农学文献
- 格式:pdf
- 大小:85.54 KB
- 文档页数:6
农业学术文献英语Agricultural academic literature plays a pivotal role in the advancement of agricultural science and technology. It encompasses a wide range of topics, from soil science and crop management to agricultural economics and sustainable farming practices. The following is an excerpt from an academic paper that delves into the impact of integrated pest management (IPM) on sustainable agriculture.The Evolution of Integrated Pest Management in Sustainable AgricultureIn the quest for sustainable agricultural practices, the concept of Integrated Pest Management (IPM) has emerged as a cornerstone strategy. IPM is an ecosystem-based strategy that focuses on long-term prevention of pests and their damage, reduction of the risks associated with pests, and minimal use of chemical control. This approach is designed to be economically viable and socially acceptable while minimizing the negative impact on the environment and human health.The origins of IPM can be traced back to the early 20th century when farmers began to recognize the limitations of chemical control methods. The overuse of pesticides led to the development of resistance in pest populations, negative impacts on non-target organisms, and the contamination of the environment. In response, researchers and practitioners began to explore alternative methods of pest control that would bemore compatible with the principles of sustainability.One of the key components of IPM is the use of biological control, which involves the introduction of natural enemies of pests to suppress their populations. This can be achieved through the release of predators, parasites, or pathogensthat specifically target the pest species. Biological control has proven to be an effective and environmentally friendly alternative to chemical pesticides, reducing the need for chemical inputs and the associated risks.Another critical aspect of IPM is the implementation of cultural practices that make the agricultural environment less conducive to pest development. This includes crop rotation, which disrupts the life cycle of pests by changing the host plants, and the use of pest-resistant crop varieties that have been bred to withstand pest attacks. These practices not only reduce the reliance on chemical control but also contribute to the overall health and resilience of the agricultural system.Monitoring and decision-making are also integral to IPM. Regular scouting and the use of decision-making tools allow farmers to make informed choices about when and how to intervene against pests. By monitoring pest populations and their natural enemies, farmers can determine the most appropriate control measures to take, minimizing the use of chemical pesticides and maximizing the effectiveness of other control methods.The integration of these various strategies into acohesive management plan is what distinguishes IPM from other pest control methods. It requires a comprehensive understanding of the agricultural ecosystem and the interactions between pests, crops, and the environment. By adopting an IPM approach, farmers can achieve better pest control outcomes while also promoting biodiversity, reducing chemical inputs, and ensuring the long-term viability oftheir farming operations.In conclusion, the adoption of Integrated Pest Management in agriculture is a critical step towards achieving sustainability. It represents a paradigm shift from areliance on chemical control to a more holistic and ecologically sound approach to pest management. As the world faces increasing pressures from population growth and climate change, the principles of IPM will be essential in ensuring that agriculture can continue to meet the needs of society while protecting the environment for future generations.This excerpt highlights the importance of IPM in sustainable agriculture and the various strategies employed to achieve it. It underscores the need for a comprehensive and integrated approach to pest management that is both economically and environmentally sound.。
中国农业科学文献格式
中国农业科学文献格式一般遵循以下要求:
1. 书面文献(图书、论文、报告等)的格式:作者. 文献标题[文献类型标识]. 出版地:出版者,出版年份.
例如:李明. 中国农业可持续发展研究[博士论文]. 北京:中国农业出版社,2021.
2. 期刊文献的格式:作者. 文献标题. 期刊名称,年份,卷号(期号):起止页码.
例如:张三,李四. 中国农业现代化的挑战与机遇. 农业科学,2021,59(1):10-18.
3. 会议文献的格式:作者. 文献标题. 会议名称,会议年份,会议地点. 出版地:出版者,出版年份. 起止页码.
例如:王五,赵六. 农业科技创新与中国农村发展战略. 第十届中国农业科学大会,2019年11月4-7日,北京. 北京:中国农业出版社,2020. 102-108.
4. 报纸文献的格式:作者. 文献标题. 报纸名称,出版日期(版次).
例如:钱八. 我国粮食储备现状分析. 中国经济报,2021年3月10日(第2版).
以上为一般情况下的农业科学文献格式,实际撰写时还需根据具体要求进行调整。
在正式写作中,不应出现任何网址、超链接和电话等直接识别的信息。
古代文献中的农业与耕作农业自古以来就是人类社会的基石,而古代文献中对于农业与耕作的记录成为了了解古代农业生产方式和农民生活的重要窗口。
这些文献中描述的农业技术、种植方式和耕作工具不仅反映了古代社会的农业水平,还给我们提供了宝贵的历史信息。
本文将通过对古代文献的梳理,探讨古代文献中农业与耕作的相关内容。
古代文献中记录了丰富多样的农业技术和耕作方式。
在中国,最早的文献之一《诗经》就有了关于农耕的描述。
其中的《国风·周南·关雎》中写道:“关关雎鸠,在河之洲。
窈窕淑女,君子好逑。
”这句诗意味着春耕时节的到来,预示着农业生产的开始。
《诗经》中还有其他关于农耕的描写,如《国风·秦风·地黍》中记载了古代农民种植小麦的情景。
除了《诗经》,《尚书》、《礼记》等古代文献中也有大量关于农业与耕作的内容。
《尚书》是中国古代历史上第一部记载典章制度和历代君王事迹的史书,其中记载了古代农耕的重要政策和制度。
《尚书》中的《周书·周官》记载了周朝时期的农田水利建设和耕作技术,标志着古代农业生产进入了规模化的阶段。
在古代文献中,记载了不同地区的耕作技术和农业特色。
例如,在埃及古老的文明中,农业起到了至关重要的作用,这也在《古代埃及史》中有所体现。
埃及人的农业主要依赖尼罗河的洪水,洪水退去后,埃及人利用沉积物丰富的土壤进行种植,以满足人们的食物需求。
另一个例子是古代印度尼西亚,那里的农业是以稻米种植为主。
在《马萨诸塞大学农学院学报》中,论文《古代印度尼西亚:稻米农业与气候学关系》中详细描述了古代印度尼西亚地区农民使用的各种农业方法,包括水稻种植和水利工程的建设。
在欧洲,古希腊和罗马时代的农业也有相关的文献记载。
《农艺8卷》是罗马时期的一本古代农业手册,详细描述了当时的耕作技术、作物种植、畜牧业等农业相关内容。
这本手册不仅介绍了耕作工具的使用方法,还详细描述了土地选择、肥料应用和灌溉系统等农业管理方面的知识。
我国古代农业文献发展历程及其分类研究我国古代的农业历史源远流长,留下了卷帙浩繁、内容丰富的古代农业文献,是极为宝贵的农业遗产。
古代农业文献是指古代论述农业生产及与农业生产有直接关系的知识著作,据统计,从春秋战国至清末,官私撰著的农书500多种,现存者尚有300 多种,属古代大宗科技文献之一。
1古代农业文献根据《四库全书总目提要》记载:古代农业文献包括子部农家类中的历代古农书,以及散见于经史子集四大部类之中记载有关农业生产经验、技术和知识的专书、专篇与资料,具有宝贵的文献收藏价值、学术史料价值与科学使用价值。
子部农家类:“农家条目、至于芜杂。
诸家著录, 大抵辗转旁牵。
因耕而及牛经, 因相牛经及相马经相鹤经鹰经, 蟹略至于相贝经, 因香谱线谱相随入也,因谱史而及竹谱、荔支谱、橘谱至于梅谱、菊谱, 而唐昌玉药辨证, 扬州琼花谱相随入也。
因蚕桑而及茶经, 因茶经及酒史, 糖霜谱至于蔬菜食谱, 而易牙遗意, 饮膳正要相随入也。
触类蔓延, 将因四民月令而及算术、天文, 因田家五行而及风脚、鸟占, 因救荒本草而及素问、灵枢乎。
”可见,古代农业文献归属芜杂,学科交叉的现象明显。
2不同时期的古代农业文献2.1春秋战国时期中国现存最早的有关农学的文献是春秋战国时代的《吕氏春秋》,《吕氏春秋》第二十六卷《士容论》中的《上农》《任地》《辩土》《审时》四篇讲的是农业,《上农》篇主要介绍农业生产的重要性,以及鼓励农桑的政策和措施,强调精耕细作技术。
《任地》《辩土》《审时》等3篇论述了从耕地、播种、定苗、中耕除草、收获以及农时等一整套具体的农业技术和原则,内容十分丰富。
在此时期一些有远见卓识的思想家和家也先后提出了重农思想和重农政策。
2.2秦汉时期秦汉时期先后出现了一批总结和推广生产经验的农书,大部分已经失传,其中有《氾胜之书》的辑佚本为代表,氾胜之著名古代农学家。
《氾胜之书》是西汉晚期的一部重要农学著作,书中记载黄河中游地区耕作原则、作物栽培技术和种子选育等农业生产知识,反映了当时汉族劳动人民的伟大创造。
农学经典书籍:齐民要术、王祯农书、农政全书 中国是世界农来的重要起源地之⼀。
古史中关于神农⽒始播百⾕、发明⽾耜等农具的传说,实际上告诉我们:在过去⼀个⾮常遥远的年代,我国的农业就产⽣和确⽴了。
这个年代的确很早,河北磁⼭和河南新郑裴⾥岗等新⽯器时代遗址中发掘出的农业⼯具和⾕物遗存向我们证明,我国的农业有着近万年的发展史。
中国古代⼀直以农⽴国,古语常说“民以⾷为天”,因此历代对农业⽣产的发展都是⼗分重视的。
