加减法的巧算
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
第一讲加减法巧算例1(1)124+158+76=(124+76)+158=200+158=358(2)112+164+133+136+188=(112+188)+(164+136)+133=300+300+133=600+133=733(3)(134+37+55)+(63+866+25)=(134+866)+(37+63)+(55+25)=1000+100+80=1180例1都是加法,采用分组凑整法:把和为整十整百整千的两个数加在一起,再计算就简单很多啦。
注:(3)涉及了去括号添括号的问题这里面老师给你们一个口诀:“加法括号随意变”,意思就是一个算式中都是加法时,括号可以随意添,随意去,不影响题目结果。
例2 (1)586-47-53=586-(47+53)=586-100=486(2)528-36-28=528-28-36=500-36=464例2(1)(2)还是采用分组凑整法,这里面有一点要注意减法当中的整是怎么来的,减去一个数再减去一个数,可以把这两个数加在一起在减去,举个例子来帮助理解:有两包垃圾要丢的时候,先丢一包再丢一包比较麻烦,我们可以把两包垃圾打包在一起,一起丢掉,这个道理在我们的数学当中也是通用的哦。
注:这里面也涉及了添去括号的问题了,老师再送给大家一个口诀:“减法它是反动派,添去括号要变号”,就是说只要在减号后面添去括号,括号里面的符号都要变。
(3)853-148-53-52=800-200=600这道题运用了减法的分组凑整法,还用到一个同尾不同号的方法:1358和—358,尾巴相同都是358,符号不同,我们也把他们分在一组用减法凑整。
(4)1358-(358-840)=1358-358+840 =1000+840=1840这道题就是一个减法去括号和同尾不同号的运用了。
例3(1)1518-571+71=1518-(571-71)=1518-500=1018(2)2985-(985+276)=2985-985-276=2000-276=1724(3)152+39-52=152-52+39=100+39=139(4)676+(521-276)=676-276+521=400+521=921例3全部都是加减混合的题型,这里有2句口诀:同尾不同号,同号要凑整。
第二讲:加减法的巧算例题与方法例1 巧算下面各题⑴ 876+385+124+615 ⑵ (84+37+55)+(16+45+63)(3)123+234+345+456++567+678+789 (4)9+99+999+9999+6例2 巧算下列各题。
⑴ 6397+1876-397;5462-1245-462 1825+(175+648);⑵ 532-(32+184);5283-(283-298);876+(438-176)。
⑶ 1457-399,3572+998。
(4)63+62+58+59+60+6l+58+59+57+64 1.加法运算定律(1)加法交换律两个数相加,交换加数的位置,它们的和不变。
一般地,有a+b=b+a。
(2)加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加第一个数,它们的和不变。
一般地,有a+b+c=(a+b)+c=a+(b+c)2.减法的运算性质(1)一个数减去几个数的和,等于从这个数里依次减去和中的每个加数。
一般地,有a-(b+c+d)=a-b-c-d。
反之,一个数连续减去几个数,等于从这个数里减去这几个数的和。
一般地,有a-b-c-d=a-(b+c+d)。
(2)一个数减去两个数的差,等于从这个数中减去差里的被减数(在能减的情况下),再加上差里的减数;或者先加上差里的减数,再减去差里的被减数。
一般地,有a-(b—c)=a-b+c,a-(b-c)=a+c-b。
(3)几个数的和减去一个数,等于从任何一个加数里减去这个数(在能减的情况下),再同其余的加数相加。
一般,有(a+b+c)-d=a+b+(c-d);(a-d)+b+c=a+(b-d)+c。
为了帮助记住这些运算性质,可以简要地概括如下:第一,在连减或加减混合运算中,如果算式中没有括号,计算时,可以带着符号“搬家”。
一般地,有a-b-c=a—c—b,a-b+c=a+c-b。
第二,在加减混合运算中,如果括号的前面是“-”号,那么,去掉括号时,括号内的减号变加号,加号变减号;如果括号的前面是“+”号,那么,去掉括号时,括号内的符号不变。
(一).加法中的巧算1、先把互为补数的加数加起来,然后再与其它的加数相加。
例1巧算下面各题:36+87+64 1361+972+639+28=(36+64)+87 =(1361+639)+(972+28)= 100+87 = 2000+100= 187 =21002、当题目中互补数不明显时,可以先凑出加数的补数,再减去补数。
