(2)因为S n =n 2[1+(3n -2)]=3n 2-n 2, 所以b n =3n 2-n +48n =3n +48n-1≥2 3n ·48n-1=23, 当且仅当3n =48n,即n =4时取等号, 故数列{b n }的最小项是第4项,该项的值为23.3.已知数列{a n },对于任意n ≥2,在a n -1与a n 之间插入n 个数,构成的新数列{b n }成等差数列,并记在a n -1与a n 之间插入的这n 个数均值为C n -1.(1)若a n =n 2+3n -82,求C 1,C 2,C 3; (2)在(1)的条件下是否存在常数λ,使{C n +1-λC n }是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由.解:(1)由题意a 1=-2,a 2=1,a 3=5,a 4=10,∴在a 1与a 2之间插入-1,0,C 1=-12. 在a 2与a 3之间插入2,3,4,C 2=3.在a 3与a 4之间插入6,7,8,9,C 3=152. (2)在a n -1与a n 之间插入n 个数构成等差数列,d =a n -a n -1n +1=1, ∴C n -1=n (a n -1+a n )2n =a n -1+a n 2=n 2+2n -92. 假设存在λ使得{C n +1-λC n }是等差数列. ∴(C n +1-λC n )-(C n -λC n -1)=C n +1-C n -λ(C n -C n -1)=2n +52-λ·2n +32=(1-λ)n +52-32λ=常数,∴λ=1. 即λ=1时,{C n +1-λC n }是等差数列.。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校第十二节导数的应用(一)[知识能否忆起]1.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.[小题能否全取]1.(教材习题改编)若函数f(x)=x3+ax2+3x-9在x=-3时取得极值,则a等于() A.2B.3C.4 D.5解析:选D∵f′(x)=3x2+2ax+3,f′(-3)=0,∴a=5.2.(2012·辽宁高考)函数y=12x2-ln x的单调递减区间为()A.(-1,1] B.(0,1]C .[1,+∞)D .(0,+∞)解析:选B 函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =(x -1)(x +1)x ,令y ′≤0,则可得0<x ≤1.3.(2012·陕西高考)设函数f (x )=x e x ,则( ) A .x =1为f (x )的极大值点 B .x =1为f (x )的极小值点 C .x =-1为f (x )的极大值点 D .x =-1为f (x )的极小值点解析:选D 求导得f ′(x )=e x +x e x =e x (x +1),令f ′(x )=e x (x +1)=0,解得x =-1,易知x =-1是函数f (x )的极小值点.4.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.解析:f ′(x )=x 2+2x -3,f ′(x )=0,x ∈[0,2], 得x =1.比较f (0)=-4,f (1)=-173,f (2)=-103.可知最小值为-173.答案:-1735.已知a >0,函数f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是________. 解析:f ′(x )=3x 2-a 在x ∈[1,+∞)上f ′(x )≥0, 则f ′(1)≥0⇒a ≤3. 答案:31.f ′(x )>0与f (x )为增函数的关系:f ′(x )>0能推出f (x )为增函数,但反之不一定.如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0,所以f ′(x )>0是f (x )为增函数的充分 不必要条件.2.可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f ′(x 0)=0是可导函数f (x )在x =x 0处取得极值的必要不充分条件.例如函数y =x 3在x =0处有y ′|x =0=0,但x =0不是极值点.此外,函数不可导的点也可能是函数的极值点.3.可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.运用导数解决函数的单调性问题典题导入[例1] (2012·山东高考改编)已知函数f (x )=ln x +ke x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间.[自主解答] (1)由f (x )=ln x +ke x,得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).由题悟法求可导函数单调区间的一般步骤和方法 (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实数根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.以题试法1.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)是否存在a使函数f(x)为R上的单调递减函数,若存在,求出a的取值范围;若不存在,请说明理由.解:(1)当a=2时,f(x)=(-x2+2x)e x,∴f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,∵e x>0,∴-x2+2>0,解得-2<x< 2.∴函数f(x)的单调递增区间是(-2,2).(2)若函数f(x)在R上单调递减,则f′(x)≤0对x∈R都成立,即[-x2+(a-2)x+a]e x≤0对x∈R都成立.∵e x>0,∴x2-(a-2)x-a≥0对x∈R都成立.∴Δ=(a-2)2+4a≤0,即a2+4≤0,这是不可能的.故不存在a使函数f(x)在R上单调递减.运用导数解决函数的极值问题典题导入[例2](2012·江苏高考)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.[自主解答](1)由题设知f′(x)=3x2+2ax+b,且f′(-1)=3-2a+b=0,f′(1)=3+2a+b=0,解得a=0,b=-3.(2)由(1)知f(x)=x3-3x.因为f(x)+2=(x-1)2(x+2),所以g′(x)=0的根为x1=x2=1,x3=-2,于是函数g(x)的极值点只可能是1或-2.当x<-2时,g′(x)<0;当-2<x<1时,g′(x)>0,故-2是g(x)的极值点.当-2<x<1或x>1时,g′(x)>0,故1不是g(x)的极值点.所以g (x )的极值点为-2.由题悟法求函数极值的步骤 (1)确定函数的定义域; (2)求方程f ′(x )=0的根;(3)用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并形成表格; (4)由f ′(x )=0根的两侧导数的符号来判断f ′(x )在这个根处取极值的情况.以题试法2.设f (x )=2x 3+ax 2+bx +1的导数为f ′(x ),若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值; (2)求函数f (x )的极值.解:(1)因为f (x )=2x 3+ax 2+bx +1, 故f ′(x )=6x 2+2ax +b , 从而f ′(x )=6⎝⎛⎭⎫x +a 62+b -a 26, 即y =f ′(x )关于直线x =-a6对称.从而由题设条件知-a 6=-12,即a =3.又由于f ′(1)=0,即6+2a +b =0, 得b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, 所以f ′(x )=6x 2+6x -12=6(x -1)(x +2), 令f ′(x )=0, 即6(x -1)(x +2)=0, 解得x =-2或x =1,当x ∈(-∞,-2)时,f ′(x )>0, 即f (x )在(-∞,-2)上单调递增; 当x ∈(-2,1)时,f ′(x )<0,即f(x)在(-2,1)上单调递减;当x∈(1,+∞)时,f′(x)>0,即f(x)在(1,+∞)上单调递增.从而函数f(x)在x=-2处取得极大值f(-2)=21,在x=1处取得极小值f(1)=-6.运用导数解决函数的最值问题典题导入[例3]已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[自主解答](1)f′(x)=(x-k+1)e x.令f′(x)=0,得x=k-1.f(x)与f′(x)的情况如下:x (-∞,k-1)k-1(k-1,+∞)f′(x)-0+f(x)-e k-1所以,f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).(2)当k-1≤0,即k≤1时,函数f(x)在[0,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(0)=-k;当0<k-1<1,即1<k<2时,由(1)知f(x)在[0,k-1)上单调递减,在(k-1,1]上单调递增,所以f(x)在区间[0,1]上的最小值为f(k-1)=-e k-1;当k-1≥1时,即k≥2时,函数f(x)在[0,1]上单调递减,所以f(x)在区间[0,1]上的最小值为f(1)=(1-k)e.本题条件不变,求f (x )在区间[0,1]上的最大值.解:当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增. 所以f (x )在[0,1]上的最大值为f (1)=(1-k )e. 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最大值为f (0)和f (1)较大者.若f (0)=f (1),所以-k =(1-k )e ,即k =ee -1.当1<k <e e -1时函数f (x )的最大值为f (1)=(1-k )e ,当ee -1≤k <2时,函数f (x )的最大值为f (0)=-k ,当k -1≥1时,即k ≥2时,函数f (x )在[0,1]上单调递减. 所以f (x )在[0,1]上的最大值为f (0)=-k .综上所述,当k <ee -1时,f (x )的最大值为f (1)=(1-k )e.当k ≥ee -1时,f (x )的最大值为f (0)=-k .由题悟法求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.以题试法3. (2012·重庆高考)已知函数f (x )=ax 3+bx +c 在点x =2处取得极值c -16. (1)求a ,b 的值;(2)若f (x )有极大值28,求f (x )在[-3,3]上的最小值. 解:(1)因f (x )=ax 3+bx +c ,故f ′(x )=3ax 2+b , 由于f (x )在点x =2处取得极值c -16,故有⎩⎪⎨⎪⎧f ′(2)=0,f (2)=c -16,即⎩⎪⎨⎪⎧ 12a +b =0,8a +2b +c =c -16,化简得⎩⎪⎨⎪⎧12a +b =0,4a +b =-8,解得a =1,b =-12. (2)由(1)知f (x )=x 3-12x +c ; f ′(x )=3x 2-12=3(x -2)(x +2). 令f ′(x )=0,得x 1=-2,x 2=2.当x ∈(-∞,-2)时,f ′(x )>0,故f (x )在(-∞,-2)上为增函数; 当x ∈(-2,2)时,f ′(x )<0,故f (x )在(-2,2)上为减函数; 当x ∈(2,+∞)时,f ′(x )>0,故f (x )在(2,+∞)上为增函数.由此可知f (x )在x 1=-2处取得极大值f (-2)=16+c ,f (x )在x 1=2处取得极小值f (2)=c -16.由题设条件知16+c =28,得c =12. 此时f (-3)=9+c =21,f (3)=-9+c =3, f (2)=-16+c =-4,因此f (x )在[-3,3]上的最小值为f (2)=-4.1.函数f (x )=x +eln x 的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(-∞,0)和(0,+∞)D .R解析:选A 函数定义域为(0,+∞),f ′(x )=1+ex >0,故单调增区间是(0,+∞).2.