七年级数学上第二章复习试卷
- 格式:pdf
- 大小:56.92 KB
- 文档页数:2
第二章综合测试一、选择题(共15小题)1.如果盈利2元记为“2 元”,那么“2 元”表示( )A .亏损2元B .亏损2 元C .盈利2元D .亏损4元 2.下列说法中正确的是( )A .任何有理数的绝对值都是正数B .最大的负有理数是1C .0是最小的数D .如果两个数互为相反数,那么它们的绝对值相等 3.如图,数轴上的A 、B 、C 三点所表示的数分别为a ,b ,c ,点A 与点C 到点B 的距离相等,如果a c b >>,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 4.相反数等于其本身的数是( )A .1B .0C .1D .0,1 5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是( )A .正数B .负数C .零D .不能确定和的符号 6.已知0|31|a b ,则a b 的值是( )A .4B .4C .2D .2 7.12019的倒数是( ) A .12019 B .12019C .2019D .2019 8.绝对值小于5的所有整数的和为( ) A .0 B .8 C .10 D .209.在 1.732,3.14四个数中,无理数的个数是( )A .4个B .3个C .2个D .没有10.在3.14,227,2 )个. A .1个 B .2个C .3个D .4个11,0.32 ,227,3 ,01) ,,0.101 001 000 1中,其中无理数共有( ) A .2个 B .3个C .4个D .5个12,③1729,④0.777…,⑤2 ,是无理数的是( ) A .①③⑤ B .①②⑤ C .①④ D .①⑤13.在1.732,,157,3 ,3 ,3.02中,无理数的个数是( ) A .1 B .2C .3D .414.在实数 1.414 , ,3.14 ,2 ,3.212 212 221…,3.14中,无理数的个数是( )个.A .1B .2C .3D .415.下列实数中,无理数是( )A .2B .12C .3.14 D二、填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作155 m ,南岳衡山高于海平面1 900米,则衡山比吐鲁番盆地高________m .17.在有理数集合中,最小的正整数是________,最大的负整数是________.18.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是________. 19.请写出一个比3大比4小的无理数:________.20.请写出一个无理数________.21.下列各数中:0.3、3 、3.14、1.515 115 11…,有理数有________个,无理数有________个.三、解答题(共3小题)22.蜗牛从某点O 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):5 ,3 ,10 ,8 ,6 ,12 ,10 .(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:122,5,0,1.5,2,3.(2)说出这两个圈的重叠部分表示的是什么数的集合:________.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为是无理数.可以这样证明:ab,a与b是互质的两个整数,且0b .则222222aa bb因为b是整数且不为0,所以,a是不为0的偶数,设2a n,(n是整数),所以222b n,所以b也是偶数,与a,b无理数.第二章综合测试答案解析一、1.【答案】A【解析】 盈利2元记为“2 元”, “2 元”表示亏损2元.故选:A .本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.【答案】D【解析】A 、0的绝对值是0,故选项A 错误;B 、没有最大的负有理数也没有最小的负有理数,故选项B 错误;C 、没有最大的有理数,也没有最小的有理数,故选项C 错误;D 、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D 正确.故选:D .本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.【答案】C 【解析】a c b >>, 点A 到原点的距离最大,点C 其次,点B 最小,又AB BC , 原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.【答案】B【解析】根据相反数的定义,则相反数等于其本身的数只有0.故选:B .主要考查了相反数的定义,要求掌握并灵活运用.5.【答案】B【解析】一个正数的绝对值小于另一个负数的绝对值, 两数和一定是负数.故选:B .本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.【答案】D【解析】根据题意得,30a ,10b ,解得3a ,1b ,所以,312a b .故选:D .本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【答案】C 【解析】12019的倒数是1=201912019.故选:C .考查了倒数的定义,考查了学生对概念的记忆,属于基础题. 8.【答案】A 【解析】绝对值小于5的所有整数为:0,1 ,2 ,3 ,4 ,之和为0.故选:A .此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.【答案】C【解析】无理数有: 故选:C .本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:0.101 001 000…等;③字母,如 等.10.【答案】B【解析】无理数有:,2 共2个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.11.【答案】B,,3共有3个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.12.【答案】D2 ,⑤2 .故选:D .本题考查了无理数的定义,属于基础题,解析本题的关键是熟练掌握无理数的三种形式.13.【答案】C【解析】在1.732,,157,3 ,3,3.02中,无理数有:,3,3 共3个.故选:C .此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.【答案】D【解析】 1.414 是无理数, 是无理数,3.14 无限循环小数是有理数,2 是无理数,3.212 212 221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D .本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.【答案】D 【解析】A 、2是整数,是有理数,选项不符合题意;B 、12是分数,是有理数,选项不符合题意;C 、3.14是有限小数,是有理数,选项不符合题意;D 是无理数,选项符合题意.故选:D .本题考查了无理数的定义:无限不循环小数叫无理数.二、16.【答案】2 055【解析】吐鲁番盆地低于海平面155米,记作155 m ,则南岳衡山高于海平面1900米,记作1900 米; 衡山比吐鲁番盆地高1900(155)2055 (米).17.