例2巧算下面各题:188+873 548+996= (188+12)+(873-12) =(548-4)+996+4=200+861 =544+100=1061 =6443.找“基准数”法:几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例3巧算下面各题78+76+83+82+77+80+79+85=80+80+80+80+80+80+80+80-2-4+3+2-3-1+5=640(二)、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例 4巧算下面各题:300-73-27 1000-90-80-20-10= 300-(73+ 27) =1000-(90+80+20+10)=300-100=200 =1000-200=8002.先减去那些与被减数有相同尾数的减数。
例 5巧算下面各题:4723-(723+189) 2356-159-256=4723-723-189 =2356-256-159=4000-189 =2100-159=3811 =19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例6巧算下面各题:506-397 323-189=500+6-400+3 (把多减的3再加上) =323-200 +11(把多减的11再加上)=109 =123+11=134(三)、加减混合式的巧算1.带符号“搬家”,两个数相同而符号相反的数可以直接“抵消”掉。
例7巧算9+2-9+3 325+46-125+54(分组凑整法)=9-9+2+3 =325-125+46+54=5 =(325-125)+(46+54)=200+100注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54而325前面虽然没有符号,应看作是+325。
奥数加减法的巧算我们在进行速算时,要根据题目的具体情况灵活运用有关定律和法则,选择合理的方法。
下面介绍在整数加减法运算中常用的几种速算方法。
一、加法中的巧算1. 什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数” ,11也叫89的“补数” . 也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655 —12345, 46802 —53198, 87362—12638,… 下面讲利用“补数”巧算加法,通常称为“凑整法”。
2. 互补数先加。
例 1 巧算下面各题:36+87+64 ① ② 99+136+ 101③ 1361 +972+639+28解:①式=(36+ 64)+ 87=100+87=187②式=(99+ 101)+ 136=200+136=336③式=(1361 + 639) + ( 972+ 28)=2000+1000=30003. 拆出补数来先加。
例 2 ① 188+ 873 ②548+ 996 ③ 9898+ 203解:①式=(188+12) + (873-12)(熟练之后,此步可略) =200+861=1061②式=(548-4) + ( 996+ 4)=544+1000=1544③式=(9898+ 102) + ( 203-102)=10000+10仁101011. 把几个互为“补数”的减数先加起来,再从被减数中减去例 3 ① 300-73-27②1000-90-80-20-10解:①式=300- (73+ 27 )=300-100=200②式=1000- (90 + 80+ 20+ 10)=1000-200 = 8002. 先减去那些与被减数有相同尾数的减数。
加减法的巧算1、加法交换律:a+b=b+a2、加法结合律:a+b+c=(a+b)+c=a+(b+c)3、在连减或加、减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如,a-b-c=a-c-b, a-b+c=a+c-b4、有小括号的,我们一起来研究:5+(8-2)=? 5+8-2=?所以:a+(b-c)=a+b-c10-(5+2) =? 10-5+2 =?,为什么得数不一样?怎样算才相等?10-(5+2) =,用字母表示这个规律。
10-(5-2)=? 10-5-2=?,为什么得数不一样?怎样算才相等?10-(5-2)=,用字母表示这个规律。
我们来总结:在加、减混合运算中,去括号时:如果括号前面是“+”,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”。