(2012·“江南十校”联考)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C 依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ).3.(2012·陕西高考)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D 函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+1x =x -2x 2,当x =2时,f ′(x )=0;当x >2时,f ′(x )>0,函数f (x )为增函数;当0<x <2时,f ′(x )<0,函数f (x )为减函数,所以x =2为函数f (x )的极小值点.4.(2012·大纲全国卷)已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( ) A .-2或2 B .-9或3 C .-1或1D .-3或1解析:选A 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.5.若f (x )=ln xx ,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A f ′(x )=1-ln xx 2,当x >e 时,f ′(x )<0,则f (x )在(e ,+∞)上为减函数,f (a )>f (b ).6.函数f (x )=x 3-3x -1,若对于区间[-3,2]上的任意x 1,x 2,都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .20B .18C .3D .0解析:选A 因为f ′(x )=3x 2-3=3(x -1)(x +1),令f ′(x )=0,得x =±1,所以-1,1为函数的极值点.又f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,所以在区间[-3,2]上f (x )max =1,f (x )min =-19.又由题设知在区间[-3,2]上f (x )max -f (x )min ≤t ,从而t ≥20,所以t 的最小值是20.7.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:f ′(x )=3x 2+2mx +m +6=0有两个不等实根,即Δ=4m 2-12×(m +6)>0.所以m >6或m <-3.答案:(-∞,-3)∪(6,+∞)8.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.解析:求导得f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x .由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增,所以对m ∈[-1,1]时,f (m )min =f (0)=-4.答案:-49.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:∵y ′=3x 2+6ax +3b ,⎩⎪⎨⎪⎧ 3×22+6a ×2+3b =03×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0. ∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2.∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.答案:410.已知函数f (x )=ax 2+b ln x 在x =1处有极值12. (1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间.解:(1)∵f ′(x )=2ax +b x. 又f (x )在x =1处有极值12.∴⎩⎪⎨⎪⎧ f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解得a =12,b =-1. (2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞), 且f ′(x )=x -1x =(x +1)(x -1)x. 由f ′(x )<0,得0<x <1;由f ′(x )>0,得x >1.所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞).11.(2012·重庆高考)设f (x )=a ln x +12x +32x +1,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴.(1)求a 的值;(2)求函数f (x )的极值.解:(1)因f (x )=a ln x +12x +32x +1, 故f ′(x )=a x -12x 2+32. 由于曲线y =f (x )在点(1,f (1))处的切线垂直于y 轴,故该切线斜率为0,即f ′(1)=0,从而a -12+32=0, 解得a =-1.(2)由(1)知f (x )=-ln x +12x +32x +1(x >0), f ′(x )=-1x -12x 2+32=3x 2-2x -12x 2=(3x +1)(x -1)2x 2.令f ′(x )=0,解得x 1=1,x 2=-13⎝⎛ 因x 2=-13不在定 义域内,舍去.当x ∈(0,1)时,f ′(x )<0,故f (x )在(0,1)上为减函数;当x ∈(1,+∞)时,f ′(x )>0,故f (x )在(1,+∞)上为增函数.故f (x )在x =1处取得极小值f (1)=3.12.已知函数f (x )=x 3-ax 2+3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]上的最大值和最小值.解:(1)∵f ′(x )=3x 2-2ax +3≥0在[1,+∞)上恒成立,∴a ≤⎣⎡⎦⎤32⎝⎛⎭⎫x +1x min =3(当x =1时取最小值). ∴a 的取值范围为(-∞,3].(2)∵f ′(3)=0,即27-6a +3=0,∴a =5,f (x )=x 3-5x 2+3x ,x ∈[1,5],f ′(x )=3x 2-10x +3.令f ′(x )=0,得x 1=3,x 2=13(舍去). 当1<x <3时,f ′(x )<0,当3<x <5时,f ′(x )>0,即当x =3时,f (x )取极小值f (3)=-9.又f (1)=-1,f (5)=15,∴f (x )在[1,5]上的最小值是f (3)=-9,最大值是f (5)=15.1.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R).若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能为y =f (x )的图象是( )解析:选D 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (1)+f ′(1)=0;选项D 中,f (1)>0,f ′(1)>0,不满足f ′(1)+f (1)=0.2.(2012·沈阳实验中学检测)已知定义在R 上的奇函数f (x ),设其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围是( )A .(-1,2)B.⎝⎛⎭⎫-1,12C.⎝⎛⎭⎫12,2 D .(-2,1)解析:选A 由F (x )=xf (x ),得F ′(x )=f (x )+xf ′(x )=xf ′(x )-f (-x )<0,所以F (x )在(-∞,0)上单调递减,又可证F (x )为偶函数,从而F (x )在[0,+∞)上单调递增,故原不等式可化为-3<2x -1<3,解得-1<x <2.3. (2012·湖北高考)设函数f (x )=ax n (1-x )+b (x >0),n 为正整数,a ,b 为常数.曲线y =f (x )在(1,f (1))处的切线方程为x +y =1.(1)求a ,b 的值;(2)求函数f (x )的最大值.解:(1)因为f (1)=b ,由点(1,b )在x +y =1上,可得1+b =1,即b =0.因为f ′(x )=anx n -1-a (n +1)x n ,所以f ′(1)=-a .又因为切线x +y =1的斜率为-1,所以-a =-1,即a =1.故a =1,b =0.(2)由(1)知,f (x )=x n (1-x )=x n -x n +1,f ′(x )=(n +1)x n -1⎝ ⎛⎭⎪⎫n n +1-x . 令f ′(x )=0,解得x =n n +1, 即f ′(x )在(0,+∞)上有唯一零点x 0=n n +1. 在⎝ ⎛⎭⎪⎫0,n n +1上,f ′(x )>0,故f (x )单调递增; 而在⎝ ⎛⎭⎪⎫n n +1,+∞上,f ′(x )<0,f ′(x )单调递减. 故f (x )在(0,+∞)上的最大值为f ⎝ ⎛⎭⎪⎫n n +1=⎝ ⎛⎭⎪⎫n n +1n ⎝ ⎛⎭⎪⎫1-n n +1=n n(n +1)n +1.1.(2012·重庆高考)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:选D 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.2.(2012·山西联考)已知函数f (x )=(2-a )ln x +1x+2ax (a ∈R). (1)当a =0时,求f (x )的极值;(2)求f (x )的单调区间.解:(1)∵当a =0时,f (x )=2ln x +1x, f ′(x )=2x -1x 2=2x -1x2(x >0), ∴f (x )在⎝⎛⎭⎫0,12上是减函数,在⎝⎛⎭⎫12,+∞上是增函数. ∴f (x )的极小值为f ⎝⎛⎭⎫12=2-2ln 2,无极大值.(2)f ′(x )=2-a x -1x 2+2a =(2x -1)(ax +1)x 2(x >0). ①当a ≥0时,f (x )在⎝⎛⎭⎫0,12上是减函数,在⎝⎛⎭⎫12,+∞上是增函数; ②当-2<a <0时,f (x )在⎝⎛⎭⎫0,12和⎝⎛⎭⎫-1a ,+∞上是减函数,在⎝⎛⎭⎫12,-1a 上是增函数; ③当a =-2时,f (x )在(0,+∞)上是减函数;④当a <-2时,f (x )在⎝⎛⎭⎫12,+∞和⎝⎛⎭⎫0,-1a 上是减函数,在⎝⎛⎭⎫-1a ,12上是增函数.。
直线、平面垂直的判定与性质[知识能否忆起]一、直线与平面垂直1.直线和平面垂直的定义直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论3.直线与平面垂直的性质定理二、平面与平面垂直1.平面与平面垂直的判定定理2.平面与平面垂直的性质定理[小题能否全取]1.(教材习题改编)已知平面α,β,直线l,若α⊥β,α∩β=l,则()A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α、β都垂直2.(2012·厦门模拟)如图,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O 垂直的是()A.A1D B.AA1C.A1D1D.A1C13.已知α,β是两个不同的平面,m,n是两条不重合的直线,则下列命题中正确的是() A.若m∥α,α∩β=n,则m∥nB.若m⊥α,m⊥n,则n∥αC.若m⊥α,n⊥β,α⊥β,则m⊥nD.若α⊥β,α∩β=n,m⊥n,则m⊥β.4.如图,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.5.(教材习题改编)如图,已知六棱锥P -ABCDEF的底面是正六边形,PA⊥平面ABC,P A =2AB.则下列命题正确的有________.①P A⊥AD;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④直线PD与平面ABC所成角为30°.1.在证明线面垂直、面面垂直时,一定要注意判定定理成立的条件.同时抓住线线、线面、面面垂直的转化关系,即:2.在证明两平面垂直时,一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决,如有平面垂直时,一般要用性质定理.3.几个常用的结论:(1)过空间任一点有且只有一条直线与已知平面垂直.(2)过空间任一点有且只有一个平面与已知直线垂直.