《高数总复习》第二讲
- 格式:ppt
- 大小:529.50 KB
- 文档页数:18
笫二章 一元函数微分学一. 求导数、微分与二阶导数1. 基本求导表重点记住 11()'0,()',()',(ln )',x x C x x e e x xααα-====21(sin )'cos ,(cos )'sin ,(arcsin )'(arctan )'1x x x x x x x ==-==+ 11-3. 设函数21()f x x =, 则'y = A. 31x - B. 32x- C. 31x D. 1x [ ] 【11-3、B 】10-2. 设函数()f x e =, 则'(1)f =A. 2e +B. 1e +C.12 D. 12- [ ] 【10-2、C 】 09-2. 设2sin ln 2y x x =++, 则'y =A. 2sin x x +B. 2cos x x +C. 12cos 2x x ++D. 2x 【09-2、B 】 08-22. 设函数3sin 3y x x =++, 求'y . 【08-22. 32'()'(sin )'3'3cos y x x x x =++=+】 08-3. 设函数ln y x =, 则'y = A.1x B. 1x- C. ln x D. xe [ ] 【08-3. A 】 07-3. 设函数y x =, 则'y =A. 1B. xC. 22x D. 2x [ ] 【07-3. 1】06-3. 巳知()3xf x x e =+,则'(0)f =A.1B. 2C. 3D. 4 [ ] 【06-3. D 】 05-2. 设33y x-=+,则'y 等于A.43x -- B. 23x -- C. 43x - D. 433x --+ [ ]【05-2. A 】04-9. 设函数21y x π=-,则'y = ____________ . 【04-9. 32x 】 03-9. 设函数2arcsin e x y +=,则'y = ____________ . 【03-9.211x-】00-8.设函数xx y 22sin 2++=,则dx dy=______________ . 【00-8. 2ln 22x x +】2.乘除求导法则:2''()''',()'u u v uv uv u v uv vv-=+= 11-22. 设函数1sin x y x+=, 求'y . 【11-22.2(1)'sin (1)(sin )''(sin )x x x x y x +-+=2sin (1)cos sin x x xx-+=】 09-3. 设函数()ln xf x e x =, 则'(1)f =A. 0B. 1C. eD. 2e 【09-3、C 】 08-13. 设函数cos y x x = 则'_______y =. 【08-13. cos sin x x x -】07-13. 设函数ln x y x = 则'_______y = 【07-13. 2ln 1ln x x-】 04-19. 设函数ln y x x =,求'y . 【04-19. 1'ln ln 1y x x x x=+⋅=+】03-10. 设函数x exy =,则)0('f = ____________ . 【03-10. 1】02-10. 设函数x y cos 11+=,则'y =_____________. 【02-10. 2)cos 1(sin x x +】 02-3. 设函数)(),(x v x u 可导,若)()(x v x u y ⋅=,则'y 等于 A. )(')()()('x v x u x v x u + B. )(')()()('x v x u x v x u -C. )()()(')('x v x u x v x u +D. )(')('x v x u [ ] 【02-3. A 】 01-22. 设函数1cos 2-=x xy ,求'y . 【01-22. 2222222)1(cos 2sin )1()1(cos 2)1(sin )'1cos ('----=---⋅-=-=x xx x x x x x x x x x y 】 00-18. 设函数x xxx f ln sin 1)(--=, 求)('πf .【00-18. x x x x x x x x x x x f 1)sin 1(cos sin 11)sin 1()cos (sin 1)(22'--+-=-----=ππππππππ111)sin 1()cos (sin 1)(2'--=-----=f 】3. 复合函数求导法则(简单型)(由外到里逐层处理) 10-3. 设函数()cos 2f x x =, 则'()f x =A. 2sin 2xB. 2sin 2x -C. sin 2xD. sin 2x - [ ]【10-3、B 】06-2. 设函数25xy e=+, 则'y =A. 2xe B. 22xe C. 225xe+ D. 25x e + [ ] 【06-2. B 】05-3. 设()cos 2f x x =, 则'(0)f 等于A. 2-B. 1-C. 0D. 2 [ ] 【05-3. 0】 04-18. 设函数()1sin 2f x x =+,求'(0)f .【04-18. '()0cos 2(2)'2cos 2,f x x x x =+⋅= '(0)2f =】02-10. 设函数xy cos 11+=,则'y =_____________.【02-10. 11,1cos ,,1cos y x u y x u=+==+令则''2211sin '()(1cos )(sin )(1cos )u x xy x x u u x =⋅+=--=+】 00-10.设函数x y arcsin ln =,则'y =________________________.【00-10.xx x arcsin )1(21-】00-2. 下列函数中,在点0=x 处导数等于零的是A. )1(x x y -=B. xex y 2sin 2-+=C. x x y arctan cos -=D. )1ln(x y += [ ] 【00-2. B 】 样题-12. 设函数cos()xy e -=,则'(0)y = ____________ .【样题-12. 00'sin (1)sin ,'(0)sin sin1xx x x y ee e e y e e ------=-⋅⋅-===】样题-23. 设函数(sin 2)f x y e=,其中()f u 可导,求'y .【样题-23. (sin 2)(sin 2)''(sin 2)cos 222cos 2'(sin 2)f x f x y ef x x x e f x =⋅⋅⋅=⋅⋅】(与复合函数记号有关的题型)要点:巳知x x f sin )(=,怎样求出()f x ?(见01-9)t =,解出2x t =,原式为2()sin f t t =,把t 更名为x ,得2()sin f x x =,04-20. 设函数3(cos )1cos f x x =+,求'()f x .【04-20. 33cos ,1cos 1,x t x t =+=+设则332()1,()1,'()3f t t f x x f x x =+=+=所以故则】02-23. 设函数x x g e x f xsin )(,)(==,且)]('[x g f y =,求dxdy. 