商代甲⾻⽂中,就有许多关于农事的⼘辞,内容涉及农作物的⽣长、天⽓的晴⾬、收成如何、粮⾷储藏等等。
其中出现了稻、⽲、稷、粟、麦、来(⼤麦)等农作物名称,还有畴、疆、甽(圳)、井、圃等⼟地整治的⽂字,说明当时的农业已经达到相当⾼的⽔平了。
周⼈的祖先后稷,传说是夏代的农官。
他们很早就是⼀个经营农业的部落。
从⾦⽂、《尚书》、《诗经》等古⽂献中的零星记载,我们知道周代在耕地整治、⼟壤改良、作物布局、良种选育、农时掌握、除⾍除草等农业技术⽅⾯都有了初步发展,精耕细作技术已在其中萌芽。
春秋战国时期,铁犁和⽜耕的出现,以及农⽥⽔利事业的发达,标志着我国传统农业的真正到来。
当时的耕作制度已从休闲制向连种制过渡,深耕、熟耘技术逐渐普及,⽥间施肥⽇益受到重视,⼈们更加强调良种的选育并提出了良种选育的标准;另外,当时对“农时”、“地宜”以及病⾍害防治的认识也越来越深⼊。
所有这些,说明我国传统农业的精耕细作的⽣产技术体系在这⼀时期已开始形成。
随着农业⽣产技术的进步,我国的农学研究也开展起来。
到战国时期,重农思想已经形成,并且深⼊⼈⼼。
在诸⼦百家的著作中⼏乎都可以找到重农⾔论以及相关的农学知识的记述。
当时形成的众多学派中,有⼀个学派被称为“农家”,是⼀个专门研究农业政策和农学知识的学术团体。
我国最早的农学著作《神农》、《野⽼》等就是他们的作品。
但是,这⼀时期的农学著作现在都已失传,我们所能见到的只有《吕⽒春秋》中的《上农》、《任地》、《辩⼟》、《审时》四篇。
古代中国的历史农学与农业技术古代中国的历史农学与农业技术源远流长,自从五千多年前的新石器时代至今,农业一直是中华民族的生命线和基石。
在这个悠久的历史长河中,中国人民用智慧和勤劳创造了许多独特的农学知识和农业技术,为中国的农业生产做出了重要贡献。
古代中国的农学起源于原始社会,进化至奴隶社会之时,已经形成了一定的农业规模和技术体系。
农业技术的进步使得农民们能够更高效地进行农作物的种植和养殖。
这其中,最重要的农学文献之一是春秋战国时期的《吕氏春秋》。
这部著作对土地利用、农事安排以及农作物种植等提供了详尽的指导。
多种农学技术和方法也在这一时期被广泛采用,比如早稻和晚稻的栽培方法,不同作物的轮作,农作物间的休耕和耕作间隙的利用等。
随着秦统一六国,统一思想和文化的传播,农学知识也得到了进一步的发展。
秦代的《尚书》、《礼记》、《周礼》等文献都涉及到了农学方面的内容。
李斯、乐毅、石崇等经师在书写《秦记》时,也记录了很多关于农业的经验和技术。
这一时期,中国的农学知识进入了一个新的时代。
随着农业生产和国家经济的发展,农学研究也逐渐深入和细化。
东汉时期著名的贾谊就在其代表作《新论》中提到了农学的发展。
他主张农作物的育种和选种技术,还阐述了土壤肥力的研究。
这些对农业生产的改进和创新,使得农民们能够在有限的土地上获得更好的产量。
随着时间的推移,农学技术和知识在中国的土地上不断演化和创新。
唐代的洪仁玕等农学家通过自己的亲身实践,将农业课题转化为农学的研究,从而科学地解决了一系列农业生产中的难题。
《洪氏改稻法》、《洪氏种养殖法》等著作成为了当时农学研究和农耕实践的重要参考。
宋代是中国农学研究的鼎盛时期,较早出现了有组织的农学研究机构和农学院。
王宏的《谷梁传》、俞正声的《田修侯》等著作被誉为当时最重要的农学著作之一。
通过系统的研究,农民们能够更好地了解和掌握土地的利用技术,从而提高了农作物的产量和农民的生活水平。
到了明清时期,大规模的农业生产和农村经济的发展要求更高的农学知识和农业技术。
有关农业科技的参考文献近年来,随着科技的进步和农业现代化的推进,农业科技在提高农业生产力、保护农业生态环境等方面发挥着重要作用。
以下是一些与农业科技相关的参考文献,供大家参考学习。
一、农业科技创新与发展1.《农业科技创新与农业现代化发展研究》(徐永恒,2018):该文研究了农业科技创新对农业现代化发展的影响,探讨了如何加强农业科技创新,促进农业现代化进程。
2.《农业科技创新对农业增产的影响分析》(张明,2017):该文分析了农业科技创新对农业增产的影响因素,提出了加强农业科技创新的措施和建议,为提高农业生产力提供了参考。
3.《农业科技创新驱动农业现代化发展的路径研究》(王建军,2016):该文通过实证研究,揭示了农业科技创新驱动农业现代化发展的路径和模式,为农业科技创新提供了理论指导。
二、农业科技推广与应用1.《农业科技推广模式的研究与创新》(李志刚,2019):该文研究了农业科技推广模式的创新,提出了适合中国农村特点的农业科技推广模式,为农业科技的应用和推广提供了借鉴。
2.《农业科技推广对农民收入的影响研究》(刘红,2018):该文通过调查研究,分析了农业科技推广对农民收入的影响因素,探讨了提高农民收入的途径和策略。
3.《农业科技推广与农业可持续发展研究》(陈卫国,2017):该文研究了农业科技推广与农业可持续发展的关系,提出了加强农业科技推广的措施和方法,促进农业可持续发展。
三、农业科技与农产品质量安全1.《农业科技对农产品质量安全的影响研究》(杨晓明,2019):该文研究了农业科技对农产品质量安全的影响,提出了加强农业科技创新和监管的建议,保障农产品质量安全。
2.《农业科技在农产品质量安全中的应用研究》(王建国,2018):该文探讨了农业科技在农产品质量安全中的应用情况,总结了农业科技在提高农产品质量和安全方面的作用和效果。
3.《农业科技创新与农产品质量安全监管的研究》(李明,2016):该文研究了农业科技创新与农产品质量安全监管的关系,提出了加强农业科技创新和监管的建议,保障农产品质量安全。
最新农业硕士论文参考文献格式最新农业硕士论文参考文献格式农业硕士论文参考文献格式一[1] 曹建国,孟德.建立以农户为中心的农户需求型农技推广运行机制[J].中国农技推广,2005,(10):25:1.[2] 姜婧.日本循环经济的技术创新分析[D]:[吉林大学硕士论文]吉林:吉林大学,2010:1.[3] 农业部基层农业技术推广体系改革联席会议办公室.基层农业技术推广体系改革和建设情况交流[J].2008,33(7):1.[4] 彭蓉.论我国农业技术推广体系的现状、问题与对策[J].农村经济与科技,2009,20(3):1.[5] 张业忠.农业技术推广存在的问题及建议[J].现代农业科技.2013(13):1.[6] 李明珠.农业技术推广措施[J].现代农业科技.2013(13):2.[7] 张彦军.潍坊市农技推广的现状及对策研究[D].中国农业科学院2011:2.[8] 武萱.基层农业技术推广体系的模式选择[D].湖南农业大学 2012:3.[9] 周琨.我国农业技术推广体系问题研究[D].西北农林科技大学 2012:3.[10]魏冉.密云县农业技术推广模式优化研究[D].中国海洋大学 2012:3.[11] 丁长发.主要发达国家科技进步支持农村经济建设经验与启示[J].甘肃农业.2010(03):3.[12]徐彬,里昕,揭筱纹.中国农业科技推广的困境及新发展思路探索[J].内蒙古农业科技.2008(04):3.[13]孙大为,王岩,张淼,邓春辉.浅谈农业科研成果转化机制[J].杂粮作物.2010(04):4.[14]揭筱纹,程君凤.农业科技成果推广模式优化探索[J].农村经济.2009(02):7.[15]黄季焜,胡瑞法,智华勇.基层农业技术推广体系 30 年发展与改革:政策评估和建议[J].农业技术经济.2009(01):7.[16]胡瑞法,李立秋,张真和,石尚柏.农户需求型技术推广机制示范研究[J].农业经济问题.2006(11):7.[17]黄德刚.乡镇农业技术推广存在的问题及对策[J].科学咨询(决策管理).2008(02):7.[18]吴仲斌 . 基层农业技术推广公共服务机构建设中需要解决的问题[J]. 红旗文稿.2009(19):8.[19]汪朝晖.浅谈农业技术推广方法与农技推广队伍的管理[J].安徽农学通报(上半月刊).2011(05):8.[20]何蒲明,黎东升.农业技术推广如何走出困境[J].农业科技管理.2005(05):9.[21]元曙波.阳城县农业技术推广体系建设调查与思考[J].山西农业科学.2010(07):9.[22]刘新杰,黄千建.湘潭市基层农技推广体系改革与建设的现状与对策[J].作物研究.2009(S1):9.[23]乔方彬,张林秀,胡瑞法 . 农业技术推广人员的推广行为分析 [J]. 农业技术经济.1999(03):10.[24]申红芳,廖西元,王志刚,王磊.基层农技推广人员的收入分配与推广绩效——基于全国 14 省(区、市)44 县数据的实证[J].中国农村经济.2010(02):12.[25]王志刚,阮刘青,廖西元.农技推广与农户满意度浅析[J].中国农技推广.2007(09):12.[26]陈超,周宁.农民文化素质的差异对农业生产和技术选择渠道的影响——基于全国十省农民调查问卷的分析[J].中国农村经济.2007(09):13.[27]廖西元,王志刚,朱述斌,申红芳,胡慧英,王磊.基于农户视角的农业技术推广行为和推广绩效的实证分析[J].中国农村经济.2008(07):13.[28]曹建民,胡瑞法,黄季焜.技术推广与农民对新技术的'修正采用:农民参与技术培训和采用新技术的意愿及其影响因素分析[J].中国软科学.2005(06):15.[29]刘伯龙,竺乾威,程惕洁著.2005.当代中国农村公共政策研究[M].上海:上海复旦大学出版社:16.[30]李小云,左停,叶敬忠主编.2005.中国农村情况报告[M].北京:社会科学文献出版社,2006:16.[31]中华人民共和国农业部.2008 年中国农业科技推广发展报告[M].北京:中国农业出版社,2008:16.[32]韩瑞清.美国的农业技术推广[M].国外农业技术推广.全国农技推广服务中心.北京:中国农业出版社,2001,106-109:16.[33][德].阿尔布列希特等.农业推广-基本概念与方法[M].高启杰,肖辉,吴敬业译.北京:北京农业大学出版社,1996,4-90:17.[34]任晋阳.农业推广学[M].北京:中国农业大学出版社,1998:18.[35]李维生等著.构建我国多元化农业技术推广体系研究[M].北京:中国农业科学技术出版社,2007.2.:18.[36]章之汶,李醒愚.农业推广[M].上海:商务印书馆,1936:19.[37]国务院关于深化改革加强基层农业技术推广体系建设的意见(国发[2006]830 号)[Z].中华人民共和国国务院公报,2006,(30):6-8:20.[38]刘良军.论走中国特色农业现代化道路[J].山东省农业管理干部学院学报.2011(02):21.[39]王建明.发达国家农业科研与推广模式及启示[J].农业科技管理. 2010(01):20.[40]郭建强,高英,冯开文.国外农业科技成果转化模式比较与借鉴[J].中国渔业经济.2010(03):21.农业硕士论文参考文献格式二[1]刘洋.科技服务汉中社会主义新农村建设问题研究[D].陕西省,西北农林科技大学,2011.[2]谭贵华.农村双层经营体制法律制度完善研究[D].重庆,西南政法大学,2012.[3]辛德奎,黄操军,甘龙辉.基于北斗和 GPS 的双模田间作业机车定位系统[J].黑龙江八一农垦大学学报,2014,26(1):85-87.[4]Zhao C J.Progress of agricultural informationtechnology[M].International Academic Publishers,2000.[5]Naiqian Zhang,Maohua Wang.Precision Agriculture-A Worldwide Overview[J].Tecjnology Innovationand SustainableAgriculture,2000,15(11):121-131.[6]彭道刚,杨平,杨艳华.现场总线技术的现状与展望[J].机电一体化,2004,(2):6-10.[7]张志森.电动汽车最优自动变速及能量回馈的控制技术研究[D].广东省,广东工业大学,2013.[8]庄卫东.东北黑土漫岗区大豆变量施肥播种技术研究[D].黑龙江省,黑龙江八一农垦大学,2001.[9]张利.基于计划、控制实施的数字化建筑施工体系的研究与实践[D].重庆,重庆大学,2003.[10] 李建兰.基于 STC12C 系列单片机的 DS18B20 编程[J].理论和方法,2009,28(1):23-26.[11]王熙.精准农业大豆变量施肥控制研究[D].黑龙江省,黑龙江八一农垦大学,2010.[12]郭贵平.T 公司竞争战略研究[D].广东省,华南理工大学,2011.[13]王少农,王熙.美国天宝公司网络农场系统[J].现代化农业,2015,12(2):59-60.[14]邵培杰.中国现阶段农业生产方式变革研究[D].河南省,河南大学,2012.[15]刘丽娟.基于气象条件的北方寒地水稻病虫害预警系统的研究[D].黑龙江省,黑龙江八一农垦大学,2013.[16]宋海亮.基于 CAN 的汽车制动测试系统的研究与实现[D].上海,上海交通大学,2011.[17]贾国光.工业控制系统中基于 CAN 总线的实时动态调度研究[D].湖南省,湖南大学,2008.[18]周游.基于 CAN 总线的嵌入式玻璃拉丝温度监控系统的设计与研究[D].湖北省,武汉理工大学,2006.[19] 刘慧 , 宋磊 . 基于 CAN 总线的客车后置发送机数据采集显示系统[J]. 车辆与动力技术,2002,85(1):37-41.[20]饶运涛,邹继军,王进宏,等.现场总线 CAN 原理与应用技术[M].北京:北京航空航天大学出版社,2007.[21]李君略,俞龙,刘华,等.联合收割机监测系统研究现状及展望[J].现代农业装备,2005,(12):46-48.[22]王建新,杨世凤.远程监控系统的发展现状和趋势[J].国外电子测量技术,2005,(4):905-912.[23]王杰.现场总线技术的现状和发展[J].电气传动自动化,2005,(3):15-19.[24] 农静 , 郑宗亚 , 刘志杰 . 单总线数字温度传感器 DS18B20 原理及应用 [J]. 贵州师范大学学报,2007,25(3):119-122.[25]陶太平.基于双 CAN 总线的监控报警系统设计[D].江苏省,南京理工大学,2010.[26]曾谊晖.履带式集矿车软底质行走行为及模拟试验系统研究[D].湖南省,中南大学,2013.[27]李佼.灌溉井群远程监控系统的研究[D].黑龙江省,东北农业大学,2014.[28]苏毅,李明霞.基于现场总线的虚拟仪表在制糖企业中的应用[J].中国测试,2012,38(2):112-116.[29]徐月华,陈志忠,翁志辉.楼宇用电网络化管理系统开发[J].工业工程,2009,12(4):96-99.[30]慕守宝,高飞翔,丁成.冗余控制系统在北衙矿业公司污水处理中的应用[J].黄金,2014,35(2):42-46.[31]THOMAS G J.An improved CAN field bus for industrial application[J].Industrialelectronics,2008,14(7):36-37.