典题导入[例1](2012·襄州模拟)若m,n为两条不重合的直线,α,β为两个不重合的平面,给出下列命题:①若m,n都平行于平面α,则m,n一定不是相交直线;②若m 、n 都垂直于平面α,则m ,n 一定是平行直线;③已知α,β互相垂直,m ,n 互相垂直,若m ⊥α,则n ⊥β;④m ,n 在平面α内的射影互相垂直,则m ,n 互相垂直.其中的假命题的序号是________.由题悟法解决此类问题常用的方法有:①依据定理条件才能得出结论的,可结合符合题意的图形作出判断;②否定命题时只需举一个反例.③寻找恰当的特殊模型(如构造长方体)进行筛选.典题导入[例2] (2012·广东高考)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ; (3)证明:EF ⊥平面PAB .由题悟法证明直线和平面垂直的常用方法有: (1)利用判定定理.(2)利用判定定理的推论(a ∥b ,a ⊥α⇒b ⊥α). (3)利用面面平行的性质(a⊥α,α∥β⇒a ⊥β).(4)利用面面垂直的性质.当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.以题试法2.(2012·启东模拟)如图所示,已知P A ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点. (1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN⊥平面PCD .典题导入[例3] (2012·江苏高考)如图,在直三棱柱ABC -A 1B 1C 1中,A 1B 1=A 1C 1,D ,E 分别是棱BC ,CC 1上的点(点D 不同于点C ),且AD ⊥DE ,F 为B 1C 1的中点.求证:(1)平面ADE ⊥平面BCC 1B 1; (2)直线A 1F ∥平面ADE ..由题悟法1.判定面面垂直的方法: (1)面面垂直的定义.(2)面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β). 2.在已知平面垂直时,一般要用性质定理进行转化,转化为线面垂直或线线垂直.转化方法:在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.以题试法3.(2012·泸州一模)如图,在四棱锥P -ABCD 中,底面ABCD 为菱形,∠BAD =60°,Q 为AD 的中点.(1)若P A =PD ,求证:平面PQB ⊥平面P AD ; (2)若点M 在线段PC 上,且PM =tPC (t >0),试确定实数t 的值,使得P A ∥平面MQB .1.(2012·杭州模拟)设a ,b ,c 是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分条件是()A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α.2.设α,β,γ是三个不重合的平面,l是直线,给出下列命题①若α⊥β,β⊥γ,则α⊥γ;②若l上两点到α的距离相等,则l∥α;③若l⊥α,l∥β,则α⊥β;④若α∥β,l⊄β,且l∥α,则l∥β.其中正确的命题是()A.①②B.②③C.②④D.③④3.给出命题:(1)在空间里,垂直于同一平面的两个平面平行;(2)设l,m是不同的直线,α是一个平面,若l ⊥α,l∥m,则m⊥α;(3)已知α,β表示两个不同平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的充要条件;(4)a,b是两条异面直线,P为空间一点,过P 总可以作一个平面与a,b之一垂直,与另一个平行.其中正确命题个数是()A.0 B.1C.2 D.34.(2013·济南模拟)如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部.5.(2012·曲阜师大附中质检)如图所示,直线P A 垂直于⊙O所在的平面,△ABC内接于⊙O,且AB 为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC 的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③6.(2012·济南名校模拟)如图,在四边形ABCD 中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下面命题正确的是()A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC 7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)8.(2012·忻州一中月考)正四棱锥S-ABCD的底面边长为2,高为2,E是BC的中点,动点P在四棱锥的表面上运动,并且总保持PE⊥AC,则动点P的轨迹的长为________.10. 如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC.11.(2012·北京海淀二模)如图所示,P A⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,P A=AB=2,点E为线段PB的中点,点M在AB上,且OM∥AC. (1)求证:平面MOE∥平面P AC;(2)求证:平面P AC⊥平面PCB.。
抛_物_线[知识能否忆起]1.抛物线定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程与几何性质[小题能否全取]1.(教材习题改编)已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是( ) A .x 2=-12y B .x 2=12y C .y 2=-12xD .y 2=12x解析:选A ∵p2=3,∴p =6,∴x 2=-12y .2.(教材习题改编)抛物线y =ax 2的准线方程是y =2,则a 的值是( ) A.18 B .-18C .8D .-8解析:选B 抛物线的标准方程为x 2=1ay .则a <0且2=-14a ,得a =-18.3.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为( )A .4B .6C .10D .16解析:选D 设点A (x 1,y 1),B (x 2,y 2),则依题意得焦点F (0,1),准线方程是y =-1,直线l :y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,消去x 得y 2-14y +1=0,y 1+y 2=14,|AB |=|AF |+|BF |=(y 1+1)+(y 2+1)=(y 1+y 2)+2=16.4.(2012²郑州模拟)已知斜率为2的直线l 过抛物线y 2=ax (a >0)的焦点F ,且与y 轴相交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________.解析:依题意得,|OF |=a 4,又直线l 的斜率为2,可知|AO |=2|OF |=a2,△AOF 的面积等于12²|AO |²|OF |=a 216=4,则a 2=64.又a >0,所以a =8,该抛物线的方程是y 2=8x .答案:y 2=8x5.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.解析:其准线方程为x =-2,又由点P 到y 轴的距离为4,则P 点横坐标x P =4,由定义知|PF |=x P +p2=6.答案:61.抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,p2等于焦点到抛物线顶点的距离,记牢对解题非常有帮助.2.用抛物线定义解决问题,体现了等价转换思想的应用.3.由y 2=mx (m ≠0)或x 2=my (m ≠0)求焦点坐标时,只需将x 或y 的系数除以4,再确定焦点位置即可.典题导入[例1] (1)(2011²辽宁高考)已知F 是拋物线y 2=x 的焦点,A ,B 是该拋物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54D.74(2)(2012²曲阜师大附中质检)在抛物线C :y =2x 2上有一点P ,若它到点A (1,3)的距离与它到抛物线C 的焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)[自主解答] (1)如图,由抛物线的定义知,|AM |+|BN |=|AF |+|BF |=3,|CD |=32,所以中点C 的横坐标为32-14=54.(2)由题知点A 在抛物线内部,根据抛物线定义,问题等价于求抛物线上一点P ,使得该点到点A 与到抛物线的准线的距离之和最小,显然点P 是直线x =1与抛物线的交点,故所求P 点的坐标是(1,2).[答案] (1)C (2)B由题悟法涉及抛物线上的点到焦点(准线)的距离问题,可优先考虑利用抛物线的定义转化为点到准线(焦点)的距离问题求解.以题试法1.(2012²安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点.若|AF |=3,则|BF |=________.解析:由题意知,抛物线的焦点F 的坐标为(1,0),又∵|AF |=3,由抛物线定义知,点A 到准线x =-1的距离为3,∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8,由图知,y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).又⎩⎨⎧y =22x -1,y 2=4x ,解得⎩⎪⎨⎪⎧x =12,y =-2,或⎩⎨⎧x =2,y =2 2.由图知,点B 的坐标为⎝ ⎛⎭⎪⎫12,-2, ∴|BF |=12-(-1)=32.答案:32典题导入[例2] (1)(2012²山东高考)已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的离心率为2.若抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833yB .x 2=1633yC .x 2=8yD .x 2=16y(2)(2012²四川高考)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A .2 2B .2 3C .4D .2 5[自主解答] (1)∵双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,∴c a =a 2+b 2a=2,∴b =3a ,∴双曲线的渐近线方程为3x ±y =0,∴抛物线C 2:x 2=2py (p >0)的焦点⎝ ⎛⎭⎪⎫0,p 2到双曲线的渐近线的距离为⎪⎪⎪⎪⎪⎪3³0±p 22=2,∴p =8.∴所求的抛物线方程为x 2=16y .(2)依题意,设抛物线方程是y 2=2px (p >0),则有2+p2=3,得p =2,故抛物线方程是y 2=4x ,点M 的坐标是(2,±22),|OM |=22+8=2 3.[答案] (1)D (2)B由题悟法1.求抛物线的方程一般是利用待定系数法,即求p 但要注意判断标准方程的形式. 2.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分析,同时注意平面几何性质的应用.以题试法2.(2012²南京模拟)已知抛物线x 2=4y 的焦点为F ,准线与y 轴的交点为M ,N 为抛物线上的一点,且|NF |=32|MN |,则∠NMF =________.( )解析:过N 作准线的垂线,垂足为H ,则|NF |=|NH |=32|MN |,如图.∴cos ∠MNH =32, ∴∠MNH =π6,∴∠NMF =π6.答案:π6典题导入[例3] (2012²福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.[自主解答] (1)依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12. 因为点B (43,12)在x 2=2py 上,所以(43)2=2p ³12,解得p =2. 故抛物线E 的方程为x 2=4y . (2)证明:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1.