a+(b-c)=a+b-c a-(b+c)=a-b-c a-(b-c)=a-b+c 在加、减混合运算中,添括号道理一样:a+b-c=a+(b-c) a-b+c=a-(b-c) a-b-c=a-(b+c)例 875-364-236 1847-1928+628-136-641348-234-76+2234-48-24例512-382=(500+12)-(400-18)=500+12-400+186854-876-97= 6854-(1000-124)-(100-3)= 6854-1000+124-100+3练习:1、 42+71+24+29+582、 43+(38+45)+(55+62+57)3、 698+784+1584、3993+2996+7994+1355、 4356+1287-3566、 526-73-27-267、 4253-(253-158) 8、 1457-(185+457)9、 389-497+234 10、 698-154+269+78711、 699999+69999+6999+699+69+612、 200-(15-16)-(14-15)-(13-14)-(12-13)乘除法的巧算乘法交换律:a×b =b×a乘法结合律:a×b×c =(a×b)×c =a×(b×c)乘法分配律:(a +b)×c =a×c +b×c (a-b)×c =a×c-b×c商不变性质:a÷b =(a×n)÷(b÷n) (n≠0)=(a÷m)÷(b÷m) (m≠0)类似于乘法分配律:(a +b)÷c =a÷c +b÷c (a-b)÷c =a÷c-b÷c 类似于乘法交换律:a÷b÷c =a÷c÷b乘除法混合运算与加减混合运算道理相通:(1)无括号:a×b÷c =a÷c×b =b÷c×a(2)去括号:a×(b×c) =a×b×c a×(b÷c) =a×b÷ca÷(b×c) =a÷b÷c a÷(b÷c) =a÷b×c (3)添括号:a×b×c =a×(b×c) a×b÷c =a×(b÷c)a÷b÷c =a÷(b×c) a÷b×c =a÷(b÷c)两个数之积除以两个数之积,可以分别相除后再相乘。
小学生奥数加减法的巧算知识点及练习题一、进位法:进位法是指在加法中,当相加的两个数相加而达到或超过10时,我们将其进位到更高的一位上。
例如,8+6=14,我们将4保留在个位上,并将1进位到十位上,所以答案是14练习题:1.5+7=?2.8+9=?3.3+6=?4.4+8=?5.9+9=?二、借位法:借位法是指在减法中,当我们无法从被减数的位数中进行减法运算时,我们需要向高位借位,以便能够继续进行减法运算。
例如,11-8=3,我们从个位上的数字1借1个十位,然后我们将它和原本的11相减,得到3练习题:1.7-3=?2.10-5=?3.9-6=?4.8-4=?5.11-9=?三、进位与借位相结合:在复杂一点的加减法问题中,我们可能需要同时使用进位法和借位法来解决问题。
首先我们通过进位法解决进位问题,然后再使用借位法解决借位问题。
练习题:1.23+16=?2.74-38=?3.64+38=?4.52-19=?5.87+45=?四、左对齐法:左对齐法是指在进行列竖式加减法时,我们将数对齐在同一列进行计算。
借位时,将借位数字与原位的数字对齐并进行运算。
这种方法可以减少出错的概率,也可以更方便地进行计算。
练习题:1.347+26=?2.870-36=?3.528+91=?4.742-281=?5.965+47=?以上就是一些小学生奥数加减法的巧算知识点及练习题。
通过掌握这些知识点和技巧,可以帮助小学生更快、更准确地进行加减法运算。
同时,在练习过程中,要注重培养孩子的思维能力和逻辑思维能力,通过不断的练习提高解题的速度和准确性。
第一讲加减法的巧算(一)方法一:凑整法36+87+64 99+136+101 1361+972+639+28方法二:拆数补数188+873 548+996 9898+203方法三:一个数连续减去两个或者多个数,如果减数之和为整十整百或者整千,可以先把减数相加,再用被减数减去它们的和300-73-27 1000-90-80-20-10方法四:一个数连续减去两个或者多个数,如果减数和被减数有相同的个位十位的优先相减4723-(723+189) 2356-159-256方法五:移多补少506-397 323-189 467+997 987-178-222-390例1计算:(1)2458+503 (2)574+798例2计算:(1)956-597 (2)3475-308例3 用简便方法计算:(1)783+25+175 (2)2803+(2178+5497)+471、计算下面各题,并口述解题思路。
256+503 327+798 379-297 467-1032.直接写出得数376+174+24 864+(673+136)+2271324―875―125 3842―1567―433―842第二讲加减法的巧算(二)我们已经知道了有关简单加减法的巧算方法。