【答案】1 1【解析】在有理数集合中,最小的正整数是1,最大的负整数是1 .故答案为1;1 .本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.【答案】3【解析】设点A 表示的数为x ,由题意得,740x ,解得3x ,所以,点A 表示的数是3 .故答案为:3 .本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.【答案】【解析】比3大比4小的无理数很多如 .故答案为: .此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.本题考查了无理数,牢记无理数的定义是解题的关键.21.【答案】3 3【解析】0.32 、3.14这三个数是有理数,31.515 115 11…这三个数是无理数,故答案为3、3.此题主要考查了无理数和有理数的知识点.三、22.【答案】(1) 531086121027270,所以,蜗牛最后能回到出发点.(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米.(3)1 053108612531086121054 厘米, 每爬1厘米奖励一粒芝麻, 蜗牛一共得到54粒芝麻.【解析】(1)把爬过的路程记录相加,即可得解.(2)求出各段距离,然后根据正负数的意义解析.(3)求出爬行过的各段路程的绝对值的和,然后解析即可.23.【答案】(1)(2)正整数【解析】(1)答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2023-2024学年七年级数学上册第二章复习考试卷整式的加减(满分100分)一、单选题(本大题共10小题,共30分)1.(3分)单项式−2πx2的系数和次数分别是( )A.−2和4B.2π和3C.2和4D.−2π和32.(3分)下列关于多项式5a2−22bc−1的说法中,正确的是( )A.它是三次三项式B.它是二次四项式C.它的最高次项是−22bcD.它的常数项是13.(3分)下列计算正确的是()A.2+3=5BB.3⋅4B=72C.2(1++3p=2++3D.(−23p2=4624.(3分)下列各式中,不是整式的是()A.1B.−C.B6D.45.(3分)下列说法中错误的有( )个. ①绝对值相等的两数相等; ②若,互为相反数,则=−1; ③如果大于,那么的倒数小于的倒数; ④任意有理数都可以用数轴上的点来表示; ⑤2−2x−333+25是五次四项式; ⑥一个数的相反数一定小于或等于这个数; ⑦正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个6.(3分)下列各式正确的是().A.7ab-3ab=4B.2a+3b=5abC.2−22=−2D.3+2=57.(3分)将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为1和2,已知小长方形纸片的长为,宽为,且>,当AB 长度不变而BC变长时,将6张小长方形纸片还按照同样的方式,放在新的长方形ABCD内,1和2的差总保持不变,则,满足的关系是(). A.=12B.=13C.=27D.=148.(3分)下列运算正确的是().A.+2=3B.42−22=22C.3a-a=2D.−2(−2)=−2−49.(3分)10名学生的平均成绩是x分,如果另外5名学生每人得84分,那么这15名学生的平均成绩是().A.r842分B.10r42015分C.10r8415分D.10+42015分10.(3分)已知=2−2B,=2−3B,计算A-B的结果是()A.22B.xyC.-xyD.5xy二、填空题(本大题共8小题,共24分)11.(3分)如果单项式3与−53是同类项,那么−2=______.12.(3分)计算:3a−=______.13.(3分)一车上山,上山速度为千米/时,下山速度为千米/时,则该车的平均速度为_________千米/时.14.(3分)单项式−1223的次数是________。
人教版七年级数学上册第二章《整式的加减》考试卷(含答案)一、单选题1.下列代数式中,为单项式的是( ) A .5xB .aC .3a ba+ D .22x y +2.代数式1x, 2x +y , 13a 2b , x y π-, 54yx , 0.5 中整式的个数( )A .3个B .4个C .5个D .6个3.单项式322π3a b c -的系数和次数分别是( ) A .2π3-,6B .23-,6C .2π3-,5D .2π3,64.某品牌冰箱进价为每台m 元,提高20%作为标价.元旦期间按标价的9折出售,则出售一台这种冰箱可获得利润( ) A .0.1m 元B .0.2m 元C .0.8m 元D .0.08m 元5.若A 是一个四次多项式,B 是一个三次多项式,则A B -是( ) A .七次多项式B .七次整式C .四次多项式D .四次整式6.多项式﹣2x 2y ﹣9x 3+3x 3+6x 3y +2x 2y ﹣6x 3y +6x 3的值是( ) A .只与x 有关B .只与y 有关C .与x ,y 都无关D .与xy 都有关7.如图,两个大小正方形的边长分别是4cm 和x cm (0<x <4).用含x 的式子表示图中阴影部分的面积为( )cm 2.A .214xB .212xC .()2144x + D .()2142x + 8.若当x =2时,335ax bx ++=,则当x =-2时,求多项式2132ax bx --的值为( ) A .-5 B .-2 C .2 D .59.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为a ,宽为b )的盒子底部(如图①),盒子底面未被卡片覆盖的部分用阴影表示.则图①中两块阴影部分周长和是( )A .4aB .4bC .()2a b +D .()4a b -10.按框图的程序计算,若开始输入的n 值为3,则最后输出的结果是( ).A .2B .151C .153D .168二、填空题11.在代数式23xy ,m ,263a a -+,12,22145x yzx xy -,23ab 中,单项式有___________个.12.甲、乙两地相距400千米,某车以80千米/小时的速度从甲地开往乙地,行驶了t (t ≤5)小时,此时该车距乙地的路程为____________千米. 13.多项式2342x y xy x -++-的次数与项数之比为______.14.已知多项式4916252581114357911a a a a a b b b b b-+-+……,(0)ab ≠,该多项式的第7项为_______,用字母a 、b 和n 表示多项式第n 项____________.(n 为正整数) 15.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:_______________________. 三、解答题的指出项和次数:4232223431,,1,,331,32,227m n a b x y x x y xy x t x y -+--++--.17.列式表示(1)某地冬季一天的温差是15℃,这天最低气温是t ℃,最高气温是多少? (2)买单价c 元的商品n 件要花多少钱?支付100元,应找回多少元?(3)某种商品原价每件b 元,第一次降价打“八折”,第二次降价每件又减10元,第一次降价后的售价是多少?第二次降价后的售价是多少?(4)30天中,小张长跑路程累计达到45000m ,小李跑了()m 45000a a >,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?18.