设M (0,y 1),令MP ²MQ =0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP =(x 0,y 0-y 1),MQ =⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1, 由MP ²MQ =0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1=1.故以PQ 为直径的圆恒过y 轴上的定点M (0,1).由题悟法1.设抛物线方程为y 2=2px (p >0),直线Ax +By +C =0,将直线方程与抛物线方程联立,消去x 得到关于y 的方程my 2+ny +q =0.(1)若m ≠0,当Δ>0时,直线与抛物线有两个公共点; 当Δ=0时,直线与抛物线只有一个公共点; 当Δ<0时,直线与抛物线没有公共点.(2)若m =0,直线与抛物线只有一个公共点,此时直线与抛物线的对称轴平行.2.与焦点弦有关的常用结论.(以右图为依据)(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).(3)S △AOB =p 22sin θ(θ为AB 的倾斜角).(4)1|AF |+1|BF |为定值2p. (5)以AB 为直径的圆与准线相切. (6)以AF 或BF 为直径的圆与y 轴相切. (7)∠CFD =90°.以题试法3.(2012²泉州模拟)如图,点O 为坐标原点,直线l 经过抛物线C :y 2=4x 的焦点F .(1)若点O 到直线l 的距离为12,求直线l 的方程;(2)设点A 是直线l 与抛物线C 在第一象限的交点.点B 是以点F 为圆心,|FA |为半径的圆与x 轴的交点,试判断AB 与抛物线C 的位置关系,并给出证明.解:(1)抛物线的焦点F (1,0),当直线l 的斜率不存在时,即x =1不符合题意.当直线l 的斜率存在时,设直线l 的方程为:y =k (x -1),即kx -y -k =0. 所以,|-k |1+k 2=12,解得k =±33.故直线l 的方程为:y =±33(x -1),即x ±3y -1=0. (2)直线AB 与抛物线相切,证明如下: 设A (x 0,y 0),则y 20=4x 0.因为|BF |=|AF |=x 0+1,所以B (-x 0,0). 所以直线AB 的方程为:y =y 02x 0(x +x 0), 整理得:x =2x 0yy 0-x 0①把方程①代入y 2=4x 得:y 0y 2-8x 0y +4x 0y 0=0, Δ=64x 20-16x 0y 20=64x 20-64x 20=0, 所以直线AB 与抛物线相切.1.(2012²济南模拟)抛物线的焦点为椭圆x 24+y 29=1的下焦点,顶点在椭圆中心,则抛物线方程为( )A .x 2=-45y B .y 2=-45x C .x 2=-413yD .y 2=-413x解析:选A 由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2= 5.∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .2.(2012²东北三校联考)若抛物线y 2=2px (p >0)上一点P 到焦点和抛物线的对称轴的距离分别为10和6,则p 的值为( )A .2B .18C .2或18D .4或16解析:选C 设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0+p2=10,|y 0|=6,y 2=2px 0,∴36=2p ⎝⎛⎭⎪⎫10-p 2,即p 2-20p +36=0,解得p =2或18.3.(2013²大同模拟)已知抛物线y 2=2px (p >0)的准线与曲线x 2+y 2-6x -7=0相切,则p 的值为( )A .2B .1 C.12D.14解析:选A 注意到抛物线y 2=2px 的准线方程是x =-p2,曲线x 2+y 2-6x -7=0,即(x -3)2+y 2=16是圆心为(3,0),半径为4的圆.于是依题意有⎪⎪⎪⎪⎪⎪p2+3=4.又p >0,因此有p2+3=4,解得p =2. 4.(2012²郑州模拟)已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是( )A.π6或5π6B.π4或3π4C.π3或2π3D.π2解析:选B 由焦点弦长公式|AB |=2p sin 2θ得6sin 2θ=12,所以sin θ=22,所以θ=π4或3π4. 5.(2012²唐山模拟)抛物线y 2=2px 的焦点为F ,点A 、B 、C 在此抛物线上,点A 坐标为(1,2).若点F 恰为△ABC 的重心,则直线BC 的方程为( )A .x +y =0B .x -y =0C .2x +y -1=0D .2x -y -1=0解析:选C ∵点A 在抛物线上,∴4=2p ,p =2,抛物线方程为y 2=4x ,焦点F (1,0) 设点B (x 1,y 1),点C (x 2,y 2),则有y 21=4x 1,①y 22=4x 2,②由①-②得(y 1-y 2)(y 1+y 2)=4(x 1-x 2) 得k BC =y 1-y 2x 1-x 2=4y 1+y 2. 又∵y 1+y 2+23=0,∴y 1+y 2=-2,∴k BC =-2. 又∵x 1+x 2+13=1,∴x 1+x 2=2,∴BC 中点为(1,-1),则BC 所在直线方程为y +1=-2(x -1),即2x +y -1=0.6.(2013²湖北模拟)已知直线y =k (x -m )与抛物线y 2=2px (p >0)交于A 、B 两点,且OA ⊥OB ,OD ⊥AB 于D .若动点D 的坐标满足方程x 2+y 2-4x =0,则m =( )A .1B .2C .3D .4解析:选D 设点D (a ,b ),则由OD ⊥AB 于D ,得⎩⎪⎨⎪⎧b a =-1k ,b =k a -m ,则b =-km1+k2,a =-bk ;又动点D 的坐标满足方程x 2+y 2-4x =0,即a 2+b 2-4a =0,将a =-bk 代入上式,得b 2k 2+b 2+4bk =0,即bk 2+b +4k =0,-k 3m 1+k 2-km 1+k2+4k =0,又k ≠0,则(1+k 2)(4-m )=0,因此m =4.7.(2012²乌鲁木齐模拟)过抛物线y 2=4x 的焦点F 的直线交y 轴于点A ,抛物线上有一点B 满足OB ,=OA ,+OF, (O 为坐标原点),则△BOF 的面积是________.解析:由题可知F (1,0),可设过焦点F 的直线方程为y =k (x -1)(可知k 存在),则A (0,-k ),∴B (1,-k ),由点B 在抛物线上,得k 2=4,k =±2,即B (1,±2),S △BOF =12²|OF |²|y B |=12³1³2=1.答案:18.(2012²渭南模拟)已知抛物线C :y =14x 2,则过抛物线焦点F 且斜率为12的直线l 被抛物线截得的线段长为________.解析:由题意得l 的方程为y =12x +1,即x =2(y -1).代入抛物线方程得y =(y -1)2,即y 2-3y +1=0.设线段端点坐标为(x 1,y 1),(x 2,y 2),则线段长度为y 1+y 2+p =5.答案:59.(2012²广州模拟)已知直线y =k (x -2)(k >0)与抛物线y 2=8x 相交于A ,B 两点,F 为抛物线的焦点,若|FA |=2|FB |,则k 的值为________.解析:直线y =k (x -2)恰好经过抛物线y 2=8x 的焦点F (2,0),由⎩⎪⎨⎪⎧y 2=8x ,y =k x -2可得ky 2-8y -16k =0,因为|FA |=2|FB |,所以y A =-2y B ,则y A +y B =-2y B +y B =8k,所以y B=-8k,y A ²y B =-16,所以-2y 2B =-16,即y B =±22,又k >0,故k =2 2.答案:2 210.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 1)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC =OA +λOB,求λ的值.解:(1)直线AB 的方程是y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4.由抛物线定义得|AB |=x 1+x 2+p =9, 所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,4x 2-5px +p 2=0可简化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1, 解得λ=0或λ=2.11.如图,过抛物线y 2=4px (p >0)上一定点M (x 0,y 0)(y 0>0)作两条直线,分别交抛物线于A (x 1,y 1),B (x 2,y 2).(1)求该抛物线上纵坐标为4p 的点到点(p,0)的距离; (2)当MA 与MB 的斜率都存在,且y 1+y 2y 0=-2时,求MA 与MB 的斜率之和; (3)证明:直线AB 不可能平行于x 轴.解:(1)当y =4p 时,x =4p ,抛物线的准线方程为x =-p ,焦点为(p,0),抛物线上纵坐标为4p 的点到点(p,0)的距离,就是该点到焦点的距离,由抛物线的定义得,所求距离为4p -(-p )=5p .(2)设直线MA 的斜率为k MA ,MB 的斜率为k MB , 由y 21=4px 1,y 20=4px 0,得k MA =y 1-y 0x 1-x 0=4py 1+y 0, 同理k MB =4py 2+y 0, 又y 1+y 2y 0=-2,所以y 1+y 2=-2y 0,因为k MA +k MB =4p y 1+y 0+4p y 2+y 0=4p y 1+y 2+2y 0y 1+y 0y 2+y 0=0,所以k MA +k MB =0,故MA 与MB 的斜率之和为0.(3)证明:设直线AB 的斜率为k AB ,则k AB =y 2-y 1x 2-x 1=y 2-y 1y 224p -y 214p=4py 1+y 2,由(2)知y 1+y 2=-2y 0,所以k AB =-2p y 0,由于M (x 0,y 0)为定点,所以-2p y 0为定值且-2py 0≠0,故直线AB 不可能平行于x 轴.12.(2012²安徽模拟)已知椭圆C 1:x 24+y 2b 2=1(0<b <2)的离心率为32,抛物线C 2:x2=2py (p >0)的焦点是椭圆的顶点.(1)求抛物线C 2的方程;(2)过点M (-1,0)的直线l 与抛物线C 2交于E ,F 两点,过E ,F 作抛物线C 2的切线l 1,l 2,当l 1⊥l 2时,求直线l 的方程.解:(1)∵椭圆C 1的长半轴长a =2,半焦距c =4-b 2.由e =c a =4-b 22=32得b 2=1,∴椭圆C 1的上顶点为(0,1),即抛物线C 2的焦点为(0,1),故抛物线C 2的方程为x 2=4y .(2)由已知可得直线l 的斜率必存在,设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2).由x 2=4y 得y =14x 2,∴y ′=12x .∴切线l 1,l 2的斜率分别为12x 1,12x 2.当l 1⊥l 2时,12x 1²12x 2=-1,即x 1x 2=-4.由⎩⎪⎨⎪⎧y =k x +1x 2=4y 得x 2-4kx -4k =0,∴Δ=(4k )2-4³(-4k )>0,解得k <-1或k >0.①且x 1x 2=-4k =-4,即k =1,满足①式,∴直线l 的方程为x -y +1=0.1.(2013²郑州模拟)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=9x B .y 2=6x C .y 2=3xD .y 2=3x解析:选C 过点B 作准线的垂线,垂足为B 1,记准线与x 轴的交点为F 1,则依题意得|BB 1||FF 1|=|BC ||CF |=23,所以|BB 1|=23|FF 1|=2p3,由抛物线的定义得|BF |=|BB 1|=2p3.过A ,B 作x 轴的垂线,垂足分别为D ,E ,由△BEF ∽△ADF 得23p 3=p -2p 33-p ,解得p =32.所以此抛物线的方程是y 2=3x .2.(2012²安徽高考)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22 B. 2 C.322D .2 2解析:选C 由题意,抛物线y 2=4x 的焦点为F (1,0),准线方程为l :x =-1,可得A 点的横坐标为2,代入y 2=4x 得y 2=8,不妨设A (2,22),则直线AB 的方程为y=22(x-1),与y 2=4x 联立得2x 2-5x +2=0,可得B ⎝ ⎛⎭⎪⎫12,-2,所以S △AOB =S △AOF +S △BOF =12³1³|y A-y B |=322.3.