对于稍复杂的加减法,如何进行巧算呢?这一讲,我们就来讨论这个问题。
一、计算: 1654-(54+78)二、计算: 2937-493-207三、带着符号搬家计算: 657897-657323+297四、标准数法计算: 995+996+997+998+999五、配对凑整计算: 1000-91-1-92-2-93-3-94-4-95-5-96-6-97-7-98-8-99-91.下列各题。
(1) 538-194+162 (2)497+334-297(3)7523+(653-1523)(4)9375-(2103+3375)(5)874―(457―126)(6)3467―253―174―47―1262.计算下列各题。
加减法的巧算在我们日常生活中,加减法可以说是最基础的数学运算。
无论是在学校里还是在家里,我们经常会面对各种各样的加减法题目。
对于一些简单的计算,我们可以直接运用基本的计算规则进行解答。
然而,当面对一些稍微复杂一些的题目时,我们需要运用一些巧算的技巧来简化计算过程,节省时间并减少错误。
下面,我将分享几种加减法的巧算方法。
一、快速加法对于两位数的加法,我们通常会进行竖式计算,但是这种方法在计算速度上可能会稍慢。
下面是一种快速加法的方法,称为拆数相加法。
例如,计算36+48,我们可以将48拆成40+8,再将36和40相加,得到76,最后再加上8就是答案。
这种方法的关键在于将一个数拆分成更容易计算的数,然后进行相加。
二、相反数法相反数法是针对减法运算的一种巧算方法。
当减法运算中出现较大的数减去较小的数时,我们可以采用相反数来简化计算过程。
例如,计算73-48,我们可以转化为73+(-48)。
然后,我们可以通过计算机加法的方式,将73和48的相反数-48相加。
最终得到的和就是我们要求的答案。
三、补数法补充法是一种处理减法运算的简化方法。
当我们遇到减法运算的时候,可以通过找一个有关数,使得计算更简单。
例如,计算99-37,我们可以通过将37补齐为一个更便于计算的数。
我们可以将37补齐为40,然后计算99-40=59,最后再加上3(37-40的差)得到答案62。
四、合理分配法当我们进行多位数的加、减法运算时,如果观察到其中某个数字为10的倍数,我们可以运用合理分配法来简化计算。
比如,计算258+30+12,我们可以将30和12合并为42,再将42分配到258上,得到300+12=312。
类似地,对于减法运算,如753-60-13,我们可以将60和13合并为73,再从753中减去73,得到答案为680。
五、交换法交换法在某些情况下可以简化加减法运算的过程。
当我们面对一个较大的数字和一个较小的数字相加或相减时,可以运用交换法来减少计算量。
一、加法中的巧算1.什么叫"补数"?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的"补数"。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的"补数";89叫11的"补数",11也叫89的"补数"。
也就是说两个数互为"补数"。
对于一个较大的数,如何能很快地算出它的"补数"来呢?一般来说,可以这样"凑"数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…下面讲利用"补数"巧算加法,通常称为"凑整法"。
2.互补数先加【例1】巧算下面各题:①36+87+64②99+136+101③1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加【例2】①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)=200+861=1061②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加如:二、减法中的巧算1.把几个互为"补数"的减数先加起来,再从被减数中减去。
【例3】① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
加减法中的巧算【知识要点】1.加法交换律:两个数相加交换两个加数的位置,和不变 形如a b b a +=+2.加法结合律:三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变 形如()()a b c a b c ++=++3.减法的运算性质:在减法中,被减数减去若干个减数,可以减去这些减数的和,差不变形如()a b c a b c --=-+4.以上运算定律、性质同样适用于多个加数或减数的计算中5.添去括号原则:在加减法运算中,如果给加号后面的算式添上或去掉括号,原运算符号不变;如果给减号后面的算式添上或去掉括号,其添上或去掉括号部分的运算符号要改变。