[32]杨慧,田亮,田敏.CAN 总线协议分析[J].中国仪器仪表,2002:1-4.[33]汪瞳,刘玉明,杨楚平.CAN 总线协议实现方法研究[J].应用科技,2007,34(7):54-57.[34]匡纯琪.基于 CAN 总线的大型起重机吊装过程在线监测系统[D].广东省,广东工业大学,2013.[35]薛雷.CAN 总线的数据帧结构及接口设计[J].洛阳师专学报,1999,18(2):117-120.[36]杨芳.电磁计量技术在传感器测量系统中的应用[J].硅谷,2014,(3):110-111.[37]孙圣和.现代传感器发展方向[J].电子测量与仪器学报,2009,23(1):1-10.[38]Kim S C,Park W P,Jung I G,et al.precision positioning of farm wehicles using a plural GPSreceiver[R].ASAE PaperNO.021156.St.Joseph,Mich.:ASAE,2002.[39]苏敏.基于 GPS 导航的太阳能机器车系统研究[D].江西省,南昌航空大学,2013.[40]周月霞,孙传友.DS18B20 硬件连接及软件编程[J].传感器世界,2001,(12):25-29.农业硕士论文参考文献格式三[1]李岳云,蒋乃华,郭忠兴.中国粮食波动轮[M].中国农业出版社,2012:15-18.[2]邓亦武.粮食宏观调控[M].中国农业出版社,2011:12-20.[3]程叶青,张平宇.东北商品粮基地粮食生产的区域分析[J].自然资源学报,2005,20(6):925-931.[4]邵立民.我国粮食综合生产能力与粮食安全问题研究[J].中国农业资源与区划,2005,26(1):23-26.[5] 宁哲 , 王兰 , 韩微 . 粮食安全背景下黑龙江省农业可持续发展评价方法 [J]. 东北林业大学学报,2012,37(4):90-93.[6]房世波,韩国军,张新时等.气候变化对农业生产的影响及其适应[J].气象科技进展,2013,(2):15-19.[7]庄丽,郑福云.黑龙江省耕地资源可持续发展战略初探[J].国土与自然资源研究,2013,(4):20-21.[8]彭文英,张雅杉.免耕对粮食产量及经卉效益的影响评述[J].干旱地区农业研究,2006,24(4):113-118.[9]乔世君.中国粮食生产技术效率的实证研究[J].数理统计与管理,2004,(3):11-16.[10] 杜华章 . 江苏省低碳农业发展影响因素的综合分析 [J]. 农业经济与管理,2010(12).[11]漆雁斌,陈卫洪.低碳农业发展影响因素的回归分析[J].农村经济,2010(02).[12] 张海英 . 江西省低碳农业发展质量评价及影响因素分析 [D]. 南昌大学,2011(06).[13]陈俊红,姜翠红,李红.都市型现代农业低碳经济进程评价及建议--以大兴区为例[J].生态经济,2010(11).[14]罗吉文.低碳农业经济效益的测评与实证[J].统计与决策,2010(04).[15]董魏魏,马永俊,毕蕾.低碳乡村指标评价体系探析[J].湖南农业科学,2012(01).[16]许广月.中国低碳农业发展研究[J].经济学家,2010(10).[17]田万慧.甘肃省农业循环经济发展评价与区域差异分析[J].资源开发与市场究综述[J].农村经济与科技,2011(07).[18]李晓惠.低碳农业研路的探讨 [J].经济研究导刊,2011(03).[19]周勇.发展低碳农业经济初探[J].经济研究导刊,2011(04).[20]魏斌,张灵菲,葛庆征等.低碳农业研究进展[J].草业科学,2012(04).[21]赵敏,张卫国,俞立中.上海市能源消费碳排放分析[J].环境科学研究,2009(08).[22]左上歧.绵阳低碳农业经济的现状及发展路径[J].四川省社会主义学院学报,2011(01).[23]梁清园.广东低碳农业的发展现状与对策[J].广东农业科学,2011(05).[24]李光全.沿海发达地区低碳农业发展的现状、问题与对策—以浙江省为例[J].当代经济管理,2011(06).[25] 程叶青 , 何秀丽 . 东北地区粮食生产的结构变动及比较优势分析[J]. 干旱地区农业研究,2005,23(3):1-7.[26]方修琦,王媛,云雅如.气候变暖对黑龙江省粮食作物的影响及人类的响应[A].北京气象出版社,2004:272-278.[27]马超群,何艳芬.建国以来陕西省粮食生产及其作物结构变化[J].长安大学学报,2008,10(2):82-86.[28]王济民,肖洪波.我国粮食“八连增”的性质与情景.农业经济问题,2013(2):22-30.[29]陈佑启.我国耕地利用变化及其对粮食生产的影响[J].农业工程学报,2000.16(6):29-32.[30]潘华盛,张桂华,祖世亨.气候变暖对黑龙江省水稻发展的影响极其对策的研究[J].黑龙江气象,2002,(4):7-12.18.[31]俞海,黄季焜,ScottRozelle 等.土壤肥力变化的社会经济影响因素分析[J].资源科学,2003,25.[32]陈百强.中国近期耕地资源与粮食综合生产能力的变化态势[J].资源科学,2004,26(5):38-45.[33]梁世夫.粮食安全背景下直接补贴政策的改进问题[J].农业经济问题,2005,(5):4-7.[34]朱俊林.三峡工程与江汉平原农业持续发展[J].生态学,2010,(2).[35]穆晓莹.我国玉米种植存在的主要问题及应对策略分析[V].北京农业,2012,(24):44-46.[36]任昊天.黑龙江非转基因大豆成本收益分析[J].黑龙江粮食,2013,(08):48-50.[37]谈琰.中国粮食核心区建设执行层面的困境与对策[J].农村、农业、农民,2009,(7):40-41.[38] 杨邦杰 , 郧文聚 , 吴克宁 . 国家粮食核心区的保护与建设 - 黑龙江调查报告 [J]. 中国发展,2009,(2):1-4.[39]朱再清.1978年以来湖北省粮食生产波动状况分析[J].湖北农业科学.2002,16(5):13-16.[40]郑晶,李艳.改革开放以来广东粮食生产结构变化分析[J].广东农业科学,2006,(7):99-103.。
论《齐民要术》中的生态农学思想《齐民要术》是中国古代农书之一,也是我国古代农学思想的重要文献之一。
在这部著作中,作者郑玄提出了许多关于农业生态的理念和方法,对于当时的农业生产起到了积极的指导作用。
本文将针对《齐民要术》中的生态农学思想进行深入的探讨,分析其中的主要内容以及对现代生态农业的启示。
《齐民要术》中的农业生态思想主要体现在以下几个方面:对土地的维护和土壤保护、农作物的选择和种植、水利工程建设和水资源的利用、对农业害虫的防治等方面。
在这些方面,郑玄提出了一些具有创新意义的理念和方法,对于古代农业生产的发展起到了推动作用。
郑玄在《齐民要术》中提出了对土地的维护和土壤保护的理念。
他认为土地是农业生产的基础,应当加强对土地的管理和保护,防止土地退化和水土流失。
他提出了在农田中种植绿肥以改善土壤肥力的方法,并注重对田地的轮作和休闲,以保持土壤的肥力和水分。
这些理念和方法在当时的农业生产中得到了广泛的应用,为农业生产的可持续发展奠定了基础。
郑玄对农作物的选择和种植提出了一些富有创新性的理念。
他根据当时的气候和土地条件,提出了一些适合当地种植的农作物,鼓励农民进行多种植农作物的尝试,并提出了一些增加种植效益的方法,如使用合理的施肥和灌溉技术等。
这些理念和方法对于提高农作物的产量和质量,促进农业生产的发展起到了重要的作用。
郑玄注重水利工程的建设和水资源的利用。
在《齐民要术》中,他提出了一些关于水利工程建设和水资源利用的理念和方法,如开挖水渠、修筑水坝等,以保证农田的灌溉和排水,提高农业生产的效率。
这些理念和方法在古代农业生产中得到了广泛的应用,为当时农业生产的发展做出了重要的贡献。
郑玄在《齐民要术》中提出了一些关于农业害虫的防治的理念和方法。
他认为农业害虫是农业生产的重要威胁,应当采取一些有效的方法来防治。
他提出了一些关于农作物的选择和种植技术,以减少农作物受害虫的侵害的方法,并提出了一些关于化学防治和生物防治的方法。
农耕文明有关的参考文献
农耕文明是指农民在长期农业生产中形成的一种适应农业生产、生活需要的国家制度、礼俗制度、文化教育等的文化集合。
以下是一些与农耕文明有关的参考文献:
- 《农耕文明对中国人的思维模式的影响》:农耕文明集合了儒家文化及各类宗教文化为一体,形成了自己独特的文化内容和特征,但主体包括国家管理理念、人际交往理念以及语言、戏剧、民歌、风俗及各类祭祀活动等,是世界上存在最为广泛的文化集成,影响着炎黄子孙的思想、言行以及思维模式的形成和发展。
- 《品读农耕文化,传承中华千年文明,弘扬中华传统之底色》:中国几千年的乡土生活、农业生产,孕育了悠久而厚重的古代农耕文明。
农耕文明作为中华民族传统文化的底色,积淀了宝贵的农学思想,传承了中华上下五千年厚重的文化底蕴,在世界农业文化史中都占据了举足轻重的地位。
- 《传承中国农耕文化,树立民族自信心》:农耕文化是中国农业的宝贵财富,是中华文化的重要组成部分,不仅不能丢,而且要不断发扬光大。
农学毕业论文参考文献(中英文范例)参考文献是写作农学毕业论文不可或缺的一部分,导师可在审核学生论文时,可根据参考文献的引用、数量、时间及其权威性,来了解作者对本课题研究的程度,进而评价论文的水平和结论的可信度,由此可见文献的重要性,本文精选了50个"农学毕业论文参考文献";,含中英文文献,供广大学子参考。
农学毕业论文参考文献范例一:汤文光, 肖小平, 唐海明, 等. 不同种植模式对南方丘陵旱地土壤水分利用与作物周年生产力的影响. 中国农业科学, 2014, 47(18): 3606-3617.【2】刘星, 张书乐, 刘国锋, 等. 连作对甘肃中部沿黄灌区马铃薯干物质积累和分配的影响. 作物学报, 2014, 40(7): 1274-1285.Qiu S J, He P, Zhao S C, et al. Impact of nitrogen rate on maize yield and nitrogen use efficiencies Northeast China. Agronomy Journal, 2015, 107(1): 305.Chuan L M, He P, Zhao T K, et al. Agronomic characteristics rrelated to grain yield and nutrient use efficiency for wheat production in China. Plos One, 2016, 11(9): e0162802.李书田, 金继运. 中国不同区域农田养分输入、输出与平衡. 中国农业科学, 2011, 44(20): 4207-4229.陈庆瑞, 赵秉强, 等. 四川省作物专用复混肥料农艺配方. 北京: 中国农业出版社, 2014.陈印军, 肖碧林, 方琳娜, 等. 中国耕地质量状况分析. 中国农业科学, 2011, 44(17): 3557-3564.西奥多-舒尔茨.改造传统农业.北京:商务印书馆,1987陈春霞.农业现代化的内涵及其拓展.生产力研究,2010(01):54-56+267程绍铂,杨桂山,李大伟.长三角典型农业区农业现代化水平分区研究以江苏省兴化市为例.地域研究与开发,2011,30(04):149-152+157迟清涛.中国农业现代化发展研究.吉林农业大学,2015崔凯. 粮食主产区农业现代化评价指标体系的构建与测算研究.中国农业科学院,2011.丁志伟,张改素,康江江,翟伟萍.中原经济区农业现代化的状态评价与定位推进.农业现代化研究,2015,36(05):760-766傅晨.广东省农业现代化发展水平评价.农业经济问题,2010(5):26-33+110高芸,蒋和平.我国农业现代化发展水平评价研究综述.农业现代化研究,2016,37(03):409-415郭强,李荣喜.农业现代化发展水平评价体系研究.西南交通大学学报报,2003(01):97-101Shibayama M Akiyama T. 1986.Aspectroradiometer for field use.Radiometric estimation of nitrogen levels in field rice canopies. 55(4): 439-445.柯炳生.对推进我国基本实现农业现代化的几点认识.中国农村经济,2000(09):4-8何传启.农业现代化的事实原理和选择中国科学院中国现代化研究中心.科学与现代化).北京:2012:11李黎明,袁兰.我国的农业现代化评价指标体系.华南农业大学学报(社会科学版),2004(02):20-24李进平.河南省农业现代化评价与发展对策研究.华中师范大学,2015李林杰,郭彦锋.对完善我国农业现代化评价指标体系的思考.统计与决,2005(13):34-36Geary B, Clark J, Hopkins B G, et al. Deficient, adequate and excess nitrogen levels established inhydroponics for biotic and abiotic stress-interaction studies in potato. Journal of Plant Nutrition, 2014,38(1): 41-50.Alva A, Fan M S, Qing C, et al. Improving nutrient-use efficiency in Chinese potato production experiences from the United States. Journal of Crop Improvement, 2011, 25(1): 46-85.吕文广.甘肃农业现代化进程测度及特色农业发展路径选择研究.兰州大学,2010.农学毕业论文参考文献范例二:蒋和平.中国农业现代化发展水平的定量综合评价(世界银行、联合国环境计划署."全球农业科技与发展评估";国际会议论文集).北京.世界银行、联合国环境计划署:中国农业技术经济研究会,2005:10蒋和平.蒋和平:发展中国现代农业要稳定小农与发展大农并举.江苏农村经济,2012(01):21孔祥智,毛飞.农业现代化的内涵、主体及推进策略分析.农业经济与管理,2013(02):9-15李芳远.新型城镇化引领下的河南省农业现代化发展研究.郑州大学,2015李燕凌,汤庆熹.我国现代农业发展现状及其战略对策研究.农业现代化研究,2009,30(06):641-645李周,蔡昉,金和辉,张元红,杜志雄.论我国农业由传统方式向现代方式的转化.经济研究,1990(06):39-50刘巽浩.论中国农业现代化与持续化.农业现代化研究,1998(5):17-21刘晓越.农业现代化评价指标体系.