已知A=3a 2b ﹣2ab 2+abc ,小明同学错将“2A ﹣B”看成“2A+B”,算得结果为4a 2b ﹣3ab 2+4abc .(1)计算B 的表达式; (2)求出2A ﹣B 的结果;(3)小强同学说(2)中的结果的大小与c 的取值无关,对吗?若a=18,b=15,求(2)中式子的值.19.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值.20.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.21.如图是某居民小区的一块长为2a 米,宽为 b 米的长方形空地,为了美化环境,b 米的扇形花台,然后在花台内种花,准备在这个长方形的四个顶点处修建一个半径为12其余种草.如果建造花台及种花费用每平方米需要资金100 元,种草每平方米需要资金50 元,那么美化这块空地共需资金多少元?参考答案1.B 2.B 3.A 4.D 5.D 6.C 7.B 8.B 9.B 10.D 11.312.(400﹣80t )13.3414.492015ab ()()23121nn n a b -+-15.22(1)(1)21n n n n n --=+-=- 16.17.(1)(15)t +℃;(2)nc 元,(100)nc -元;(3)0.8b 元,(0.810)b -元;(4)m,1500m,1500.3030a a m ⎛⎫- ⎪⎝⎭18.解:(1)①2A +B =4a 2b ﹣3ab 2+4abc ,①B =4a 2b ﹣3ab 2+4abc -2A=4a 2b -3ab 2+4abc -2(3a 2b -2ab 2+abc) =4a 2b -3ab 2+4abc -6a 2b +4ab 2-2abc =-2a 2b +ab 2+2abc ;(2)2A -B =2(3a 2b -2ab 2+abc)-(-2a 2b +ab 2+2abc) =6a 2b -4ab 2+2abc +2a 2b -ab 2-2abc =8a 2b -5ab 2;(3)对,由(2)化简的结果可知与c 无关,将a =18,b =15代入,得8a 2b -5ab 2=8×218⎛⎫ ⎪⎝⎭×15-5×18×21()5=0.19.添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号. ①a 2+b 2=5,1-b =-2,①-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7. 20.由题意可知0a c -<,0b >,0b a ->,0b a +<, ||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+. 21.解:100×14πb 2+50(2ab ﹣14πb 2)=252πb 2+100ab (元).。
人教版七年级数学上册第二章整式复习试题三(含答案) 如果4个不等的正整数a、b、c、d满足(6﹣a)(6﹣b)(6﹣c)(6﹣d)=25,则a+b+c+d的值等于()A.28 B.26 C.24 D.18【答案】C【解析】【分析】首先根据题意,得出四个括号内的值分别是:±1,±5,然后设6﹣a=﹣1,6﹣b=1,6﹣c=﹣5,6﹣d=5,进而解得a、b、c、d的值,即可得解.【详解】∵a、b、c、d是四个不等的正整数,∴四个括号内的值分别是:±1,±5,不妨设,6﹣a=﹣1,6﹣b=1,6﹣c=﹣5,6﹣d=5,解得,a=7,b=5,c=11,d=1,∴a+b+c+d,7+5+11+1=24,故选:C.【点睛】此题主要考查对整数乘法的运用,熟练掌握,即可解题.12.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的四等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示-1的点重合.再将数轴按逆时针方向环绕在该圆上(如圆周上表示的数字3的点与数轴上表示-2的点重合……),则该数轴上表示-2019的点与圆周上重合的点表示的数字是( )A .0B .1C .2D .3【答案】C【解析】【分析】 结合图和题干可知,每4个数为一个循环组依次循环,所以需要计算2019÷4,看是第几组第几个数字,即可解答.【详解】由图可知,每4个数为一组,依次循环,分别与0、3、2、1重合, 2019÷4=504 (3)所以,表示-2019的点是第505个循环组的第3个数,为2,即表示-2019的点与圆周上重合的点表示的数字是2故选C【点睛】本题考查数轴以及数字变化规律,结合题干和图,找出规律,是解题关键.13.下列说法正确的是( )A .单项式223x y 的系数是-2,次数是3 B .单项式a 的系数是0,次数是0C .-3x 2y +3x -1的常数项是1D .单项式2(3)2ab -的次数是2,系数是92【答案】D【解析】【分析】单项式的系数:单项式中的数字因式;单项式的次数:字母指数和;根据以上概念逐个选项分析判断即可解答.【详解】A. 单项式223x y -的系数是23-,次数是3,故该选项错误; B. 单项式a 的系数是1,次数是1,故该选项错误;C. -3x 2y +3x -1的常数项是-1,故该选项错误;D. 单项式2(3)2ab -的次数是2,系数是92,正确; 故选D【点睛】本题主要考查单项式的系数、次数的判断,熟练掌握相关概念是解题关键.14.下列是单项式的是( )A .xB .2a +C .2x y -D .mn m -【答案】A【解析】【分析】根据单项式的定义逐一判断即可得答案.【详解】A.是单项式,故该选项符合题意,a+不是乘积的形式,不是单项式,故该选项不符合题意,B.2C.2x y-不是乘积的形式,不是单项式,故该选项不符合题意,D.mn m-不是乘积的形式,不是单项式,故该选项不符合题意,故选:A.【点睛】本题考查单项式的定义,由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;正确理解定义是解题关键.15.下列图形都是由同样大小的长方形按一定的规律组成,其中第(1)个图形的面积为2cm2,第(2)个图形的面积为8cm2,第(3)个图形的面积为18cm2,…,第(10)个图形的面积为()A.196cm2B.200cm2C.216cm2D.256cm2【答案】B【解析】【分析】根据已知图形面积得出数字之间的规律,进而得出答案.【详解】∵第一个图形面积为:2=1×2(cm2),第二个图形面积为:8=22×2(cm2),第三个图形面积为:18=32×2(cm2)…∴第(10)个图形的面积为:102×2=200(cm 2).故选:B .【点睛】此题主要考查了图形的变化类,根据已知得出面积的变化规律是解题关键.16.在下列代数式:a+b ,-3,π,3x y +,-m 2n 3中,单项式有( ) A .2个B .3个C .4个D .5个【答案】B【解析】【分析】利用数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式进行分析即可.【详解】在下列代数式:a+b ,-3,π,3x y +,-m 2n 3中,单项式是-3,π,-m 2n 3,共3个.故选B.【点睛】此题主要考查了单项式,关键是掌握单项式定义.17.边长为a 和2a 的两个正方形按如图所示的样式摆放,则图中阴影部分的面积为( )A .22aB .32aC .42aD .62a【答案】A【解析】【分析】 图中阴影部分的面积为两个正方形面积的和减去空白三角形的面积即可求解.