(2012²浙江高考)如图,在直角坐标系xOy 中,点P ⎝ ⎛⎭⎪⎫1,12到抛物线C :y 2=2px (p >0)的准线的距离为54.点M (t,1)是C 上的定点,A ,B 是C上的两动点,且线段AB 被直线OM 平分.(1)求p ,t 的值;(2)求△ABP 面积的最大值. 解:(1)由题意知⎩⎪⎨⎪⎧2pt =1,1+p 2=54,得⎩⎪⎨⎪⎧p =12,t =1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为Q (m ,m ),设直线AB 的斜率为k (k ≠0).由⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2,得(y 1-y 2)(y 1+y 2)=x 1-x 2, 故k ²2m =1,所以直线AB 的方程为y -m =12m (x -m ),即x -2my +2m 2-m =0.由⎩⎪⎨⎪⎧x -2my +2m 2-m =0,y 2=x ,消去x ,整理得y 2-2my +2m 2-m =0,所以Δ=4m -4m 2>0,y 1+y 2=2m ,y 1²y 2=2m 2-m .从而|AB |= 1+1k2²|y 1-y 2|=1+4m 2²4m -4m 2.设点P 到直线AB 的距离为d ,则d =|1-2m +2m 2|1+4m 2,设△ABP 的面积为S , 则S =12|AB |²d =|1-2(m -m 2)|²m -m 2.由Δ=4m -4m 2>0,得0<m <1.令u =m -m 2,0<u ≤12,则S =u -2u 3,S ′(u )=1-6u 2.由S ′(u )=0,得u =66∈⎝ ⎛⎦⎥⎤0,12, 所以S (u )max =S ⎝⎛⎭⎪⎫66=69. 故△ABP 面积的最大值为69.1.(2012²北京高考)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方.若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:直线l 的方程为y =3(x -1),即x =33y +1,代入抛物线方程得y 2-433y -4=0,解得y A =433+ 163+162=23(y B <0,舍去),故△OAF 的面积为12³1³23= 3.答案: 32.(2012²东城模拟)已知顶点在坐标原点,焦点在x 轴正半轴的抛物线上有一点A ⎝ ⎛⎭⎪⎫12,m ,A 点到抛物线焦点的距离为1. (1)求该抛物线的方程;(2)设M (x 0,y 0)为抛物线上的一个定点,过M 作抛物线的两条相互垂直的弦MP ,MQ ,求证:PQ 恒过定点(x 0+2,-y 0);(3)直线x +my +1=0与抛物线交于E ,F 两点,问在抛物线上是否存在点N ,使得△NEF 为以EF 为斜边的直角三角形?若有,求出该点存在时需满足的条件;若无,请说明理由.解:(1)由题意可设抛物线的方程为y 2=2px (p >0),则由抛物线的定义可得p 2+12=1,即p =1,所以该抛物线的方程为y 2=2x .(2)由题意知直线PQ 与x 轴不平行,设直线PQ 的方程为x =my +n ,代入y 2=2x 得y 2-2my -2n =0.所以y 1+y 2=2m ,y 1y 2=-2n ,其中y 1,y 2分别是P ,Q 的纵坐标,x 1,x 2分别是P ,Q 的横坐标.因为MP ⊥MQ ,所以k MP ²k MQ =-1.即y 1-y 0x 1-x 0²y 2-y 0x 2-x 0=-1, 又由x 1=y 212,x 2=y 222,x 0=y 202,代入上式得2y 1+y 0²2y 2+y 0=-1,所以(y 1+y 0)(y 2+y 0)=-4. 即y 1y 2+(y 1+y 2)y 0+y 20+4=0,所以(-2n )+2my 0+2x 0+4=0,即n =my 0+x 0+2. 所以直线PQ 的方程为x =my +my 0+x 0+2, 所以直线PQ 恒过定点(x 0+2,-y 0).(3)假设存在点N (x 0,y 0),设E (x 1,y 1),F (x 2,y 2).由⎩⎪⎨⎪⎧y 2=2x ,x +my +1=0,消去x 得y2+2my +2=0,则y 1+y 2=-2m ,y 1y 2=2,且(2m )2-8>0,即m 2>2.由于NE ⊥NF ,所以y 1-y 0x 1-x 0²y 2-y 0x 2-x 0=-1,又点E ,F ,N 在抛物线上,所以x 1=y 212,x 2=y 222,x 0=y 202,代入y 1-y 0x 1-x 0²y 2-y 0x 2-x 0=-1,得2y 1+y 0²2y 2+y 0=-1,即(y 1+y 0)(y 2+y 0)=-4,即y 1y 2+y 0(y 1+y 2)+y 20+4=0,将y 1+y 2=-2m ,y 1y 2=2代入并整理得y 20-2my 0+6=0,只要4m2-24>0,即m 2>6,该方程即有实数解.所以只要m 2>6就存在满足条件的点N ,当m 2≤6时不存在满足条件的点N .。
双_曲_线[ 知识能否忆起 ]1.双曲线的定义平面内与定点F1、F2的距离的差的绝对值等于常数( 小于 | F1F2|) 的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.2.双曲线的标准方程和几何性质x 2y2y2x2标准方程2-2=1(a>0,>0)2-2=1(>0, >0)a b b a b ab图形X围x≥ a 或 x≤- a y≤- a 或 y≥ a对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点 A (- a, 0),A ( a, 0) A (0,- a),A (0, a)1212渐近线b ay=±a x y=±b x性质c22离心率e=a,e∈(1,+∞),其中 c= a + b线段 A A 叫做双曲线的实轴,它的长| A A |=2a;线段 B B 叫做双曲线的121212实虚轴虚轴,它的长 | B1B2| = 2b;a叫做双曲线的实半轴长, b 叫做双曲线的虚半轴长通径过焦点垂直于实轴的弦叫通径,其长为2b2 aa、 b、 c 的关系c2= a2+ b2( c>a>0,c>b>0)[ 小题能否全取 ]1. ( 教材习题改编 ) 若双曲线方程为x2-2y2=1,则它的左焦点的坐标为() 25A. -2,0B. -2,06D. (- 3,0)C.-2,0解析:选 C ∵双曲线方程可化为x 2-y 2= 1,122212223 6∴ a = 1,b =2. ∴c =a+ b =2, c =2. ∴左焦点坐标为 6 .- 2, 0x 222. ( 教材习题改编 ) 若双曲线a 2-y = 1 的一个焦点为(2,0) ,则它的离心率为 ()2 53 A. 5B. 2C. 2 3D . 23解析:选 C 依题意得 a 2+1=4, a 2=3,故 e =2=2 2 3a 2 =.332y 23.设F 1,F 2是双曲线x -24= 1 的两个焦点,P 是双曲线上的一点, 且 3| PF 1| =4| PF 2| ,则△ 1 2 的面积等于( )PFFA . 4 2B .8 3C . 24D . 48解析:选 C由 P 是双曲线上的一点和 3| PF 1| = 4| PF 2| 可知,| PF 1| -| PF 2| = 2,解得 | PF 1|1= 8,| PF 2| = 6. 又 | F 1F 2| = 2c = 10,所以△PF 1F 2为直角三角形, 所以△PF 1F 2的面积S =23638= 24.x 224 .双 曲 线a 2-y = 1( a > 0) 的 离 心 率 为2 , 则 该 双 曲 线 的 渐 近 线 方 程 为________________ .a 2+11 23解析:由题意知a =1+a = 2,解得a =3,故该双曲线的渐近线方程是3x ± y =0,即 y =±3x .答案: y =±3x5.已知F 1(0 ,- 5) ,F 2(0,5) ,一曲线上任意一点M 满足| MF 1|-| MF 2|=8,若该曲线的一条渐近线的斜率为k ,该曲线的离心率为e ,则| k |2e =________.解析:根据双曲线的定义可知,该曲线为焦点在y 轴上的双曲线的上支,∵ c=5, a=4,∴ b=3,e=c=5, | k| =4.a434 55∴| k|2 e=33 4=3.5答案:31. 区分双曲线与椭圆中a、b、c的关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2.双曲线的离心率 e>1;椭圆的离心率 e∈(0,1).2.渐近线与离心率:x2y2b b2c2- a2e 2可以看出,2- 2=1( >0,>0)的一条渐近线的斜率为=2=2=- 1.a b a b a a a双曲线的渐近线和离心率的实质都表示双曲线X口的大小.[注意]当 a>b>0时,双曲线的离心率满足1<e<2;当a=b>0时, e=2(亦称为等轴双曲线);当b>a>0时, e> 2.3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.双曲线的定义及标准方程典题导入x2y2[例 1](1)(20122XX高考) 已知双曲线C:a2-b2= 1 的焦距为10,点P(2,1)在 C 的渐近线上,则 C的方程为()A.x2y2x2y2-= 1B.-= 1 205520C.x2y2x2y2-= 1D.-= 1 80202080(2)(20122 XX高考) 已知双曲线x 2-y2= 1,点1, 2 为其两个焦点,点P为双曲线上F F一点,若 PF1⊥ PF2,则| PF1|+| PF2|的值为________.x2y2[ 自主解答 ] (1) ∵a2-b2= 1 的焦距为10,∴ c=5=a2+ b2.①b 2b又双曲线渐近线方程为y =±a x ,且 P (2,1)在渐近线上,∴a =1,即a =2b .②由①②解得 a =25,b =5.(2) 不妨设点 P 在双曲线的右支上,因为 PF 1⊥ PF 2,所以 (2 2) 2= | PF 1 | 2+ | PF 2| 2,又因为 |PF 1|-| PF 2|=2,所以(| PF 1|-| PF 2|)2= 4,可得 2| PF 1|2 | PF 2| = 4,1221 22 2+ 2| 12 1 2=2 3.则 (| PF | + | PF |) =| PF | +| PF | PF |2| PF |=12,所以| PF |+| PF | [答案] (1)A (2)2 3由题悟法1.应用双曲线的定义需注意的问题在双曲线的定义中要注意双曲线上的点( 动点 ) 具备的几何条件,即“到两定点( 焦点 )的距离之差的绝对值为一常数, 且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.2.双曲线方程的求法(1) 若不能明确焦点在哪条坐标轴上,设双曲线方程为22mx + ny = 1( mn <0) .x 2 y 2x 2 y 2(2) 与双曲线a 2-b 2 =1有共同渐近线的双曲线方程可设为a 2-b 2=λ(λ ≠0).(3) 若已知渐近线方程为2 22 2=λ ( λ ≠0) .mx + ny =0,则双曲线方程可设为 mx - n y以题试法x 2 y 21.(20122XX 模拟) 设P 是双曲线16-20= 1 上一点,F 1,F 2分别是双曲线左右两个焦点,若 | PF 1| =9,则 | PF 2| = ()A .1B .17C . 1 或 17D .以上答案均不对解析:选 B 由双曲线定义 ||PF 1| - |PF 2|| = 8,又∵ |PF 1| =9,∴ |PF 2| =1 或 17,但双曲线的右顶点到右焦点距离最小为c - a =6-4=2>1,∴| PF 2|=17.双曲线的几何性质典题导入22[ 例 2] (20122XX 高考12x 2 y 2的左、右) 如图,F ,F 分别是双曲线C :a -b =1( a , b >0) 焦点, B 是虚轴的端点,直线F B 与 C 的两条渐近线分别交于P , Q 两点,线段 PQ 的垂直平1分线与 x 轴交于点 M .若| MF |=| F F |,则 C 的离心率是()21 22 36A. 3B.2C. 2D. 3[ 自主解答 ]设双曲线的焦点坐标为 1(-c,0),2(c, 0) .FF∵ (0, ),∴1所在的直线为-x +y= 1. ①BbF Bc bb双曲线渐近线为 y =±a x ,by =a x ,acbc由x y得Qc - a ,c - a.