中国统计,2004(2):11-13+10Broge N H, Leblanc E.2003paring prediction power and stability of broadband and hype rspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density.Remote Sensing Of Enviro nment, 76(2):156-172.潘世磊.粮食主产区农业现代化发展研究.重庆工商大学,2016沈琦,胡资骏.我国农业现代化评价指标体系的优化模型基于聚类和因子分析法.农业经济,2012(05):3-5.孙纲.黑龙江县域农业现代化路径选择研究.东北林业大学,2016王宝义.中国农业生态化发展的评价分析与对策选择.山东农业大学,2018Everitt J H, Pettit R D Alaniz M A.1987. Remote sensing of room snake weed(Gutierrezia sarothrae)and spiny aster(Aster spinosus).Weed Sei, 35(2):295-302.许志发.福建省农业现代化发展水平评价研究.福建农林大学,2017宣杏云.国外农业现代化的模式及其借鉴.江苏农村经济,2006(05):16-17朱剑峰,朱媛媛.安徽省农业现代化水平区域差异与发展模式研究.中国农业资源与区划,2013,34(04):120-124辛岭,蒋和平.我国农业现代化发展水平评价指标体系的构建和测算.农业现代化研究,2010,31(06):646-650杨秀艳.农业现代化指标体系与评价方法研究.西北农林科技大学,2004伊霞.山东省农业现代化发展水平评价.辽宁大学,2017Pinter P J, Jackson R D, Idso S B. 1983.Diurnal Patterns of Wheat Spectral Reflectances. Jackso Remote Sensing, 21(2): 156-163.赵文英,付仁玲,何佳琪,李瑞敏.我国各省农业现代化发展水平综合评价.中国农机化学报,2018,39(12):94-100张宝丹.山东省农业现代化发展研究.山东大学,2018张成龙.广西农业现代化发展水平研究.广西大学,2014张航,李标.中国省域农业现代化水平的综合评价研究.农村经济2016,(04):53-57。
园艺毕业论文文献综述引言:园艺学作为农学的一个重要分支,致力于研究植物的种植、栽培和园艺产品的生产。
本文旨在对园艺领域相关文献进行综述,探讨当前的研究热点和趋势,为后续的毕业论文撰写提供参考。
一、园艺种植与栽培技术1. 蔬菜类园艺作物的种植与管理研究近年来,随着人口的增加和生活水平的提高,各类蔬菜的种植和收购成为园艺领域的研究热点。
本文综述了蔬菜类园艺作物的品种选择、施肥、病虫害防治等方面的最新研究成果,以及优化栽培方法和提高产量的技术。
2. 花卉类园艺作物的生长和开花控制提高花卉鲜切花保鲜期和调控开花时间对于花卉行业的发展都起着至关重要的作用。
本文综述了花卉类园艺作物生长和开花控制的研究进展,包括适宜的温度、光照和水分条件,以及植物激素对开花时间的影响等方面的研究成果。
二、园艺产品品质和营养价值研究1. 果树类园艺作物的品质研究果树类园艺作物作为一种重要的经济作物,其品质和营养价值对于消费者的购买和健康都有着重要的影响。
本文综述了果树类园艺作物的品质评价和营养成分研究的最新进展,包括果实的色泽、口感、甜度等品质指标的测定方法和影响因素。
2. 蔬菜类园艺作物的营养价值研究随着人们对健康饮食的重视,蔬菜类园艺作物的营养价值研究也日益受到关注。
本文综述了蔬菜类园艺作物中重要营养成分(如维生素、矿物质等)的含量分析方法和变化规律的研究进展,并对蔬菜品种选择和种植技术进行了讨论。
三、园艺病虫害防治技术1. 农药在园艺病虫害防治中的应用研究农药在园艺病虫害防治中起着重要的作用,但也存在一定的安全隐患和环境问题。
本文综述了农药在园艺病虫害防治中的应用研究进展,包括新型农药的合成与应用、农药残留的监测和处理技术等方面。
2. 生物防治技术在园艺病虫害防治中的应用研究生物防治技术因其环境友好性和对人体健康的安全性受到越来越多的关注。
本文综述了生物防治技术在园艺病虫害防治中的应用研究进展,包括利用益生菌和植病互作机制对园艺病害进行防治等方面的研究。
农学考研资料随着我国农业现代化进程的加快和人民生活水平的提高,农业科学研究的重要性日益凸显。
因此,越来越多的人选择考取农学研究生,以期更深入地了解农业科技的发展和应用。
本文将介绍一些农学考研的相关资料,以帮助考生更好地备考。
一、教材1.《植物生理学》(第三版)该教材由中国农业大学植物生理学教研室编写,全面介绍了植物生理学的基本理论和实验方法,内容涵盖了植物生长发育、营养代谢、激素调控、环境适应等方面。
该教材语言简练,图文并茂,适合初学者和进阶者阅读。
2.《农业昆虫学》(第三版)该教材由中国农业大学昆虫学教研室编写,介绍了昆虫的生态学、分类学、解剖学、生理学、生态学、行为学等方面的知识。
该教材重点介绍了农业昆虫的分类、生活习性、危害和防治等内容,是农学考研必备的教材之一。
3.《作物学》(第二版)该教材由中国农业大学作物学教研室编写,系统介绍了作物分类、生长发育、生理生态、栽培技术、品质形成等方面的知识。
该教材重点介绍了小麦、水稻、玉米、大豆、棉花等主要作物的生长发育、生理生态、品质形成等内容,是农学考研必备的教材之一。
二、参考书1.《农业生态学》该参考书由中国农业大学农业生态系编写,介绍了农业生态学的基本概念、原理和应用,内容涵盖了农业生态系统、生物多样性、土壤生态学、农业环境污染与防治等方面。
该参考书注重理论与实践相结合,适合农学考研研究生和科研人员阅读。
2.《农业气象学》该参考书由中国农业大学气象学系编写,介绍了农业气象学的基本理论和应用,内容涵盖了气象要素、气候变化、气象灾害、气象预测等方面。
该参考书侧重于气象与农业的关系,注重理论与实践相结合,适合农学考研研究生和科研人员阅读。
3.《农业遗传学》该参考书由中国农业大学遗传学系编写,介绍了农业遗传学的基本理论和应用,内容涵盖了基因、染色体、基因组、遗传变异、遗传改良等方面。
该参考书注重理论与实践相结合,适合农学考研研究生和科研人员阅读。
三、期刊1.《中国农业科学》该期刊是由中国农业科学院主办的综合性农业科技期刊,内容涵盖了作物、畜牧、兽医、渔业、农业经济等方面。
农学毕业论文文献综述引言农业是人类社会生存和发展的基础产业,与农业相关的研究也逐渐受到广泛关注。
本文将对农学领域的相关文献进行综述,以便为农学毕业论文提供参考和借鉴。
一、农业生产技术农业生产技术是提高农作物产量、改善品质以及保障食品安全的重要手段。
文献综述显示,目前农业生产技术的主要研究方向包括水稻种植、果树栽培、农业机械化、气候变化对农业影响等。
例如,研究表明利用科学的水稻种植管理方式,可以显著提高水稻产量,并改善土壤环境。
此外,农业机械化也被广泛应用于现代农业生产,通过引入先进的农业机械设备,可以提高农作物种植的效率和质量。
二、新型农业模式随着科技的不断进步和社会的发展,新型农业模式逐渐成为农学研究的热点。
相关文献显示,新型农业模式主要包括有机农业、精准农业和农业生态系统。
有机农业主要强调环境友好和可持续发展,通过减少农药和化肥的使用,保护土壤和水资源;精准农业则通过利用现代科技手段,如全球定位系统和遥感技术,实现农业生产的精确管理;而农业生态系统则强调生物多样性的保护和农业与环境的协调发展。
三、农业可持续发展农业可持续发展是解决当前农业发展面临的问题的有效途径,也是全球农学界关注的重点。
通过对文献的综述,可以发现农业可持续发展的主要研究内容包括节水农业、农业废弃物处理和农村发展等方面。
研究表明,节水农业可以有效减少农业灌溉对水资源的需求,并提高水资源利用效率。
另外,合理处理农业废弃物,如农作物秸秆和动物粪便,可以减少环境污染,并有效利用农业资源。
此外,农村发展也是农学界关注的重要内容,通过提高农村民众的生活水平和农民的工作环境,可以促进农村地区的可持续发展。
结论综上所述,农学领域的研究包括农业生产技术、新型农业模式和农业可持续发展等多个方面。
通过文献综述可以了解到农业生产技术的最新研究进展,掌握新型农业模式的理论与实践经验,并深入了解农业可持续发展的思路和方法。
因此,在撰写农学毕业论文时,可以借鉴相关文献的研究成果,提高论文的专业性和学术价值,为农学领域的发展和农业的可持续发展作出贡献。
中華農學會報引用文獻撰寫格式要點(附件1)一、以確經引用者為限。
二、中日文者以姓氏筆畫多少為序,英(歐) 文者以姓氏之字母先後排列。
並按中文、日文、英(歐) 文之次序排列。
如同一人有數篇時,應按發表年次之先後排列。
如同一人於同一年代有數篇時,應按a 、b 、c排列。
三、英(歐) 文雜誌名稱能縮寫者請用縮寫,縮寫方法以學術界通用為準。
可參考International Standard IS0 4-1984(E)。
四、正文中引用參考文獻時,以括號明作者姓氏及發表年份,或作者之後以括號註明年份。
例(Smith,1985),Smith (1985),(林與張,1960),(Smith and Kline,1968),(Smith,1985;Wang and Lin,1992)。
作者若超過三人(含三人),英(歐) 艾採用(Smith et al.,1990),中文採用(陳等,1989)。
五、參考文獻若為期刊上之論文,可依下列次序書寫:作者姓名,出版年,論文篇名,期刊名稱,卷(期) 號,頁數。
例如:1.Cram, W. E. 1924. The red squirre1. J. Mammalogy 5(1):37-41.2.Taiganides, E. P. and T. E. Haze. 1966. Properties of farm animal excreta.Transactions of the ASAE 9(3):374-376.3.Powers, J. B., J. T. Gum and F. C. Jacob. 1953. Electronic color sorting of fruitsand vegetables. Agric. Eng. 34(3):149-154,158.4.連振昌、林正亮、黃清旺。
1998。
青割玉米青貯方包裝填機初期研製。
農業工程學報44(2):87-95。
5.郭俊華、葉仲基。
Update on Legume UtilizationLegumes:Importance and Constraints to Greater UsePeter H.Graham*and Carroll P.VanceDepartment of Soil,Water,and Climate(P.H.G.)and United States Department of Agriculture,Agricultural Research Service,Plant Science Research Unit,Department of Agronomy and Plant Genetics(C.P.V.), University of Minnesota,1991Upper Buford Circle,St.Paul,Minnesota55108Legumes,broadly defined by their unusual flower structure,podded fruit,and the ability of88%of the species examined to date to form nodules with rhi-zobia(de Faria et al.,1989),are second only to the Graminiae in their importance to humans.The670to 750genera and18,000to19,000species of legumes (Polhill et al.,1981)include important grain,pasture, and agroforestry species.Cohen(1977;cited by Bryan [2000])reported domestication of lentils(Lens escu-lenta)at a site in Iran dating to9,500to8,000BP; Roosevelt et al.(1996)noted the use of Hymenaea as a food source in Amazonian prehistory.Bean(Phaseo-lus vulgaris)and soybean(Glycine max),staple crops in the Americas and Asia,respectively,were each domesticated more than3,000years ago(Hymowitz and Singh,1987;Kaplan and Lynch,1999).Use of legumes in pastures and for soil improvement dates back to the Romans,with Varro(37BC;cited by Fred et al.