【详解】根据图形,得图中阴影部分的面积=大正方形的面积+小正方形的面积﹣空白三角形的面积.即:4a 2+a 21232a a -⨯⨯ =5a 2﹣3a 2=2a 2.故选A .【点睛】本题考查了列代数式,解决本题的关键是观察图形所给条件并列式.18.下列说法:①-a 一定是负数;②一个有理数不是整数就是分数;③单项式232x y 的系数是32;④多项式324x y xy y --是四次三项式.其中正确的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】直接利用有理数的定义、单项式的定义以及多项式的次数与项数确定方法分别分析得出答案.【详解】①﹣a 一定是负数,错误;②一个有理数不是整数就是分数,正确;③单项式232x y 的系数是32,正确; ④多项式x 3y ﹣2xy ﹣4y 是四次三项式,正确.故选C .【点睛】本题考查了单项式以及多项式、有理数,正确把握相关定义是解题的关键.19.如图是一组有规律的图案,第①个图中共有1个矩形,第②个图中共有5个矩形,第③个图中共有11个矩形,…,则第8个图中矩形个数为( )CA .55B .71C .89D .109【答案】B【解析】【分析】 根据图案的排列规律,即可得到答案.【详解】∵1×2-1=1,2×3-1=5,3×4-1=11,……,8×9-1=71,∴第8个图中矩形个数为71,故选B.【点睛】本题主要考查图案的排列规律,掌握图案中正方形的个数的规律,是解题的关键.20.如图,下列图形都是由相同的花按照一定的规律摆成的,按照此规律摆下去,第n个的图形中有160朵花,则n的值是()A.40 B.41 C.42 D.43【答案】A【解析】【分析】根据第n个图形可以理解为边长为(n+1)朵花,四个顶点的玫瑰花分别重复一次列方程求解.【详解】解:由题图可得,第n个图形中有玫瑰花4n朵,令4n=160,得n=40.故选A.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.。
七年级上册数学第二章试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. $\frac{4}{8}$B. $\frac{3}{9}$C. $\frac{5}{7}$D. $\frac{6}{12}$5. 如果一个圆的半径是4厘米,那么它的直径是多少厘米?A. 4厘米B. 8厘米C. 12厘米D. 16厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个等腰三角形的两个底角相等。
()3. 任何数乘以0都等于0。
()4. 长方体的六个面都是长方形。
()5. 分子相同的两个分数,分母越大,这个分数就越小。
()三、填空题(每题1分,共5分)1. 100的因数有__________________。
2. 一个三角形的内角和等于__________________度。
3. 2.5小时等于__________________分钟。
4. 如果一个长方体的体积是120立方厘米,长是4厘米,宽是5厘米,那么它的高是__________________厘米。
5. $\frac{3}{4}$的值小于__________________。
四、简答题(每题2分,共10分)1. 解释什么是质数和合数。
2. 简述三角形按边分类的方法。
3. 解释比例尺的意义。
4. 解释等式的基本性质。
5. 如何计算一个圆的周长?五、应用题(每题2分,共10分)1. 一个长方体的长是8厘米,宽是6厘米,高是4厘米,求它的体积。
2. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的周长。
七年级上册数学第二章测试卷(含答案) 七年级上册数学第二章测试卷知识要点一:单项式1.下列说法正确的是()A。
x不是单项式B。
x+2y是单项式C。
-x的系数是-1D。
0不是单项式改写:哪个说法是正确的?A。
x不是单项式B。
x+2y是单项式C。
-x的系数是-1D。
0不是单项式10.下列说法正确的是()A。
8-是多项式B。
-x3yz是三次单项式,系数为3C。
x2-3xy+2x2y3-1是五次多项式D。
-5b/x是单项式改写:哪个说法是正确的?A。
8-是多项式B。
-x3yz是三次单项式,系数为3C。
x2-3xy+2x2y3-1是五次多项式D。
-5b/x是单项式2.在式子20a,4t2,50,3.5x,vt+1,-m中,单项式的个数是()A。
3个B。
4个C。
5个D。
6个改写:在20a,4t2,50,3.5x,vt+1,-m中,有几个单项式?A。
3个B。
4个C。
5个D。
6个3.单项式-x2yz2的系数、次数分别是()A。
0,2B。
0,4C。
-1,5D。
1,4改写:单项式-x2yz2的系数和次数分别是多少?A。
0,2B。
0,4C。
-1,5D。
1,44.单项式(-1)mabm的()A。
系数是-1,次数是mB。
系数是1,次数是m+1C。
系数是-1,次数是2m+1D。
系数是(-1)m,次数是m+1改写:单项式(-1)mabm的系数和次数分别是多少?A。
系数是-1,次数是mB。
系数是1,次数是m+1C。
系数是-1,次数是2m+1D。
系数是(-1)m,次数是m+15.若单项式a4b-2m+1与-2am2bm+7是同类项,则m的值为()A。
4B。
2或-2C。
2D。
-2改写:若单项式a4b-2m+1与-2am2bm+7是同类项,则m 的值为多少?A。
4B。
2或-2C。
2D。
-26.若-2axbx-y与5a2b5的和仍是单项式,则x=,y=。
删除:这段话有问题,无法改写。
7.单项式3x2yz3-5的系数是,次数是。
改写:单项式3x2yz3-5的系数和次数分别是多少?系数是3,次数是5.8.四次单项式(m-n)xm-3y的系数为-3,求m,n的值。
浙教版数学七上第二章-第三章一、选择题1.2023年9月23日晚,杭州亚运会开幕式现场,超过1.05亿名线上火炬手汇聚而成的“数字火炬手”与现场真实的火炬手一起,共同点燃亚运之火,创造了新的吉尼斯世界纪录.其中数据1.05亿用科学记数法可表示为( )A.10.5×107B.1.05×107C.1.05×108D.0.105×1082.1是2023的( )2023A.倒数B.绝对值C.相反数D.平方根3.已知算式8□(―8)的值为0,则“□”内应填入的运算符号为()A.+B.―C.×D.÷4.如表所示的是琳琳作业中的一道题目,“”处都是0但发生破损,琳琳查阅后发现本题答案为1,则破损处“0”的个数为( )已知:60=a×10n,求a―n的值A.4B.5C.6D.75.池塘里的睡莲的面积每天长大一倍,若经过13天就可以长满整个池塘,则这些睡莲长满半个池塘需要( )A.6B.7C.10D.126.如图,数轴上的四个点A、B、C、D位置如图所示,它们分别对应四个实数a、b、c、d,若a+c=0,AB<BC,则下列各式正确的是( )A.bc>0B.b―d>0C.b+c>0D.|a|>|d|7.18×(3+1)(32+1)(34+1)⋅⋅⋅(364+1)+9的个位数字为( )A.1B.3C.7D.98.我们把不超过有理数x的最大整数称为x的整数部分,记作[x],又把x―[x]称为x的小数部分,记作{x},则有x=[x]+{x}.如:[1.3]=1,{1.3}=0.3,1.3=[1.3]+{1.3}.下列说法中正确的有( )个①[2.8]=2;②[―5.3]=―5;③若1<|x|<2,且{x}=0.4,则x=1.4或x=―1.4;④方程4[x]+1={x}+3x的解为x=0.25或x=2.75.A.1B.2C.3D.49.