-c +b = 1,b由y =-a x ,得 P - ac , bc,x y a + c a + c-c +b =1,∴ PQ 的中点坐标为a 2cbc 2c 2-a 2,c 2-a2.222a 2c c 2由 a + b =c 得, PQ 的中点坐标可化为b2,b .b直线 F 1B 的斜率为 k =c ,22PQybba c .ca 2c令 y =0,得 x =b 2+ c ,a 2c a 2c∴ M b 2+ c ,0,∴| F 2M |=b 2.由 | MF 2| =| F 1F 2| 得a 2c a 2 cb2=c 2-a 2=2c ,2223 6即 3a = 2c ,∴ e =2,∴ e =2. [答案] B若本例条件变为“此双曲线的一条渐近线与x 轴的夹角为α,且π < α< π”,求双4 3 曲线的离心率的取值X 围.b解:根据题意知 1<a <3,即 1<e 2- 1< 3. 所以 2<e < 2.即离心率的取值X 围为 (2,2) .由题悟法1.已知渐近线方程y = ,求离心率时,若焦点位置不确定时,b>0)或a= (= ,mxm amm b故离心率有两种可能.2.解决与双曲线几何性质相关的问题时,要注意数形结合思想的应用.以题试法x 2 y 22.(1)(20122 XX 高考 ) 已知双曲线a 2-5 = 1 的右焦点为 (3,0),则该双曲线的离心率等于 ()314 3 2A.14 B.434C.D.232c 3解析:选 C 由题意知c = 3,故a +5= 9,解得a =2,故该双曲线的离心率 e =a =2.(2)(20122 XX 模拟 ) 已知双曲线x 2 y 2a > 0, > 0) 与抛物线y2有一个公共的2- 2=1(= 8abbx焦点 ,且两曲线的一个交点为,若 | | = 5,则双曲线的渐近线方程为 ()3A.y=±3x B.y=± 3x2C.y=± 2 x D.y=±2x解析:选 B设点( ,) ,依题意得,点(2,0),由点P 在抛物线2= 8上,且 ||P m n F yx PF +2= 5,a2+ b2=4,=5 得m由此解得= 3,2= 24. 于是有9 24由此解得a2= 1,2 2m n bn =8m,a2-b2 =1,b=3,该双曲线的渐近线方程为y=±a x=±3x.直线与双曲线的位置关系典题导入x2y2[例 3](20122XX模拟) 已知双曲线2- 2=1(> >0),为坐标a b b a O原点,离心率e=2,点 M(5,3) 在双曲线上.(1)求双曲线的方程;1(2) 若直线l与双曲线交于P,Q两点,且OP2OQ=0.求|OP|2+1| OQ|2的值.[ 自主解答 ] (1)∵ e=2,∴ c=2a,b2=c2-a2=3a2,x2y2222双曲线方程为a2-3a2=1,即3x- y= 3a .∵点 M( 5,3)在双曲线上,∴15- 3= 3a2. ∴a2= 4.x2y2∴所求双曲线的方程为4-12= 1.x2y2(2)设直线 OP的方程为 y= kx( k≠0),联立4-12=1,得x2=122,k2+3-k222212k2∴| OP| =x+y=3-k2.y =3-k2,则的方程为y =-1,OQ kx1211+ 2k 2同理有 | OQ | 2=k+,1 =2- 13k3-k 2113- k 2+2-2+ 2 21∴| OP | 2+| OQ |2=k=k=6.k 2+k 2+由题悟法1.解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或 y )的一元二次方程.利用根与系数的关系,整体代入.2.与中点有关的问题常用点差法.[ 注意 ] 根据直线的斜率k 与渐近线的斜率的关系来判断直线与双曲线的位置关系.以题试法223.(20122XX 模拟 ) 1,2分别为双曲线x2-y 2=1( a >0, b > 0) 的左,右焦点,过点FFa bF 作此双曲线一条渐近线的垂线,垂足为M ,满足|MF 1 ,|=3| MF 2,|,则此双曲线的渐2近线方程为 ________________ .解析:由双曲线的性质可得| MF 2, | =b ,则 | MF 1 , |=3b .在△aMF 1O 中,|OM , |= a ,|OF 1 , |= c ,cos ∠F 1OM =-c ,由余弦定理可222b 2,即b = 2,故此知a + c -b=-a,又 c 2 = a 2+ b 2,所以 a 2=22ac ca22双曲线的渐近线方程为y =±2 x .2答案: y =±2 x1.(20132XX 模拟) 已知双曲线的渐近线为y =± 3x ,焦点坐标为 ( - 4,0) ,(4,0) ,则双曲线方程为 ()x 2 y 2x 2 y 2A. 4-12=1B. 2-4=1x 2 y 2x 2 y 2C.24-8=1D. 8-24= 1x 2y 2解析:选 A由题意可设双曲线方程为a 2-b2=1(a >0,b >0),由已知条件可得b 3,b3,a=即 a=c =4,a 2+b 2=42,a 2=4,x 2 y 2解得b 2=12,故双曲线方程为4-12=1.2.若双曲线过点 ( m ,n )( m >n > 0) ,且渐近线方程为 y =± x ,则双曲线的焦点( )A .在x 轴上B .在y 轴上C .在x 轴或 y 轴上D .无法判断是否在坐标轴上解析:选 A∵ m >n >0,∴点( m ,n )在第一象限且在直线 y = x 的下方,故焦点在x 轴上.3.(20122华南师大附中模拟) 已知m 是两个正数 2,82y 2的等比中项, 则圆锥曲线 x +=m1 的离心率为 ()A. 3或5 B. 32223C. 5D.2或5解析:选 D 2∵ m =16,∴m =±4,故该曲线为椭圆或双曲线.3ca 2+b 2 =2 . 当m =- 4 时,e =a =a= 5.ca 2-b 2 当 m =4时,e =a =a4.(20122 XX 高考) 如图,中心均为原点O 的双曲线与椭圆有公共焦点, M , N 是双曲线的两顶点.若M , O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A . 3B . 2 C. 3D.2解析:选 B设焦点为( ±c, 0) ,双曲线的实半轴长为,则双曲线的离心率1=c,Faeace 1椭圆的离心率e 2=,所以= 2.9点,双曲线的离心率是5,且PF 1,2 PF 21 29,则a +b 的值为 ()4, =0,若△ PFF 的面积为A . 5B . 6C . 7D . 8解析:选 C 由 PF 1 , 2PF 2,=0得 PF 1, ⊥PF 2 ,,设|PF 1 , |=m ,|PF 2 , |= n ,不妨设>,则22c 2,-=2, 1c 5 a =4,∴=3,∴ a + =+=4= 9,= ,解得m nm nm n a2mna4c =5,bb7.6.(20122XX 模拟 ) 平面内有一固定线段AB ,| AB |=4,动点 P 满足| PA |-| PB |=3,O 为 AB 中点,则| OP | 的最小值为 ( )A . 3B . 23D . 1C.2解析:选 C 依题意得,动点 P 位于以点 A ,B 为焦点、实轴长为 3 的双曲线的一支上, 结合图形可知, 该曲线上与点 O 距离最近的点是该双曲线的一个顶点, 因此 | OP | 的最小值等于3.27.(20122西城模拟 ) 若双曲线x 2-ky 2= 1 的一个焦点是 (3,0),则实数 k =________.解析:∵双曲线 x 2- ky 2=1的一个焦点是 (3,0) ,121∴ 1+k = 3 = 9,可得k =8.1 答案: 8x 2 y 2x 2 y 28.(20122XX 高考) 已知双曲线C 1:a 2-b 2=1( a >0, b >0)与双曲线 C 2:4 - 16 = 1 有相同的渐近线,且C 1 的右焦点为 F (5, 0) ,则a = ________,b = ________.解析:双曲线x 2-y 2= 1 的渐近线为y =±2 ,则 b= 2,即 =2 ,又因为c =5,2416xabaa+ b 2= c 2,所以 a =1, b =2.答案:1 2x 2 y 222 a 29.(20122XX 模拟) 过双曲线a 2-b 2=1( a > 0,b > 0) 的左焦点F 作圆x + y =4的切 线,切点为 ,延长 FE 交双曲线右支于点 ,若 为 的中点,则双曲线的离心率为 ________.EP E PF解析:设双曲线的右焦点为F ′.由于 E 为 PF 的中点, 坐标原点 O 为 FF ′的中点,所以aEO ∥ PF ′,又 EO ⊥ PF ,所以 PF ′⊥ PF ,且| PF ′|=232= a ,故| PF |=3a ,根据勾股定理得10| FF ′| = 10a . 所以双曲线的离心率为10 a 102a =2 .答案:10210.(20122XX 模拟) 已知双曲线的中心在原点,焦点 F 1,F 2 在坐标轴上, 离心率为2,且过点 (4 ,-10) .点M (3 ,m ) 在双曲线上.(1) 求双曲线方程;(2) 求证: MF 12 MF 2=0.解: (1) ∵e = 2,∴可设双曲线方程为x 2-y 2=λ(λ ≠0).∵过点 (4 ,-10) ,∴ 16- 10=λ ,即λ= 6.x 2y 2∴双曲线方程为6-6=1.(2) 证明:由 (1) 可知,双曲线中a =b = 6,∴c = 2 3,∴F (-2 3,0),F (23,0) ,121m2m3+ 233-2 322122=mm=- .kMFkMF9- 123∵点 (3 ,m ) 在双曲线上,∴ 229-m = 6,m = 3,故 kMF 12 kMF 2=-1,∴ MF 1⊥ MF 2.∴ MF 12 MF 2=0.11.(20122XX 名校质检) 已知双曲线的方程是16x 2- 9y 2= 144.(1) 求双曲线的焦点坐标、离心率和渐近线方程;(2) 设F 和F 是双曲线的左、 右焦点, 点P 在双曲线上, 且 | PF |2|PF |=32,求∠ F PF121212的大小.解: (1) 22= 144x 2 y 2由 16x - 9y得 -= 1,9 16所以 = 3, =4, = 5,a bc所以焦点坐标1(-5,0), 2(5,0),离心率 e = 5 ,渐近线方程为 y =± 4 .FF33x(2) 由双曲线的定义可知 ||PF 1|-| PF 2||=6,| PF 1| 2+ | PF 2| 2- | F 1F 2| 2cos ∠F 1PF 2=2| PF 1|| PF 2|PF 1|-| PF 22+2| PF 1|| PF 2|-| F 1F 2|2=2| PF 1|| PF 2|=36+ 64- 100=0,64则∠12 =90°.F PFx 2y 212.如图, P 是以 1、 2 为焦点的双曲线: 2- 2=1上的一点,F F C a b已知 PF 12 PF 2=0,且| PF 1|=2| PF 2|.(1) 求双曲线的离心率 e ;(2) 过点 P 作直线分别与双曲线的两渐近线相交于P 1, P 2两点,若 OP 12 OP 2=-27, 2 PP 1+PP 2= 0. 求双曲线C 的方程.4解: (1) 由 PF 12PF 2=0,得PF 1⊥PF 2,即△F 1PF 2为直角三角形.设 | PF 2| =r ,| PF 1| = 2r ,所以 (2 r ) 2+r 2= 4c 2, 2r -r = 2a ,即 53(2a )2=4c 2.所以 e =5.b2(2) a =e - 1=2,可设P 1( x 1, 2x 1) ,P 2( x 2,- 2x 2) ,P ( x ,y ) ,27则 OP 12 OP 2=x 1x 2-4x 1x 2=-4,1 294x 2-x =-x 1- x ,由 2 PP 1+PP 2=0,得,-2x 2-y =-x 1- y即 x =2x +x, y =x - x. 又因为点P 在双曲线x2222=1上,12133abx 1+ x 22x 1- x 22所以 -= 1.9 29 2ab又b 2= 4 2,代入上式整理得1 x 2= 9 2. ②ax8a由①②得 a 2=2, b 2=8.x 2y 2故所求双曲线方程为2-8=1.1.(20122XX 模拟) 设e 1、e 2分别为具有公共焦点 F 1、F 2的椭圆和双曲线的离心率, P| PF 1,+PF 2,| =| F 1F 2,| ,则e 1e 2是两曲线的一个公共点,且满足2 2的值为()e 1+ e 22A. 2B . 2 C. 2D . 1解析:选 A 依题意,设 | PF | =m ,| PF | = n ,| F F |=2c ,不妨设 m > n .则由|PF 1,+1212PF 2,|=| F 1F 2,|得|PF 1,+ PF 2,|=|PF 2,- PF 1,|=| PF 1,-PF 2,|,即| PF 1,+ PF 2 2PF 1,- PF 2,2,所以 PF 1,2PF 2,=0,所以 222. 