[1932])noting“Legumes should be planted in light soils,not so much for their own crops as for the good they do to subsequent crops.”This paper briefly overviews the legumes and their importance in different agricultural and natural environments.GRAIN AND PASTURE PRODUCTIONGrain and forage legumes are grown on some180 million Ha,or12%to15%of the Earth’s arable sur-face(Table I).They account for27%of the world’s primary crop production,with grain legumes alone contributing33%of the dietary protein nitrogen(N) needs of humans(Vance et al.,2000).Under subsis-tence conditions,the percentage of legume protein N in the diet can reach twice this figure.In rank order, bean,pea(Pisum sativum),chickpea(Cicer arietinum), broad bean(Vicia faba),pigeon pea(Cajanus cajan), cowpea(Vigna unguiculata),and lentil constitute the primary dietary legumes(National Academy of Sci-ence,1994).Legumes(predominantly soybean and peanut[Arachis hypogeae])provide more than35%of the world’s processed vegetable oil(Table II),and soybean and peanut are also rich sources of dietary protein for the chicken and pork industries.The po-tential of legume crops is evident in the huge increase in soybean production in Brazil,with national mean yields increased from1,166kg haϪ1in1968to1969to 2,567kg haϪ1in2001to2002(M.Hungria,personal communication).This followed selection for later ma-turity,aluminum tolerance,and calcium-use efficiency (Spehar,1995).In the same crop,the controversy over molecular engineering,with some countries refusing to grow transgenic soybean illustrates the need for balance in future breeding activities. Unfortunately,improvement in legume crop yields have not kept pace with those of cereals.Jeuffroy and Ney(1997)note that wheat(Triticum aestivum)yields in France increased120kg haϪ1yearϪ1between1981 and1996;those for pea increased only75kg haϪ1 yearϪ1over the same period.The situation is worse in the developing countries where Oram and Agcao-ili(1992)note that pea yields are only45%,and faba bean and chickpea are only75%,of those achieved in developed countries.In part,this difference is due to the unfavorable environmental conditions under which many legume species are grown.Legumes are often grown after corn or rice and are seeded toward the end of the growing season.They may have short growing seasons and may be subject to intermittent or terminal drought.Progressive soil chemical and physical degradation and acid soil conditions may also limit their productivity.Drought problems for legumes are likely to worsen with the projected rapid expansion of water-stressed areas of the world from28to30countries today to50 countries encompassing3billion people by2030 (Postel,2000).There is a crucial need to increase drought tolerance in legumes;increasing salinity tol-erance is a parallel requirement in many areas.The more drought-tolerant legumes,such as cowpea,are deeply rooted and may have reduced leaf size with thickened cuticles to reduce water loss.Less tolerant legumes such as beans can be selected for early ma-turity,efficiency in the partitioning of nutrients to-ward reproductive structures,and phenotypic plas-ticity(Beaver et al.,2003).Pinto Villa,now grown over90%of the pinto bean area in Mexico,has these characteristics.Nutrient depletion of soil is a particular problem for small landholders in developing countries,where much grain-legume production occurs,and many farmers cannot afford to use fertilizers.Sanchez (2002)suggests average annual nutrient depletion rates across37African countries of22kg N haϪ1,2.5 kg P haϪ1,and15kg K haϪ1.Soil acidity affects more*Corresponding author;e-mail pgraham@;fax 612–625–2208./cgi/doi/10.1104/pp.017004.than1.5billion ha worldwide,with acid soil con-straints to legume production likely to increase as the result of acid rain,long-term N fertilization,and natural weathering(Graham and Vance,2000).H ion concentration per se,Al and Mn toxicity,and P,Mo, or Ca deficiency all contribute to the problem(Gra-ham,1992).Nodulation and N fixation and survival of rhizobia in soil are particularly affected under low P,acid soil conditions and will be considered in more detail later in this paper.Diseases and pests are also major constraints to legume production,especially in the tropics and sub-tropics.In common bean,for example,important pathogens include several viruses,fungi-causing root rots,anthracnose,angular leaf spot,bean rust,white mold and web blight,and the bacteria responsible for common bacterial blight and halo blight(Coyne et al.,2003).In Minnesota alone,losses due to root rot are estimated at$4million annually.A number of these pathogens are seed transmitted;others can be carried by insects.Limiting crop losses requires an integrated approach that may include certified seed programs,fallow periods to reduce vector popula-tions,plowing to bury infected plant tissue,biologi-cal control of root disease,chemical application,and resistance breeding(Beaver et al.,2003;Coyne et al., 2003).Molecular markers have permitted rapid progress in disease resistance breeding in beans (Kelly et al.,2003),but many of the measures sug-gested above are beyond the resources of the subsis-tence farmer,which is another reason why legume yields in third-world countries are low.Use of legumes in the human diet can also be problematic.Legume seeds generally contain20%to 30%protein and are Lys rich,complementing the nutritional profiles of cereals and tubers in the diet (Duranti and Gius,1997).However,legumes are lim-ited in sulfur amino acids,contain antinutritional factors including lectins and flatulence factors,and are commonly hard to cook.Preference for particular grain types or seed color also affects marketability. Forage legumes have been the foundation for dairy and meat production for centuries(Russelle,2001). When properly managed,they are rich sources of protein,fiber,and energy.Even in intensive animal and milk production,where grain crops are major feed sources,forage legumes are required to main-tain animal health(Wattiaux and Howard,2001). Meat and dairy production in developing countries is almost solely dependent upon forage legumes and grasses.Alfalfa(Medicago sativa)is the prevalent for-age legume in temperate climates(Russelle,2001), with more than72million Mg of alfalfa worth$7 billion produced annually in the U.S.alone.Alfalfa is the third or fourth most valuable crop in the U.S. (U.S.Department of Agriculture,National Agricul-tural Statistics Service,: 81/ipedb/hay.htm).Other important temperate pas-ture species include clovers(Trifolium spp.),trefoil (Lotus corniculatus),sweetclovers(Melilotus spp.),and vetches(Vicia spp.).Inclusion of legumes is critical for sustainable meat and dairy production on the infertile savannah soils of the tropics and subtropics(Consultative Group on International Agricultural Research,http://www. /research/res_cattle.html).Incorporation of improved legumes into these ecosystems has lagged due to lack of information,seed costs,and poor in-frastructure.Species from the genera Aeschynomene, Arachis,Centrosema,Desmodium,Macroptilium,and Stylosanthes offer promise for improved tropical pas-ture