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=568×9=?因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图(l )所示是一个3×3幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是一个未完成的3×3幻方,请你类比图(l )推算图(3)中P 处所对应的数字是( )A .1B .2C .3D .4二、填空题11.用四舍五入把3.1426精确到百分位,所得到的近似数是 .12.计算: 2×(―3)= .13.数a 的位置如图,化简|a|+|a +4|= .14.规定三数a ,b ,c 之间的一种运算:如果a c =b ,那么(a,b )=c .例如:因为23=8,所以(2,8)=3.根据上述规定,填空:(3,27)= ,(5,1)= ,2,= .15.已知a +2+|a ―b +3|=0,则(a +b )2023= .16.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为a 1,第2幅图形中“•”的个数为a 2,第3幅图形中“•”的个数为a 3,以此类推,则1a 1+1a 2+1a 3+…+1a 18的值为 .三、解答题17.计算:22+16―3―8.18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.―3,|―3|,32,(―2)2,―(―2)19.入初中后,我们相继学习了一些新的数,数就扩充到了实数.以下是数学乐园中的“实数家族”,请给该“实数家族”分分家吧.(★将各数的序号填入相应的家族里)20.已知2a ―1的平方根是±3,3a +b ―9的立方根是2.(1)求a 和b 的值;(2)若c <5<c +1,c 是整数,求a +2b ―c +2的算术平方根.21.根据下表回答问题:x 1616.116.216.316.416.516.616.716.8x 2256259.21262.44265.69268.96272.25275.56278.89282.24(1)275.56的平方根是 ,259.21= , 2.7889= ;(2)设28000的整数部分为a ,求a ―42的立方根.22.观察下列算式:①1×3+1=2;②2×4+1=3;③3×5+1=4;④4×6+1=5;…(1)写出第⑥个等式;(2)猜想第n 个等式;(用含n 的式子表示)(3)计算:1×3+1+2×4+1+3×5+1+⋯+2022×2024+1.23.材料一:杨辉三角(如图1),出现在中国宋朝时期数学家杨辉的著作《详解九章算法》中,是我国数学史上一颗璀璨的明珠,是居于世界前列的数学成就.杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和,揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的相关规律,蕴含很多有趣的数学性质,运用规律可以解决很多数学问题.材料二:斐波那契数列,是意大利数学家莱昂纳多·斐波那契从兔子繁殖问题中引入的一列神奇数字,用a n 表示这一列数中的第n 个,则数列为a 1=1,a 2=1,a 3=2,a 4=3,a 5=5,…,数列从第三项开始,每一项都等于其前两项之和,即a n +2=a n +1+a n (n 为正整数)结合材料,回答以下问题:(1)多项式(a +b )5展开式共有________项,各项系数和为________,利用展开式规律计算―5×+10×―10×+5×―1=________.(2)我们借助杨辉三角中第三斜行的数:1,3,6,10,…记b 1=1,b 2=3,b 3=6,b 4=10,…则b 8=________;b n =________(用n 表示);1b 1+1b 2+1b 3+…+1b 100=________.(3)如图2,把杨辉三角左对齐排列,将同一条斜线上的数字求和,计算可得a 1=1,a 2=1,a 3=2,a 4=3,a 5=5,a 6=8,…若T n =a 1+a 2+a 3+…+a n ,且T 2024=k ,结合材料二,求a 2026的值(用k 表示).答案解析部分1.【答案】C2.【答案】A3.【答案】A4.【答案】A5.【答案】D6.【答案】C7.【答案】D8.【答案】A9.【答案】A10.【答案】B11.【答案】3.1412.【答案】―613.【答案】414.【答案】3;0;―215.【答案】―116.【答案】183717.【答案】1018.【答案】图见解答,―3<3<―(―2)<|―3|<(―2)2219.【答案】解:20.【答案】(1)a=5,b=2(2)321.【答案】(1)±16.6;16.1;1.67(2)解:由16.7<280<16.8.∴167<28000<168故a=167.则a―42=167―42=125,125的立方根为:5.22.【答案】(1)解:第⑥个等式为6×8+1=7,(2)解:第n个等式为n(n+2)+1=n+1,(3)解:1×3+1+2×4+1+3×5+1+⋯+2022×2024+1=2+3+4+…+2023=1+2+3+4+……+2023-1―1=2047275.23.【答案】(1):6,32,―1;32(2)36,200;101(3)k+1.。
华东师大版七年级数学上册《第二章整式及其加减》单元测试卷带答案(测试时间:90分钟;试卷满分:100分)一、选择题(每小题3分,共24分)1.下列叙述中,正确的是( )A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是( )A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是( )A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是( )A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是( )A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是( )A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是( )A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.18.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a +1 0,2-b a -c ; (2)|b -c |= ; (3)化简:|c -3|+|c -b |-|b +1|.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a 厘米、b 厘米、c 厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由.20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果:①11×2+12×3+13×4+…+12022×2023=;②11×2+12×3+13×4+…+1n(n+1)=.(3)探究并计算:①11×3+13×5+15×7+…+12021×2023.②11×3-12×4+13×5-14×6+15×7-…+12021×2023-12022×2024.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).