又e 1= 2c, e 2,|=|| m + n =4c m + n2c1 12+ 21 212=,所以2+2=m n = 2,所以e e2== .m - n e e 4c 221 11 2e 1+e 222+ 2ee21x 2 y 22.已知双曲线a 2-b 2= 1( a > 1,b > 0) 的焦距为2c ,直线l 过点 ( a, 0) 和(0 ,b ) ,点(1,0)4到直线 l 的距离与点(-1,0) 到直线 l 的距离之和s ≥5c ,则双曲线的离心率e 的取值X 围为 ________.x y解析:由题意知直线 l 的方程为a +b = 1,即bx +ay -ab = 0. 由点到直线的距离公式得,b a - b + 点(1,0) 到直线l 的距离d 1 =,同理得,点 ( - 1,0) ,2 b 2 到直线 l 的距离 d 2= 2 2 a +a +b s = 1+ 2= 2ab2abs 4,得2ab 4,即 522 2=c . 由 ≥ c ≥-≥2 .dd a 2+b25c5ca cac所以 5224 25 2e -1≥2,即 4e -25 e +25≤0,解得≤≤5.e4e由于 e >1,所以 e 的取值X 围为52,5.答案:52, 5x 2 y 23.设A ,B 分别为双曲线a 2 -b 2=1(a >0,b >0)的左,右顶点, 双曲线的实轴长为4 3,焦点到渐近线的距离为3.(1) 求双曲线的方程;3(2) 已知直线y =3x -2 与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使 OM ,+ ON ,=t OD ,,求t 的值及点D 的坐标.解: (1) 由题意知a = 23,故一条渐近线为y =bx ,23即- 23y =0,则 | bc | = 3,bxb 2+122x 2 y 2得 b =3,故双曲线的方程为12-3=1.(2) 设 M ( x 1, y 1), N ( x 2, y 2), D ( x 0,y 0),则 x 1+ x 2=tx 0, y 1+ y 2= ty 0,将直线方程代入双曲线方程得 x 2-16 3x +84=0,则 x 1+ x 2=16 3, y 1+ y 2=12,x 04 3则y 0=3,x 0=4 3, 22得y 0=3,x 0y 012-3=1,故 t =4,点 D 的坐标为(43, 3) .x 221.(20122XX 模拟 ) 直线x =2 与双曲线C :-y =1 的渐近线交于E 1,E 2两点,记OE 1,4=e 1,OE 2 , = e 2,任取双曲线 C 上的点 P ,若OP , = ae 1+ be 2,则实数 a 和 b 满足的一个等式是 ________.122a + 2b =x ,2e =(2,1), e =(2,-1),设 P ( x , y ),则则 ( a +b )解析:可求出 a - b = y ,21-( a -b ) = 1,得ab =4.1答案: ab =42.已知双曲线a22F 、F ,过点 F 作与 x 轴垂直的直线与双- b= 1 的左,右焦点分别为x 2y21 22曲线一个交点为 ,且∠ 1 2=π,则双曲线的渐近线方程为________________ .P PFF 6解析:根据已知得点22,则 1= 2b 2P的坐标为 c ,±b,则2 =b,又∠1 2=π,a| PF |aPFF| PF |a62b 2b 2b 2b故a -a = 2a ,所以a 2= 2,a =2,所以该双曲线的渐近线方程为 y =± 2x .答案: y =±2x3.(20122XX 模拟) 已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0) .(1) 求双曲线 C 的方程;(2) 若直线l :y =kx +2与双曲线C 恒有两个不同的交点 A 和 B ,且 OA ―→ , 2 OB ―→ ,>2( 其中 为原点 ) ,求k 的取值X 围.O22解: (1) 设双曲线C 的方程为x2- y 2=1(a>0, >0) ,a bb由已知得 a =3,c = 2,再由c 2=a 2+b 2得b 2= 1,2x 2所以双曲线C 的方程为3-y =1.(2) 将 y = kx +2代入x 2- y 2=1,3整理得 (1 - 3k 2) x 2- 62kx -9= 0,由题意得1- 3k 2≠0,=2k2+- 3k2=- k2> 0,212故 k ≠ 3且 k <1,①6 2k设 A ( x A ,y A ), B ( x B ,y B ),则 x A + x B =1-3k 2,- 9x A 2 x B =1-3k 2,由 OA ,2 OB ,>2得x A x B +y A y B >2,又x A x B + y A y B =x A x B +( kx A +2)( kx B +2)= (21)A BA Bkx x xk x= ( k2- 9 2+2k 26 2k 3k 2+ 7+1)21-3k 1- 3k2+2=2,3k - 13 2 +7- 3 k 2 + 9于是3k 2-1>2,即3k 2-1>0, 解不等式得 1 < k 2<3,②312由①②得3< k < 1,所以k 的取值X 围为3∪3. -1,-33 ,1。
第四节函数的奇偶性及周期性[知识能否忆起]一、函数的奇偶性二、周期性 1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题能否全取]1.(2012·广东高考)下列函数为偶函数的是( ) A .y =sin x B .y =x 3 C .y =e xD .y =lnx 2+1解析:选D 四个选项中的函数的定义域都是R.y =sin x 为奇函数.幂函数y =x 3也为奇函数.指数函数y =e x 为非奇非偶函数.令f (x )=ln x 2+1,得f (-x )=ln(-x )2+1=lnx 2+1=f (x ).所以y =ln x 2+1为偶函数.2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.3.(教材习题改编)已知定义在R 上的奇函数f (x ),满足f (x +4)=f (x ),则f (8)的值为( ) A .-1 B .0 C .1D .2解析:选B ∵f (x )为奇函数且f (x +4)=f (x ), ∴f (0)=0,T =4. ∴f (8)=f (0)=0.4.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析:法一:∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0,对于x ∈R 恒成立,故a =0.法二:由f (-1)=f (1), 得|a -1|=|a +1|,故a =0. 答案:05.(2011·广东高考)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________.解析:观察可知,y =x 3cos x 为奇函数,且f (a )=a 3cos a +1=11,故a 3cos a =10.则f (-a )=-a 3cos a +1=-10+1=-9.答案:-91.奇、偶函数的有关性质:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件; (2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反之亦然; (3)若奇函数f (x )在x =0处有定义,则f (0)=0;(4)利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y 轴对称可知,偶函数在原点两侧的对称区间上的单调性相反.2.若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;应注意nT (n ∈Z 且n ≠0)也是函数的周期.典题导入[例1] (2012·福州质检)设Q 为有理数集,函数f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,-1,x ∈∁R Q ,g (x )=e x -1e x +1,则函数h (x )=f (x )·g (x )( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数[自主解答] ∵当x ∈Q 时,-x ∈Q ,∴f (-x )=f (x )=1;当x ∈∁R Q 时,-x ∈∁R Q ,∴f (-x )=f (x )=-1.综上,对任意x ∈R ,都有f (-x )=f (x ),故函数f (x )为偶函数.∵g (-x )=e -x -1e -x+1=1-e x 1+e x =-e x -11+e x =-g (x ),∴函数g (x )为奇函数.∴h (-x )=f (-x )·g (-x )=f (x )·[-g (x )]=-f (x )g (x )=-h (x ),∴函数h (x )=f (x )·g (x )是奇函数.∴h (1)=f (1)·g (1)=e -1e +1,h (-1)=f (-1)·g (-1)=1×e -1-1e -1+1=1-e1+e,h (-1)≠h (1),∴函数h (x )不是偶函数.[答案] A由题悟法利用定义判断函数奇偶性的方法(1)首先求函数的定义域,定义域关于原点对称是函数为奇函数或偶函数的必要条件; (2)如果函数的定义域关于原点对称,可进一步判断f (-x )=-f (x )或f (-x )=f (x )是否对定义域内的每一个x 恒成立(恒成立要给予证明,否则要举出反例).[注意] 判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.以题试法1.判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3x -3-x ;(3)f (x )=4-x 2|x +3|-3;(4)f (x )=⎩⎪⎨⎪⎧x 2+2,x >0,0,x =0,-x 2-2,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1, ∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ),所以f (x )为奇函数.(3)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,∴f (-x )=-f (x ),∴f (x )是奇函数.(4)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数.典题导入[例2] (1)(2012·上海高考)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.(2)(2012·烟台调研)设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式f (x )+f (-x )x>0的解集为( ) A .(-2,0)∪(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2) [自主解答] (1)∵y =f (x )+x 2是奇函数,且x =1时,y =2,∴当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. (2)∵f (x )为偶函数, ∴f (x )+f (-x )x =2f (x )x>0. ∴xf (x )>0.∴⎩⎪⎨⎪⎧ x >0,f (x )>0或⎩⎪⎨⎪⎧x <0,f (x )<0.又f (-2)=f (2)=0,f (x )在(0,+∞)上为减函数, 故x ∈(0,2)或x ∈(-∞,-2). [答案] (1)-1 (2)B本例(2)的条件不变,若n ≥2且n ∈N *,试比较f (-n ),f (1-n ),f (n -1),f (n +1)的大小. 解:∵f (x )为偶函数,所以f (-n )=f (n ), f (1-n )=f (n -1).又∵函数y =f (x )在(0,+∞)为减函数,且0<n -1<n <n +1, ∴f (n +1)<f (n )<f (n -1).∴f (n +1)<f (-n )<f (n -1)=f (1-n ).由题悟法函数奇偶性的应用(1)已知函数的奇偶性求函数的解析式.利用奇偶性构造关于f (x )的方程,从而可得f (x )的解析式. (2)已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.