systems(Thomas and Sumberg,1995;Giller, 2001).Of these,Stylosanthes spp.with some30species distributed throughout the tropics(de Leeuw et al., 1994),has been most widely adopted,with Stylosan-thes guyanensis and Stylosanthes hamata now grown as improved pasture in Australia,China,Latin America, and West Africa.Presently underutilized crop and pasture legumes could still dizinsky and Smartt(2000)ad-dress opportunities for improved adaptation via fur-ther domestication.More exotic examples include marama bean(Tylosema esculentum;Dakora et al., 1999),sword beans(Canavalia gladiata;Ekanayake et al.,2000),and Desmanthus illinoensis among grain crops,and annual medics and Biserrula pelecinus among pasture species(Howieson et al.,1995,2000).Table I.Crop production and area harvestedSource:Food and Agriculture Organization of the United Nations(FAO)database(/page/collections).Crop Production Area HarvestedMtϫ106haϫ106Grain legumes275160Forage legumes60520Wheat583214Rice(Oryza sativa)590152Maize(Zea mays)609138Barley(Hordeum vulgare)14154Potatoes(Solanum tuberosum)30819Cassava(Manihot esculenta Crantz.)17920Total3,320777Table II.Major crops oil productionSource:FAO Database(/page/collections).Crop Oil ProductionMtϫ106Soybean26.8Peanut 5.3Palm23.9Canola(Brassica napus)12.6Sunflower(Helianthus annuus)9.1Cotton(Gossypium hirsutum) 4.1Olive 2.7Coconut(Cocos nucifera) 3.6Maize 2.0Total90.1Legumes:Importance and Constraints to Greater UseAgain,germplasm collection and evaluation must continue to be a research emphasis.AGROFORESTRYSprent and Parsons(2000)discuss the importance of woody tree legumes in forestry.Important genera include Acacia,Anadenathera,Calliandra,Dalbergia, Erythrina,Gliricidia,Melanoxylon,Parkea,Prosopis, Pterocarpus,and Samanea.Values for the percentage of plant N derived from fixation in such species listed by Giller(2001)range from2%to100%but need to be treated with caution.J.Grossman(personal commu-nication)suggests that Inga oerstediana,widely used in southern Mexico as a shade tree with coffee,may not even be capable of establishing an effective symbiosis.Food security issues,pressure on the land,and increasing soil degradation(Franzluebbers et al., 1998;Cassman,1999;Sanchez,2002)have led to in-creasing research interest in tree-fallow and alley-cropping systems for subsistence farmers in Africa and Asia.These are reviewed by Buresh et al.(1997) and by Buresh and Cooper(1999).In tree fallows, Sesbania spp.,Leucaena spp.,Tephrosia spp.,Crotalaria spp.,Glyricidia spp.,or Cajanus spp.are interplanted into corn,and allowed to grow as dry-season or longer-term fallows.The wood is harvested,and the N-rich leaves,pods,and green stem material are hoed into the soil just before the rainy season (Sanchez,1999).Gathumbi et al.(2002)reported aboveground biomass production in a6-month pe-riod of8to15Mg haϪ1,with total N accumulation of 100to178kg haϪ1.Significant crop yield increases in the season after tree fallow have been reported.Le-gume tree fodder with high levels of crude protein and minerals,and in some cases,good digestibility is readily accepted by livestock.Fertilization with rock phosphate is often needed to improve the N benefits from tree fallows.Alley cropping,with crops grown between hedg-erows,and tree prunings used as mulch or green manure can also provide significant N to the inter-spersed crop.In Costa Rica,Phaseolus spp.beans grown between Erythrina poeppigiana rows and sup-plied prunings from these trees yielded15%to50% more than beans grown in monoculture(Henriksen et al.,2002).Sesbania sp.has been used similarly for alley cropping in rice.Nevertheless,Giller(2001) points to problems with this system,including com-petition for moisture between trees and crop plants, and declining yield benefits over time on infertile or acid soils.The increased role for N-fixing legumes under sub-sistence conditions has recently been recognized with the award of the2002World Food Prize to Dr.Pedro Sanchez,former director-general of the International Center for Research in Agroforestry.NATURAL ECOSYSTEMSN is the primary nutrient limiting plant production in most natural ecosystems(Seastedt and Knapp, 1993;Vitousek et al.,1997).Legumes,through their symbiotic abilities,can play an important role in colonizing disturbed ecosystems,including those that are fire prone(Arianoutsou and Thanos,1996). Rates of N2fixation in such environments are often low,but can still satisfy much of the legume’s N needs.B.Tlusty and P.H.Graham(personal commu-nication)found the percentage of plant N derived from fixation values for five legumes in a seeded and inoculated long-grass prairie to range from36%to almost100%.Spehn et al.(2002)examined plant spe-cies and functional groupings among grassland com-munities in seven countries in Europe.Two years after sowing,the presence of legumes affected N pool size in five of the seven sites.Such a build-up in soil N is probably not open ended,because Pearson and Vitousek(2001)noted a10-to20-fold decline in nodule mass and N fixation between6-and20-year-old regenerating stands of Acacia koa.A model devel-oped by Vitousek and Field(1999)associated reduc-tion in N2fixation with shade,P limitation,and grazing.Atmospheric CO2enrichment and N deposition, each a major ecological concern,are likely to have opposing effects in natural ecosystems.Hardy and Havelka(1976)showed N2fixation enhanced under CO2enrichment,and both legume biomass and fre-quency were enhanced in free-air CO2enrichment studies(Reich et al.,2001;Teyssonneyre et al.,2002). Total N in Lespedeza capitata and Lupinus perrenis increased58.3%and32.0%,respectively at560mol molϪ1CO2(Reich et al.,2001).In contrast,C3and C4 grasses were responsive to N deposition,whereas legumes showing little response.Influence of N on legume/grass balance in pastures is well docu-mented.In a model developed by Thornley et al. (1995),the legume fraction in pasture declined from 18%to1%as N supply was increased.INDUSTRIAL AND MEDICINAL USE OF LEGUMES In addition to traditional food and forage uses, legumes can be milled into flour,used to make bread, doughnuts,tortillas,chips,spreads,and extruded snacks(R.Phillips personal communication)or used in liquid form to produce milks,yogurt,and infant formula(Garcia et al.,1998).Pop beans(Popenoe et al.,1989),licorice(Glycyrrhiza glabra;Kindscher, 1992),and soybean candy(Genta et al.,2002)provide novel uses for specific legumes.Legumes