参考答案一、选择题(每小题3分,共24分)1.下列叙述中,正确的是(A)A.0是单项式B.单项式23xy的次数是5C.单项式-2x 2y5的系数为-2 D.多项式3a3b+2a2是六次二项式2.用代数式表示“a的平方与b的平方的差”,正确的是(B)A.(a-b)2B.a2-b2C.a-b2D.a-2b3.(2024·湘潭模拟)下列计算正确的是(D)A.5-(-1)=4B.(-2)4=-16C.2a2-a=2aD.3x-(-2y+4)=3x+2y-44.当x=1时,整式ax3+bx+1的值为2 023,则当x=-1时,整式ax3+bx-2的值是(B)A.2 024B.-2 024C.2 022D.-2 0225.若单项式a3m b9-n与78a6b2n的和仍是单项式,则m-n的值是(D)A.1B.5C.-5D.-16.观察下列关于x的单项式,探究其规律:-x,3x2,-5x3,7x4,-9x5,11x6……按照此规律,第2 025个单项式是(C)A.-2 025x2 025B.4 049x2 025C.-4 049x2 025D.4 051x2 0257.(2024·包头模拟)甲、乙两店卖豆浆,每杯售价均相同.已知甲店的促销方式为每买2杯,第1杯原价,第2杯半价;乙店的促销方式为每买3杯,第1,2杯原价,第3杯免费.若东东想买12杯豆浆,则下列所花的钱最少的方式是(D)A.在甲店买12杯B.在甲店买8杯,在乙店买4杯C.在甲店买6杯,在乙店买6杯D.在乙店买12杯8.有依次排列的3个整式:x,x+6,x-3,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串,例如:x,6,x+6,-9,x-3,我们称它为整式串1;将整式串1按上述方式再做一次操作,可以得到整式串2;以此类推,通过实际操作,得到以下结论:①整式串2为:x,6-x,6,x,x+6,-x-15,-9,x+6,x-3;②整式串3的所有整式的和比整式串2的所有整式的和小3;③整式串5共65个整式;④整式串2 024的所有整式的和为3x-6 069;上述四个结论正确的有(D)A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)9.(2024·郴州模拟)单项式-5a2b(m+2)与3a n+5b是同类项,那么m-n=2.10.多项式13x|m|-(m+4)x-11是关于x的四次三项式,则m的值是4.11.(2024·长沙模拟)已知关于x的多项式(4x2-3x+5)-(2mx2-x+1)化简后不含x2项,则m的值是2.12.如果x=5时,代数式ax5+bx-7的值为9,那么x=-5时,代数式a2x5+b2x+7的值为-1.13.已知三个有理数a,b,c,其积是负数,其和是正数,当x=|a|a +|b|b+|c|c时,代数式x2 025-2x+2的值为1.14.(2024·台州模拟)如图所示,未来公园的广场背景墙上有一系列用灰砖和白砖铺成的图案,图①有1块灰砖,8块白砖;图②有4块灰砖,12块白砖;以此类推.若某个图案中有49块灰砖,则此图案中有32块白砖.三、解答题(共52分)15.(6分)计算:(1)3m-3n-2m+n;(2)(8x-7y)-(4y-5x).【解析】(1)原式=(3-2)m+(-3+1)n=m-2n;(2)原式=8x-7y-4y+5x=13x-11y.16.(8分)先化简,再求值.(1)4(3a2b-ab2)-2(-ab2+3a2b),其中a是1的相反数,b是2的倒数;(2)3(x-2y)+5(x+2y-1)-2,其中2x+y=3.【解析】(1)原式=12a2b-4ab2+2ab2-6a2b=6a2b-2ab2;因为a是1的相反数,b是2的倒数所以a=-1,b=12所以原式=6×(-1)2×12-2×(-1)×(12)2=3+12=72;(2)原式=3x-6y+5x+10y-5-2=8x+4y-7;当2x+y=3时,原式=4(2x+y)-7=4×3-7=12-7=5.17.(8分)(2024·苏州期末)已知代数式A=3x2+3xy+2y,B=x2-xy+x.(1)计算A-3B;(2)当x=-1,y=3时,求A-3B的值;(3)若A-3B的值与x的取值无关,求y的值.【解析】(1)因为A=3x2+3xy+2y,B=x2-xy+x所以A-3B=(3x2+3xy+2y)-3(x2-xy+x)=3x2+3xy+2y-3x2+3xy-3x=6xy+2y-3x;(2)当x=-1,y=3时,A-3B=6xy+2y-3x=6×(-1)×3+2×3-3×(-1)=-18+6+3=-9;(3)A-3B=6xy+2y-3x=(6y-3)x+2y因为A-3B的值与x的取值无关所以6y-3=0,解得y=1.218.(8分)有理数a,b,c在数轴上的位置如图所示.(1)比较大小:a+10,2-b a-c;(2)|b-c|=;(3)化简:|c-3|+|c-b|-|b+1|.【解析】(1)由题意得,-3<a<-2,-1<b<0,1<c<2所以a+1<0,2-b>0>a-c.答案:<>(2)因为b-c<0,所以|b-c|=-(b-c)=c-b.答案:c-b(3)因为-3<a<-2,-1<b<0,1<c<2,所以c-3<0,c-b>0,b+1>0所以|c-3|+|c-b|-|b+1|=3-c+c-b-(b+1)=2-2b.19.(10分)近年来,电商多选择在11月11日促销.今年的促销期间,某电商客服在为买家包装商品时用到长、宽、高分别为a厘米、b厘米、c厘米的箱子,并发现有如图所示的甲、乙两种打包方式(打包带不计接头处的长).回答下列问题:(1)用含a ,b ,c 的式子表示甲、乙两种打包方式所用的打包带的长度: 甲需要 厘米,乙需要 厘米;(2)当a =50厘米,b =40厘米,c =30厘米时,直接写出甲、乙两种打包方式所用的打包带的长度:甲需要 厘米,乙需要 厘米;(3)当a >b >c 时,两种打包方式中,哪种方式节省打包带?并说明你的理由. 【解析】(1)2×2(a +c )+2(b +c )=(4a +2b +6c )厘米,2(a +c )+2×2(b +c )=(2a +4b +6c )厘米 所以甲需要(4a +2b +6c )厘米,乙需要(2a +4b +6c )厘米; 答案:(4a +2b +6c ) (2a +4b +6c )(2)当a =50厘米,b =40厘米,c =30厘米时,4a +2b +6c =4×50+40×2+6×30=460厘米,2×50+4×40+30×6=440厘米 所以甲需要460厘米,乙需要440厘米; 答案:460 440(3)乙种节省,理由如下:(4a +2b +6c )-(2a +4b +6c )=4a +2b +6c -2a -4b -6c =2a -2b 因为a >b >c ,所以2a -2b >0 所以(4a +2b +6c )-(2a +4b +6c )>0 所以乙种打包方式更节省. 20.(12分)观察下列等式.11×2=1-12,12×3=12-13,13×4=13-14将以上三个等式两边分别相加得:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34.(1)猜想并写出:1n (n+1)= .(2)直接写出下列各式的计算结果: ①11×2+12×3+13×4+…+12 022×2 023= ;②11×2+12×3+13×4+…+1n (n+1)= .(3)探究并计算: ①11×3+13×5+15×7+…+12 021×2 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024.【解析】(1)1n (n+1)=1n -1n+1.