即“+”变“-”,“-”变“+” 【典型例题】例1.计算:39899899982+++分析:前三个加数分别比100、1000、10000少2,第四个加数恰好是3个2的和,所以,这题可把3个2分别与前三个加数相加,从而凑整达到简算 解: 39899899982+++()()()98299829998210010001000011100=+++++=++=例2.计算:36872293644716871636-----分析:减数中,229与471、364与1636的和是整十、整百、整千……的数,687恰好与被减数的末三位数相同,所以,这题可先分组凑整再计算 解: 36872293644716871636-----()()()3687687229471364163630007002000300=--+-+=--=例3.计算:103991039610510298++++++分析:当许多大小不同而又比较接近的数相加时,可选择其中一个数或与所有数都很接近的一个整十、整百、整千……的数作为计数的基础(叫做基准数)。
再找出每个加数与基准数的差,大于其准数的作为加数,小于基准数的作为减数,最后把结果算出来解: 103991039610510298++++++()1007313452210076706=⨯+-+-++-=⨯+=例4.计算:10099989796321+-+-+-+分析:这道题有加有减,如果暂不看头尾两个加数,就会发现中间都是先加后减并且加数与减数相差1,所以,这题可先把中间部分分组凑成若干个1,再与其余部分进行计算解: 10099989796321+-+-+-+()()()49110099989796321100491150=+-+-++-+=++个=【能力训练】A 卷1.437+5042.843-2073.958-5964.396+4995.795+1986.480+325+757.73+126+278.2000-36-8749.1846-324-481-19510.(435+823)+(77+565) 11.(348+94)+152 12.633+(367-706) 13.954-(354-128) 14.516-56-44-1615.1986-(272+986) 16.(24+37+15)+(16+45+13) 17.487-187-139-61 18.876-36-26-6419.723-(223-192)20.843-33-85+25B 卷1.7+39+43+61+8+322.300-123-75-773.145+263+55-1984.27+21+2304+73+795.13+76+275+111+7256.1325-(325-198)7.31+46+32+47+33+48+34+49 8.1328-4761÷9-5719.925-(125+99)10.524-185-115+27611.483-(995-817)12.(1051-489)+(1489-851)13.33979979997+++14.295+307-49815.39994+6997+491+78 16.4789-372-268-728-43217.6998+4995+997+107+91 18.199+202+195+201+196+201C 卷1.83+82+78+79+80+81+78+79+77+842.7+9+99+999+99993.2+19999994.1+2+3+4+……+16+17+18+19+205.2+4+6+……+14+16+186.96-95+94-93+92-91+……+4-3+2-17.5996+4997+3998+407+898.1+2+3+4+……+99+100+99+……+4+3+2+19.1-2+3-4+5-6+7-……+99-100+10110.5+55+555+5555+55555。
加减法中的速算与巧算知识储备1、加法的运算律加法交换律:a+b=b+a加法结合律:a+b+c=(a+b)+c=a+(b+c)2、加、减法运算的性质:a-b-c=a-c-b=a-(b+c)a+b-c=a-c+b=a+(b-c)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。
4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。