have been used industrially to prepare biodegradable plastics(Paetau et al.,1994),oils, gums,dyes,and inks(Morris,1997).Galactomannan gums derived from Cyamopsis spp.and Sesbania spp. are used in sizing textiles and paper,as a thickener, and in pill formulation.Graham and VanceMany legumes have been used in folk medicine (Duke,1992;Kindscher,1992).Isoflavones from soy-beans and other legumes have more recently been suggested both to reduce the risks of cancer and to lower serum cholesterol(Kennedy,1995;Molteni et al.,1995).Soybean and soyfood phytoestrogens have been suggested as possible alternatives to hormone replacement therapy for postmenopausal women. Several U.S.cities and states now require that fleet vehicles be powered in part by biodiesel fuel from soybean.Some states require that biodiesel be in-cluded at a fixed percentage in all diesel fuels ().BIOLOGICAL N FIXATIONA hallmark trait of legumes is their ability to de-velop root nodules and to fix N2in symbiosis with compatible rhizobia.This is often a critical factor in their suitability for the uses outlined above. Formation of symbiotically effective root nodules involves signaling between host and microsymbiont. Flavonoids and/or isoflavonoids released from the root of the legume host induce transcription of nod-ulation genes in compatible rhizobia,leading to the formation of lipochitooligosaccharide molecules that, in turn,signal the host plant to begin nodule forma-tion(Long,1996).Numerous changes occur in host and bacterial gene expression during infection,nod-ule development,and function(Vance,2002),with approximately100host legume and rhizobial genes involved.Some40to60million metric tons(Mt)of N2are fixed by agriculturally important legumes annually, with another3to5million Mt fixed by legumes in natural ecosystems(Smil,1999).This is amazing ef-ficiency given the miniscule quantities of nitrogenase involved(Delwiche,1970).Why is symbiotic N fixation in legumes so impor-tant?In addition to its role as a source of protein N in the diet,N from legume fixation is essentially“free”N for use by the host plant or by associated or subsequent crops.Replacing it with fertilizer N would cost$7to10billion annually,whereas even modest use of alfalfa in rotation with corn could save farmers in the U.S.$200to300million(Peterson and Russelle,1991).Furthermore,fertilizer N is fre-quently unavailable to subsistence farmers,leaving them dependent on N2fixation by legumes or other N2-fixing organisms.One of the driving forces behind agricultural sus-tainability is effective management of N in the envi-ronment(Graham and Vance,2000).Application of fertilizer N increased approximately10-fold to90 million Mt between1950and1995(Frink et al.,1999) with significant energy consumption for N fertilizer synthesis and application.Further increases in N needs for agriculture are projected for the period to 2030(Tilman,1999),and these needs will contribute to environmental pollution.To the extent that farm-ing practices can make use of the more economically viable and environmentally prudent N2fixation(Peo-ples et al.,1995;Vance,2001),agriculture and the environment will benefit.The ability of legumes to sequester C has also been seen as a means to offset increases in atmospheric CO2levels while enhancing soil quality and tilth.Resh et al.(2002)found that soils under N2-fixing trees sequestered0.11Ϯ0.07kg m2yearϪ1of soil organic carbon,whereas there was no change under Eucalyptus spp.Carbon sequestra-tion under Prosopis spp.has also been reported. Giller(2001)suggests that rates of N2fixation of1 to2kg N haϪ1growing season dayϪ1should be possible in all legumes.Rates reported by Unkovich and Pate(2000)and van Kessel and Hartley(2000) are clearly less than this,with the latter authors re-porting a decline in average N2fixation rate for both soybean and beans over the period since1985.Con-straints to N2fixation include drought(Sinclair et al., 1987),soil acidity,N fertilization,and nutrient limi-tations.Many cultivars also show only limited ability to fix N2in symbiosis.Management of soil acidity for temperate and trop-ical regions has often differed but increasingly de-pends on acid-tolerant legume cultivars and rhizobia (Howieson et al.,2000),with soil liming only to a pH at which Al and Mn are no longer toxic.Acid soil management was of critical importance in opening the Brasilian Cerrado to agriculture,but it was ser-endipitous that the acid-tolerant Rhizobium tropici could replace other less tolerant bean rhizobia(Hun-gria et al.,1997).Identification of additional acid-tolerant host and rhizobial germplasm and the de-ployment of acid tolerance genes such as occur in R. tropici CIAT899(Graham et al.,1982)are priority areas.Maximum benefits from N2fixation depend on soil P availability(Kennedy and Cocking,1997),with 33%of the world’s arable land limited in P(Sanchez and Euhara,1980).Acid-weathered soils of the trop-ics and subtropics are particularly prone to P defi-ciency.Even where P fertilization is adequate,Ͻ15% of that P may be taken up by plants in the first year (Holford,1998).Perhaps of greater concern,reserves of rock phosphate could be depleted in only60to90 years(Abelson,1999).Plants dependent on symbiotic N2fixation have ATP requirements for nodule development and func-tion(Ribet and Drevon,1996)and need additional P for signal transduction and membrane biosynthesis. Phosphorus concentrations in the nodule are often significantly higher than those in shoot or root tissue (Israel,1987).Al-Niemi et al.