答案:1n -1n+1(2)①11×2+12×3+13×4+…+12 022×2 023=1-12+12-13+…+12 022-12 023=1-12 023=2 0222 023.②11×2+12×3+13×4+…+1n (n+1)=1-12+12-13+…+1n -1n+1=1-1n+1=n n+1.答案:①2 0222 023②nn+1(3)①11×3+13×5+15×7+…+12 021×2 023=12(1-13+13-15+15-17+…+12 021-12 023)=12(1-12 023)=1 0112 023.②11×3-12×4+13×5-14×6+15×7-…+12 021×2 023-12 022×2 024 =(11×3+13×5+…+12 021×2 023)- (12×4+14×6+…+12 022×2 024)=12(1-13+13-15+…+12 021-12 023)-12(12-14+14-16+…+12 022-12 024)=12(1-12 023)-12(12-12 024)=1 0112 023-1 0114 048=2 025×1 0112 023×4 048.【附加题】(10分)某市居民使用自来水按如下标准缴费(水费按月缴纳):用户月用水量单价不超过12 m3的部分a元/m3超过12 m3但不超过20 m3的部分1.5a元/m3超过20 m3的部分 2a元/m3(1)当a=2时,某户一个月用了15 m3的水,求该户这个月应缴纳的水费.(2)设某户月用水量为28 m3,该户应缴纳的水费为元.(3)当a=2时,甲,乙两户一个月共用水40 m3,已知甲户缴纳的水费超过了24元,设甲户这个月用水x m3,试求甲,乙两户一个月共缴纳的水费(用含x的式子表示).【解析】(1)12×2+(15-12)×1.5×2=24+9=33(元)所以该户这个月应缴纳的水费为33元;(2)12a+(20-12)×1.5a+(28-20)×2a=12a+12a+16a=40a(元).答案:40a(3)因为12×2=24所以x>12当12<x≤20时,甲用水量超过12 m3但不超过20 m3,乙用水量超过20 m3所以12×2+(x-12)×1.5×2+12×2+(20-12)×2×1.5+(40-x-20)×2×2=24+3x-36+24+24+80-4x= (116-x)元;当20<x<28时,甲的用水量超过20 m3,乙的用水量超过12 m3但不超过20 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+12×2+(40-x-12)×2×1.5=24+24+4x-80+24+84-3x= (x+76)元当28≤x≤40时,甲的用水量超过20 m3,乙的用水量不超过12 m3所以12×2+(20-12)×1.5×2+(x-20)×2×2+(40-x)×2=24+24+4x-80+80-2x=(2x+48)元; 综上所述,当12<x≤20时,甲,乙两户一个月共缴纳的水费为(116-x)元;当20<x<28时,甲,乙两户一个月共缴纳的水费为(x+76)元;当28≤x≤40时,甲,乙两户一个月共缴纳的水费为(2x+48)元.。
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.由于受H7N9禽流感的影响,某市城区今年2月份鸡的价格比1月份下降a %,3月份比2月份下降b %,已知1月份鸡的价格为24元/kg .则3月份鸡的价格为( ) A .24(1-a %-b %)元/kgB .24(1-a %)b % 元/kgC .(24-a %-b % )元/kgD .24(1-a %)(1-b %)元/kg D解析:D【分析】首先求出二月份鸡的价格,再根据三月份比二月份下降b%即可求出三月份鸡的价格.【详解】∵今年2月份鸡的价格比1月份下降a %,1月份鸡的价格为24元/kg ,∴2月份鸡的价格为24(1-a %)元/kg ,∵3月份比2月份下降b %,∴三月份鸡的价格为24(1-a %)(1-b %)元/kg .故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握每个月份的数量增长关系.3.与(-b)-(-a)相等的式子是( )A .(+b)-(-a)B .(-b)+aC .(-b)+(-a)D .(-b)-(+a)B 解析:B【分析】将各选项去括号,然后与所给代数式比较即可﹒【详解】解: (-b)-(-a)=-b+aA. (+b)-(-a)=b+a ;B. (-b)+a=-b+a;C. (-b)+(-a)=-b-a;D. (-b)-(+a)=-b-a;故与(-b)-(-a)相等的式子是:(-b)+a﹒故选:B﹒【点睛】本题考查了去括号的知识,熟练去括号的法则是解题关键﹒4.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.5.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.6.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.7.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.8.下列各式中,符合代数书写规则的是( ) A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误;【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.下列说法正确的是()A.单项式34xy-的系数是﹣3 B.单项式2πa3的次数是4C.多项式x2y2﹣2x2+3是四次三项式D.多项式x2﹣2x+6的项分别是x2、2x、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A、单项式34xy-的系数是34-,此选项错误;B、单项式2πa3的次数是3,此选项错误;C、多项式x2y2﹣2x2+3是四次三项式,此选项正确;D、多项式x2﹣2x+6的项分别是x2、﹣2x、6,此选项错误;故选:C.【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.如图所示,直线AB、CD相交于点O,“阿基米德曲线”从点O开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()A.射线OA上B.射线OB上C.射线OC上D.射线OD上C解析:C由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案.【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B ,∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上.故答案为:C.【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.11.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣3D 解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.12.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .本题考查了同类项,能熟记同类项的定义是解答本题的关键.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.