思维引导例1、巧算:76+35+48+14+45+52跟踪练习:巧算:89+123+109+11+77+181例2、巧算:500-99-1-98-2-97-3跟踪练习:巧算6728-116-202-551-67-1098-133例3、巧算:548-136+17-64+35跟踪练习:巧算1000-2+3-4+6-6+9-8+12-10+15例4、计算:①567-76+74 ②567-74+76跟踪练习:简便计算:①476-47+37 ②359+58-60例5、简便计算:432-(154-68)跟踪练习:①783-(583+16)②489-(342-11)例6、计算:999+99+9跟踪练习:计算:19+199+1999+19999例7、计算:(1)728+598 (2)436—103跟踪练习:计算:(1)288—199;(2)576+189例8、用简便方法计算下面各题跟踪练习:计算例9、巧算:599996+59997+3998+407+89跟踪练习:巧算:700012+6009+41008+59001例10、1966+1976+1986+1996+2006这五个数的总和是多少?跟踪练习:巧算:2010+2005+2004+2003+1998例11、计算:100+99-98+97-96+…+3-2+1跟踪练习:计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1能力对接1、在正确的算式前的圈圈里打“√”,错的打“×”。
数学加减法的巧算引言数学是一门重要的学科,而加法和减法是数学中最基本的运算方法之一。
掌握巧算技巧可以帮助我们更快速地进行加减法运算,提高计算效率。
本文将介绍一些数学加减法的巧算方法。
巧算加法1. 近似相同数相加法:当两个相加的数字非常接近时,我们可以先计算出这两个数字的平均值,然后乘以2。
例如,计算 18 + 22,我们可以先计算 (18+22)/2 = 40/2 = 20,最后将结果乘以2,得到20*2 = 40。
这种方法可以帮助我们快速估算近似相同数的加法结果。
近似相同数相加法:当两个相加的数字非常接近时,我们可以先计算出这两个数字的平均值,然后乘以2。
例如,计算 18 + 22,我们可以先计算 (18+22)/2 = 40/2 = 20,最后将结果乘以2,得到 20*2 = 40。
这种方法可以帮助我们快速估算近似相同数的加法结果。
2. 巧用进位法:当两位数相加时,如果两个数的个位之和超过了十位的数值,我们可以将个位之和减去10,并将十位的数值加1,得到最终结果。
例如,计算 37 + 48,个位之和是 7+8=15,超过了十位的数值4,因此我们可以将个位之和减去10得到5,并将十位的数值加1,得到结果 5+1=6。
这种方法可以简化两位数相加的计算过程。
巧用进位法:当两位数相加时,如果两个数的个位之和超过了十位的数值,我们可以将个位之和减去10,并将十位的数值加1,得到最终结果。
例如,计算 37 + 48,个位之和是 7+8=15,超过了十位的数值4,因此我们可以将个位之和减去10得到5,并将十位的数值加1,得到结果 5+1=6。
这种方法可以简化两位数相加的计算过程。
巧算减法1. 借位法:当两个数相减时,如果被减数的个位小于减数的个位,我们可以借位。
具体操作是,将个位的数值加上10,并将十位的数值减1,然后进行减法运算。
例如,计算 43 - 27,43 的个位是3 小于 7,我们可以将个位的3加上10得到 13,并将十位的数值减1得到3,然后进行减法运算,得到结果 13 - 27 = 13 + 3 - 27 = 16 - 27 = -11。
加减法速算口诀一、加法速算口诀在日常生活和学习中,加法是我们经常要面对的运算。
为了快速而准确地完成加法运算,我们可以利用加法速算口诀。
下面是常用的加法口诀:1.0 加上任何数等于任何数。
2.一个数加上0等于这个数本身。
3.加法满十进一,减法不够退一。
4.加上一个数等于在原来的基础上加上这个数。
5.加法交换律:a + b = b + a,即加数的顺序不影响和的结果。
6.加法结合律:(a + b) + c = a + (b + c),即先计算两个数的和再将和与另一个数相加,结果是相同的。
通过掌握这些加法口诀,我们能够更加高效地进行加法运算,提高计算速度和准确度。
二、减法速算口诀减法也是我们经常要用到的运算之一。
为了快速而准确地完成减法运算,我们可以利用减法速算口诀。
下面是常用的减法口诀:1.减去一个数等于加上这个数的相反数。
2.减法与加法的关系:减法问题可以通过相应的加法问题来解决。
3.减法满十借一,退位减一个。
4.减去一个数等于在原来的基础上减去这个数。
5.减法交换律不成立,即被减数与减数的顺序影响差的结果。
6.减数不变,被减数互换,差变号。
掌握这些减法口诀有助于提高减法运算的速度和准确性。
可以通过将减法问题转化为适当的加法问题来简化计算过程。
三、加减法速算技巧除了口诀之外,为了更加高效地进行加减法运算,还有一些速算技巧可以帮助我们。
以下是一些常用的加减法速算技巧:1.利用补数:对于减法,可以利用相应的加法问题的补数来简化计算过程。