(1997)suggest that bac-teroids can be P limited even when plants have re-ceived otherwise adequate P levels.Given this re-quirement for symbiosis,approaches leading to improved P acquisition and use in legumes(rhizo-sphere acidification,acid phosphatase secretion,root Legumes:Importance and Constraints to Greater Usearchitectural changes at low P,enhanced P transport and use-efficiency,and functional differences in my-corrhizal symbioses)all need further study.White lupine(Lupinus albus)and common bean are excel-lent model legumes for such studies.Each undergoes change in root architecture and rhizosphere chemis-try at low P(Johnson et al.,1996;Nielsen et al.,1998; Miller et al.,2001),improving soil exploration and phosphate scavenging.Transgenic alfalfa has proved extremely useful in understanding the genetic and molecular basis of low soil P,acid,and aluminum stress responses(Tesfaye et al.,2001).Results in this study highlight the need for more effective transfor-mation and regeneration protocols in the more recal-citrant legumes,including bean and cowpea. Progress in the study of nodulation and N2fixation under drought or salinity stress has been minimal, largely because the legume and the process of nod-ulation are more susceptible to these constraints than is the microorganism.SYNOPSISLegumes play a critical role in natural ecosystems, agriculture,and agroforestry,where their ability to fix N in symbiosis makes them excellent colonizers of low-N environments,and economic and environ-mentally friendly crop,pasture,and tree species.Le-gume yields unfortunately continue to lag behind those of cereals.A research orientation that better balances the needs of third-world or sustainability-oriented agriculture with the breakthrough technol-ogies of genomics and bioinformatics is needed.It requires stronger and more adventurous breeding programs,better use of marker-assisted technologies, and emphasis on disease resistance,enhanced N fix-ation,and tolerance to edaphic soil constraints.It also requires extension of existing low-cost technologies, such as rhizobial inoculation,to the small farmer.To paraphrase a comment by Catroux et al.(2001)“we enter the era of biotechnology knowing more and more about the growth of legumes at the gene level, but except for some producers in developed coun-tries,unable to effectively translate these into major gains in productivity.”Received November1,2002;returned for revision November29,2002; accepted December12,2002.LITERATURE CITEDAbelson PH(1999)A potential phosphate crisis.Science283:2015Al-Niemi TS,Kahn ML,McDermott TR(1997)P metabolism in the bean Rhizobium tropici symbiosis.Plant Physiol113:1233–1242Arianoutsou M,Thanos CA(1996)Legumes in the fire-prone Mediterra-nean regions:an example from Greece.Int J Wildland Fire6:77–82 Beaver JS,Rosas JC,Myers J,Acosta J,Kelly JD,Nchimbi-Msolla S, Misangu R,Bokosi J,Temple S,Arnaud-Santana E et al.(2003)Contri-butions of the bean/cowpea CRSP program to cultivar and germplasm development in common bean.Field Crops Res(in press)Bryan JA(2000)Nitrogen-fixing trees and shrubs:a basic resource of agro-forestry.In MS Ashton,F Montagnini,eds,The Silvicultural Basis for Agroforestry Systems.CRC Press,Baton Rouge,LA,pp41–60Buresh RJ,Cooper PJM(1999)The science and practice of short-term improved fallows.Agrofor Syst47:1–356Buresh RJ,Sanchez PA,Calhoun F(1997)Replenishing Soil Fertility in Africa.Special Publication51,Soil Science Society of America, Madison,WICassman KG(1999)Ecological intensification of cereal production systems: yield potential,soil quality and precision agriculture.Proc Natl Acad Sci USA96:5952–5959Catroux G,Hartmann A,Revellin C(2001)Trends in rhizobial inoculant production and use.Plant Soil230:21–30Cohen MN(1977)The Food Crisis in Prehistory:Overpopulation and the Origins of Agriculture.Yale University Press,New Haven,CTCoyne DP,Steadman JR,Godoy-Lutz G,Gilbertson R,Arnaud-Santana EA,Beaver JS,Myers JR(2003)Contributions of the bean/cowpea CRSP to the management of bean diseases.Field Crops Res(in press) Dakora FD,Lawlor DW,Sibuga KP(1999)Assessment of symbiotic nitro-gen nutrition in marama bean(Tylosema esculenta L.)a tuber-producing underutilized African grain legume.Symbiosis27:269–277de Faria SM,Lewis GP,Sprent JI,Sutherland JM(1989)Occurrence of nodulation in the leguminosae.New Phytol111:607–619de Leeuw PN,Mohamed-Saleem MA,Salati E(1994)Stylosanthes as a Forage and Fallow Crop.International Livestock Centre for Africa,Addis Ababa,EthiopiaDelwiche CC(1970)The nitrogen cycle.Sci Am223:136–146Duke JA(1992)Handbook of Legumes of Economic Importance.Plenum Press,New YorkDuranti M,Gius C(1997)Legume seeds:protein content and nutritional value.Field Crops Res53:31–45Ekanayake S,Jansz ER,Nair BM(2000)Literature review of an underuti-lized legume:Canavalia gladiata L.Plant Sources Human Nutr55:305–321 Franzluebbers K,Hossner LR,Juo ASR(1998)Integrated Nutrient Man-agement for Sustained Crop Production in Sub-Saharan Agriculture.A Review.Trop Soils Texas A&M University Technol.Bull98–03.Texas A&M University,College StationFred EB,Baldwin IL,McCoy E(1932)Root nodule bacteria and leguminous plants.University of Wisconsin Press,MadisonFrink CR,Waggoner PE,Ausubel SH(1999)Nitrogen fertilizer:retrospect and prospect.Proc Natl Acad Sci USA96:1175–1180Garcia MC,Marina ML,Laborda F,Torre M(1998)Chemical characteriza-tion of commercial soybean products.Food Chem62:325–331 Gathumbi SM,Ndufa JK,Giller KE,Cadisch G(2002)Do species mixtures increase above-and below-ground resource capture in woody and her-baceous tropical legumes?Agron J94:518–526Genta HD,Genta ML,Alvarez NV,Santana MS(2002)Production and acceptance of a soy candy.J Food Eng53:199–202Giller KE(2001)Nitrogen fixation in tropical cropping systems.CABI Publishing,Wallingford,UKGraham PH(1992)Stress tolerance in Rhizobium and Bradyrhizobium,and nodulation under adverse soil conditions.Can J Microbiol38:475–484 Graham PH,Vance CP(2000)Nitrogen fixation in perspective:an overview of research and extension needs.Field Crops Res65:93–106Graham PH,Viteri SE,Mackie F,Vargas AT,Palacios A(1982)Variation in acid soil tolerance among strains of Rhizobium phaseoli.Field Crops Res5: 121–128Hardy RWF,Havelka UD(1976)Photosynthate as a major factor limiting nitrogen fixation by field-grown legumes with an emphasis on soybeans.In PS Nutman,ed,Symbiotic Nitrogen Fixation in Plants.Cambridge University Press,Cambridge,UK pp421–439Henriksen I,Michelsen A,Schlonvoigt A(2002)Tree species selection and soil tillage in alley cropping systems with Phaseolus vulgaris L.in a humid premontane climate:biomass production,nutrient cycling and crop re-sponses.Plant Soil240:145–159Holford ICR(1998)Soil phosphorus:its measurement and uptake by plants.Aust J Soil Res35:227–239Howieson JG,Loi A,Carr SJ(1995)Biserrula pelecinus L.:a legume pasture species with potential for acid duplex soils which is nodulated by unique root-nodule bacteria.Aust J Agric Res46:997–1009Howieson JG,O’Hara GW,Carr SJ(2000)Changing roles for legumes in Mediterranean agriculture:developments from an Australian perspec-tive.Field Crops Res65:107–122Hungria M,Andrade DD,Colozzi A,Balota EL(1997)Interactions among soil organisms and bean and maize grown in monoculture or inter-cropped.Pesqui Agropecu Bras32:807–818Graham and Vance。