(3)奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.以题试法2.(1)(2012·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.(2)已知定义在R 上的奇函数满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是________.解析:(1)当x <0时,则-x >0,所以f (x )=x 2+x ,f (-x )=ax 2-bx ,而f (-x )=-f (x ),即-x 2-x =ax 2-bx ,所以a =-1,b =1,故a +b =0.(2)因为f (x )=x 2+2x 在[0,+∞)上是增函数,又因为f (x )是R 上的奇函数,所以函数f (x )是R 上的增函数,要使f (3-a 2)>f (2a ),只需3-a 2>2a ,解得-3<a <1.答案:(1)0 (2)(-3,1)典题导入[例3] (2012·浙江高考)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝⎛⎭⎫32=________.[自主解答] 依题意得,f (2+x )=f (x ),f (-x )=f (x ),则f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫12=12+1=32. [答案] 32由题悟法1.周期性常用的结论:对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f (x ),则T =2a ; (3)若f (x +a )=-1f (x ),则T =2a .2.周期性与奇偶性相结合的综合问题中,周期性起到转换自变量值的作用,奇偶性起到调节符号作用.以题试法3.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式. 解:(1)证明:∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.又∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].1.下列函数中,既是奇函数又是减函数的是( ) A .y =-x 3 B .y =sin x C .y =xD .y =⎝⎛⎭⎫12x答案:A2.(2012·考感统考)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫-52=( )A .-12B .-14C.14D.12解析:选A 由题意得f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫52-2=-f ⎝⎛⎭⎫12=-⎣⎡⎦⎤2×12×⎝⎛⎭⎫1-12=-12. 3.(2012·北京海淀区期末)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1) C .f (x )是奇函数,递减区间是(-1,1) D .f (x )是奇函数,递增区间是(-∞,0)解析:选C 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.4.(2013·吉林模拟)已知函数f (x )=|x +a |-|x -a |(a ≠0),h (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,x 2+x ,x ≤0,则f (x ),h (x )的奇偶性依次为( )A .偶函数,奇函数B .奇函数,偶函数C .偶函数,偶函数D .奇函数,奇函数解析:选D f (-x )=|-x +a |-|-x -a |=|x -a |-|x +a |=-f (x ),故f (x )为奇函数. 画出h (x )的图象可观察到它关于原点对称或当x >0时,-x <0,则h (-x )=x 2-x =-(-x 2+x )=-h (x ),当x <0时-x >0,则h (-x )=-x 2-x =-(x 2+x )=-h (x ).x =0时,h (0)=0,故h (x )为奇函数.5.(2013·杭州月考)已知函数f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m (m 为常数),则f (-1)的值为( )A .-3B .-1C .1D .3解析:选A 函数f (x )为定义在R 上的奇函数, 则f (0)=0,即f (0)=20+m =0,解得m =-1.则f (x )=2x +2x -1,f (1)=21+2×1-1=3,f (-1)=-f (1)=-3. 6.若函数f (x )=x(2x +1)(x -a )为奇函数,则a =( )A.12B.23C.34D .1解析:选A ∵f (x )=x(2x +1)(x -a )是奇函数,∴f (-1)=-f (1), ∴-1(-2+1)(-1-a )=-1(2+1)(1-a ),∴a +1=3(1-a ),解得a =12.7.(2013·孝感模拟)已知f (x )是偶函数,当x <0时,f (x )=x 2+x ,则当x >0时,f (x )=________. 解析:x >0,-x <0,f (x )=f (-x )=(-x )2+(-x )=x 2-x ,故x >0时,f (x )=x 2-x . 答案:x 2-x8.(2012·“江南十校”联考)定义在[-2,2]上的奇函数f (x )在(0,2]上的图象如图所示,则不等式f (x )>x 的解集为________.解析:依题意,画出y =f (x )与y =x 的图象,如图所示,注意到y =f (x )的图象与直线y =x 的交点坐标是⎝⎛⎭⎫23,23和⎝⎛⎭⎫-23,-23,结合图象可知,f (x )>x 的解集为⎣⎡⎭⎫-2,-23∪⎝⎛⎭⎫0,23. 答案:⎣⎡⎭⎫-2,-23∪⎝⎛⎭⎫0,239.已知函数f (x )是定义在R 上的奇函数,其最小正周期为3,且x ∈⎝⎛⎭⎫-32,0时,f (x )=log 2(-3x +1),则f (2 011)=________.解析:f (2 011)=f (3×670+1) =f (1)=-f (-1) =-log 2(3+1)=-2. 答案:-210.已知函数f (x )=x 2+ax (x ≠0,常数a ∈R).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性. 解:(1)当a =0时,f (x )=x 2, f (-x )=f (x ),函数是偶函数.当a ≠0时,f (x )=x 2+ax (x ≠0,常数a ∈R),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0, 即f (-1)≠-f (1),f (-1)≠f (1). 故函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1, 这时f (x )=x 2+1x.任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎫x 21+1x 1-⎝⎛⎭⎫x 22+1x 2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1+x 2-1x 1x 2. 由于x 1≥2,x 2≥2,且x 1<x 2. 故x 1-x 2<0,x 1+x 2>1x 1x 2,所以f (x 1)<f (x 2),故f (x )在[2,+∞)上是单调递增函数. 11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式. 解:(1)证明:由函数f (x )的图象关于直线x =1对称,得f (x +1)=f (1-x ), 即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ). 故f (x +2)=-f (x ).从而f (x +4)=-f (x +2)=f (x ), 即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0. x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,又f (0)=0, 故x ∈[-1,0]时, f (x )=--x . x ∈[-5,-4],x +4∈[-1,0], f (x )=f (x +4)=--x -4. 从而,x ∈[-5,-4]时, 函数f (x )=--x -4.1.设f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则x ·f (x )<0的解集是( ) A .{x |-3<x <0,或x >3} B .{x |x <-3,或0<x <3} C .{x |x <-3,或x >3} D .{x |-3<x <0,或0<x <3}解析:选D 由x ·f (x )<0,得⎩⎪⎨⎪⎧ x <0,f (x )>0或⎩⎪⎨⎪⎧x >0,f (x )<0, 而f (-3)=0,f (3)=0,即⎩⎪⎨⎪⎧ x <0,f (x )>f (-3)或⎩⎪⎨⎪⎧x >0,f (x )<f (3), 所以x ·f (x )<0的解集是{x |-3<x <0,或0<x <3}.2.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22,故b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10.答案:-103.(2012·烟台模拟)已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝⎛⎭⎫12=1,如果对于0<x <y ,都有f (x )>f (y ),(1)求f (1);(2)解不等式f (-x )+f (3-x )≥-2.解:(1)令x =y =1,则f (1)=f (1)+f (1),f (1)=0.(2)f (-x )+f (3-x )≥-2f ⎝⎛⎭⎫12,f (-x )+f ⎝⎛⎭⎫12+f (3-x )+f ⎝⎛⎭⎫12≥0=f (1),f ⎝⎛⎭⎫-x 2+f ⎝⎛⎭⎫3-x 2≥f (1), f ⎝⎛⎭⎫-x 2·3-x 2≥f (1), 则⎩⎪⎨⎪⎧ -x >0,3-x >0,-x 2·3-x 2≤1,解得-1≤x <0.故不等式的解集为[-1,0).1.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝⎛⎭⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.于是解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).答案:f (1)>g (0)>g (-1)2.关于y =f (x ),给出下列五个命题:①若f (-1+x )=f (1+x ),则y =f (x )是周期函数;②若f (1-x )=-f (1+x ),则y =f (x )为奇函数;③若函数y =f (x -1)的图象关于x =1对称,则y =f (x )为偶函数;④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称;⑤若f (1-x )=f (1+x ),则y =f (x )的图象关于点(1,0)对称.填写所有正确命题的序号________.解析:由f (-1+x )=f (1+x )可知,函数周期为2,①正确;由f (1-x )=-f (1+x )可知,y =f (x )的对称中心为(1,0),②错;y =f (x -1)向左平移1个单位得y =f (x ),故y =f (x )关于y 轴对称,③正确;两个函数对称时,令1+x =1-x 得x =0,故应关于y 轴对称,④错;由f (1-x )=f (1+x )得y =f (x )关于x =1对称,⑤错,故正确的应是①③.答案:①③3.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎡⎦⎤12,1上恒成立,求实数a 的取值范围.解:由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数,由f (ax+1)≤f (x -2),则|ax +1|≤|x -2|,又x ∈⎣⎡⎦⎤12,1,故|x -2|=2-x ,即x -2≤ax +1≤2-x .故x -3≤ax ≤1-x,1-3x ≤a ≤1x-1,在⎣⎡⎦⎤12,1上恒成立. 由于⎝⎛⎭⎫1x -1min =0,⎝⎛⎭⎫1-3x max =-2,故-2≤a ≤0.。