例如,计算34 - 17,可以将问题转化为34 + (-17)。
这样一来,我们只需要计算一个加法问题,而不用进行减法运算。
2.利用进位借位:在进行加减法运算时,我们可以利用进位和借位的概念来简化计算。
例如,计算46 + 18,可以将18拆分为10和8,然后分别与46相加,最后再将结果相加。
3.利用倍数关系:对于某些特殊的数字组合,我们可以直接利用倍数的关系来进行计算。
例如,计算7 + 14,我们可以直接利用2乘以7等于14的关系,得出结果21。
加减法中的速算与巧算知识储备1、加法的运算律加法交换律:a+b=b+a加法结合律:a+b+c=(a+b)+c=a+(b+c)2、加、减法运算的性质:a-b-c=a-c-b=a-(b+c)a+b-c=a-c+b=a+(b-c)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。
4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。
思维引导例1、巧算:76+35+48+14+45+52跟踪练习:巧算:89+123+109+11+77+181例2、巧算:500-99-1-98-2-97-3跟踪练习:巧算6728-116-202-551-67-1098-133例3、巧算:548-136+17-64+35跟踪练习:巧算1000-2+3-4+6-6+9-8+12-10+15例4、计算:①567-76+74 ②567-74+76跟踪练习:简便计算:①476-47+37 ②359+58-60例5、简便计算:432-(154-68)跟踪练习:①783-(583+16)②489-(342-11)例6、计算:999+99+9跟踪练习:计算:19+199+1999+19999例7、计算:(1)728+598 (2)436—103跟踪练习:计算:(1)288—199;(2)576+189例8、用简便方法计算下面各题(1)6.64+0.22+9.78+3.36(2)75.1+24.19-75.1+24.19跟踪练习:计算(1)8.43+2.97+0.57+0.03 (2)4.9+4.9-0.9-0.9例9、巧算:599996+59997+3998+407+89跟踪练习:巧算:700012+6009+41008+59001例10、1966+1976+1986+1996+2006这五个数的总和是多少?跟踪练习:巧算:2010+2005+2004+2003+1998例11、计算:100+99-98+97-96+…+3-2+1跟踪练习:计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1能力对接1、在正确的算式前的圈圈里打“√”,错的打“×”。
第1讲加减法巧算知识梳理【加减法的巧算】在进行加减运算时,为了又快又准确,除了要熟练掌握计算法则外,还需要掌握一些巧算方法。
加减法的巧算主要是“凑数”,就是将算式中的数分成若干组,使每组的运算结果都是整十、整百或整千……的数,再将每组的结果求和。
这种“化零为整”的思想是加减法巧算的基础。
【加法交换律】两个加数交换位置,和不变,这叫做加法交换律。
字母公式:a+b=b+a【加法结合律】先把前两个数相加,或先把后两个数相加,和不变叫做加法结合律。
字母公式:a+b+c=a+(b+c)=(a+b)+c【例题一】凑整法(1)23+54+18+47+82(2)(1350+49+68)+(51+32+1650)【例题二】借数凑整法(1)57+64+238+46(2)4993+3996+5997+848【例题三】分组凑整法(1)875-364+125-236 (2)1847-1928+628-136-64【例题四】加补凑整法(1)512-382 (2)6854-876-97【例题五】利用线段图解决问题(1)小玲家养了46只鸭子,24只鸡,养的鸡和鹅的总只数比养的鸭多5只。
小玲家养了多少只鹅?(2)一个筐里装着52个苹果,另一个筐里装着一些梨。
如果从梨筐里取走18个梨,那么梨就比苹果少12个。
原来梨筐里有多少个梨?(3)某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。
已知水果糖比小白兔软糖多15块,巧克力糖比水果糖多28块。
又知巧克力糖的块数恰好是小白兔软糖块数的2倍。
三年级一班共买了多少块糖果?巩固拓展一、计算:42+71+24+58+29 43+(38+45)+(55+62+57)698+784+158 3993+2996+7994+1354356+1287-356 526-73-27-264253-(253-158) 1457-(185+457)二、应用题:1、一桶柴油连桶称重120千克,用去一半柴油后,连桶称还重65千克。