【02-23. 因为x x g cos )('=,所以xex f y cos )(cos ==,则x e dxdyx sin cos -=】02-11. 设函数x x f ln )2(=,则)('x f =___________. 【02-11. x1】01-9. 设函数x x f sin )(=,则)('x f = ________________ . 【01-9. )cos(22x x 】 样题-13. 设函数211()1f x xx=++,则)('x f = ____________ . 【样题-13. 22311112,,()1,()1,'()1t x f t t f x x f x x t t x x-===++=++=+令得于是】4. 复合函数与四则运算混合型(由外到里逐层处理) 07-22.设函数ln(y x =, 求'y 【07-22. 'y x =+=+】03-18. 设函数x x y +=,求'y .【03-18. xx x x xx xxx x x y ++=++=++=242122112)'('】02-17. 设函数21xx y +=,求'y . 【02-17. 2322222)1(111221'x xx x x y +=++-+=】5. 二阶导数(连续求二次导数)11-14. 设函数sin y x =,则 '''______y =. 【11-14. cos x -】 10-15. 设函数ln(1)y x =+ 则''_______y =. 【10-15.21(1)x -+ 】 09-15. 函数sin y x x = 则''_______y =. 【09-15.2cos sin x x x - 】 08-14. 设函数5y x = 则''_______y =. 【08-14. 320x 】 07-14. 设函数x y e -= 则'''_______y =. 【07-14. xe -】 06-15. 设函数sin 2y x = 则'''_______y =. 【06-15. 4sin 2x -】 05-14. 设函数2x y e = 则''(0)_______y =. 【05-14. 4】 04-21. 设函数11y x=+,求''y . 【04-21. 2332'(1)(1),''(1)(2)(1)(1)y x y x x --=-+=--+=+】03-11. 设函数xex y 22+=,则y 的50阶导数)50(y=___________. 【03-11. xe 2502】02-12. 设函数xxe y =,则)0(''y =___________. 【02-12. 2】 01-8. 设函数x x x f ln )(3=,则)1("f =_____________________ . 【01-8. 5】 00-20. 若 x x y arctan )1(2+=, 求"y . 98-10. 设 a a x n a x a y++=-)2( (其中 )1,0≠>a a , 则 )(n y = ______________ .【98-10. ()(2)[]"()''n n x a a yy a x a -==++=22)1(ln --+a x x a a a a 】【00-20. 1arctan 2)1(1)1(arctan 222'+=+++=x x x x x x y ,2"12arctan 2xx x y ++=】样题-15. 设函数y 的2n -阶导数(2)n x yxe -=, 则()(0)_______n y =【样题-15. ()(2)()[]''()''()'n n x x x yx y xe e xe -===+()2,x x x x x e e xe e xe =++=+()(0)2n y =】6. 变限积分求导(参见第三章相应条款)7. 微分计算(先求导,然后乘上dx :'dy y dx =)11-5. 设函数cos 1y x =+, 则dy = [ ] A. (sin 1)x dx + B. (cos 1)x dx +C. sin xdx -D. sin xdx【11-5、C 】10-22. 设函数3cos x y x=, 求dy .【10-22. 332()'cos (cos )''(cos )x x x x y x -=2323cos sin (cos )x x x xx += 则2323cos sin '(cos )x x x xdy y dx dx x +===】09-22. 设函数sin xy e=, 求dy .【09-22. s i n'(s i n )'x y ex =s i nc o s x e x =则s i n c o s xd y ex d x =】 08-5. 设函数2xy e =+, 则dy = [ ] A. (2)xe dx + B. (2)x e x dx + C. (1)x e dx + D. xe dx 【08-5. D 】07-5. 设函数2s i n (1)y x =-,则dy = [ ] A. 2c o s (1)xd x - B. 2c o s (1)x d x -- C. 22c o s (1)x xd x - D. 22c o s (1)x x d x--【07-5. C 】 06-22. 设函数4s i n y x x =, 求dy =【06-22. 34'4sin cos y x x x x =+, 34(4sin cos )dy x x x x dx =+】 05-22. 设函数3c o s y x x =, 求dy .【05-22. 3323'()'c o s(c o s )'3c o s s i ny x x x x x x x x =+=-, 23(3cos sin )dy x x x x dx =-.】03-19. 设函数2arctan x y =,求dy .【03-19. dx x x dy x x x x y 442412,12)'(11'+=+=+=】01-7. 设函数21x y +=,则dy =____________ . 【01-7. dx xx 21+】00-9.设函数)(cos 2x y -=,则dy = ____________________ .【00-9. 2sin cos x xdx -, 也可写成sin 2xdx -. 注意cos()cos x x -=】8.** 幂指函数求导(对数求导法或e-ln 法) **01-23. 设函数xxx y +=sin ,求'y .【01-23. sin y x =+'(sin )'(cos ((*)y x x =+=+笫2项那个导数属幂指函数求导问题,采用对数求导法,先记2y =,两边取对数2ln ln y x ==,然后对x 求导,得2211'y x x y x ==+22'y y x x =+=即(x =+,代回(*)式,得'cos y x x =++. 】二. 隐函数求导数与微分 (做法分两步:(1)原式两边对x 求导,注意把y 视为x 的抽象函数;(2)解出y')注:一元隐函数求导数与微分的题目在2000-2011年中皆没有出现,这里只找了94-99年的3个题目作参考. 学员务必把精力集中到第四章二元隐函数求偏导数和全微分上,因为连续多年都有一个这样的大题目。