小明乘公共汽车到白鹿原玩,小明上车时,发现车上已有(6a ﹣2b )人,车到中途时,有一半人下车,但又上来若干人,这时车上共有(10a ﹣6b )人,则中途上车的人数为( )A .16a ﹣8bB .7a ﹣5bC .4a ﹣4bD .7a ﹣7b B 解析:B【分析】根据题意表示出途中下车的人数,再根据车上总人数即可求得中途上车的人数.【详解】由题意可得:(10a ﹣6b )﹣[(6a ﹣2b )﹣(3a ﹣b )]=10a ﹣6b ﹣6a +2b +3a ﹣b=7a ﹣5b .故选B .【点睛】本题考查了整式加减的应用,根据题意正确列出算式是解决问题的关键.15.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式D .23xy π的系数是23πC 解析:C【分析】根据单项式的有关定义逐个进行判断即可.【详解】A. 23-2x y 的系数是32-,故不符合题意; B. 数字0也是单项式 故不符合题意;C. -x π是一次单项式 ,故原选项错误D. 23xy π的系数是23π,故不符合题意. 故选C .【点睛】本题考查对单项式有关定义的应用,能熟记单项式的有关定义是解此题关键. 1.已知123112113114,,,...,1232323438345415a a a =+==+==+=⨯⨯⨯⨯⨯⨯依据上述规律,则 99a =________.【解析】试题 解析:1009999. 【解析】试题 等号右边第一式子的第一个加数的分母是从1开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是2,结果的分子是2,分母是1×3=3;等号右边第二个式子的第一个加数的分母是从2开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是3,结果的分子是3,分母是2×4=8;等号右边第三个式子的第一个加数的分母是从3开始,三个连续的数的积,分子是1;第二个加数的分子是1,分母是4,结果的分子是4,分母是3×5=15.所以a 99=991100991019999+=⨯. 考点:规律型:数字的变化类.2.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 3.化简:226334x x x x _________.【分析】先去括号再根据合并同类项法则进行计算即可【详解】解:=故答案为:【点睛】此题考查整式的加减运算去括号法则合并同类项法则正确去括号是解题的关键解析:2106x x -+【分析】先去括号,再根据合并同类项法则进行计算即可.【详解】解:226334x x x x 226334xx x x 2(64)(33)x x=2106x x -+,故答案为:2106x x -+.【点睛】此题考查整式的加减运算、去括号法则、合并同类项法则,正确去括号是解题的关键. 4.在多项式422315x x x x 中,同类项有_________________;-2x5x 【分析】根据同类项:所含字母相同并且相同字母的指数也相同进行判断即可【详解】解:-2x 与5x 是同类项;故答案为:-2x5x 【分析】本题考查了同类项的知识解题的关键是掌握同类项的定义解析:-2x ,5x【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可.【详解】解: -2x 与5x 是同类项;故答案为:-2x ,5x .【分析】本题考查了同类项的知识,解题的关键是掌握同类项的定义.5.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.6.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.7.已知|a|=-a ,b b =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分别数出图解析:()43n -【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.9.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.(1)或;(2)和;(3)和【分析】(1)易得最小的整数为n-1最大的整数为n+1把这3个数相加即可;(2)易得最小的奇数为n-2最大的奇数为n+2;(3)余数为1或2的数都不能被3整除从而列出代数解析:(1)()()11n n n -+++或3n ; (2)2n -和2n +; (3)31n +和32n +.【分析】(1)易得最小的整数为n-1,最大的整数为n+1,把这3个数相加即可;(2)易得最小的奇数为n-2,最大的奇数为n+2;(3)余数为1或2的数都不能被3整除,从而列出代数式.【详解】解: (1)由题意可知,最小的整数为n-1,最大的整数为n+1,∴它们的和为()()11n n n -+++=3n ;(2) 三个连续奇数的中间一个是n ,其他两个数用代数式表示为2n -和2n +;(3)3n 能被3整除,余数为1或2的数都不能被3整除,∴不能被3整除的数为31n +和32n +.【点睛】本题考查了列代数式及代数式化简的知识,;用到的知识点为:连续整数之间间隔1,连续奇数之间相隔2,余数为1或2的数都不能被3整除.10.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=- 故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键. 11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.已知:A=2x 2+ax ﹣5y+b ,B=bx 2﹣32x ﹣52y ﹣3. (1)求3A ﹣(4A ﹣2B )的值;(2)当x取任意数值,A﹣2B的值是一个定值时,求(a+314A)﹣(2b+37B)的值.解析:(1)(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)﹣312.【分析】(1)先化简原式,再分别代入A和B的表达式,去括号并合并类项即可;(2)先代入A和B的表达式并去括号并合并类项,由题意可令x和x2项的系数为零,求解出a和b的数值,再化简原式后代入相关数值即可求解.【详解】解:(1)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴原式=3A﹣4A+2B=﹣A+2B=﹣2x2﹣ax+5y﹣b+2bx2﹣3x﹣5y﹣6=(2b﹣2)x2﹣(a+3)x﹣(b+6);(2)∵A=2x2+ax﹣5y+b,B=bx2﹣32x﹣52y﹣3,∴A﹣2B=2x2+ax﹣5y+b﹣2bx2+3x+5y+6=(2﹣2b)x2+(a+3)x+(b+6),由x取任意数值时,A﹣2B的值是一个定值,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=a﹣2b+314(A﹣2B)=﹣3﹣2+32=﹣312.【点睛】理解本题中x取任意数值时A﹣2B的值均是一个定值的意思是整式化简后的x和x2项的系数均为零是解题关键.2.已知有理数a和b满足多项式A,且A=(a﹣1)x5+x|b+2|﹣2x2+bx+b(b≠﹣2)是关于x 的二次三项式,求(a﹣b)2的值.解析:16或25【解析】试题分析:根据有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,求得a、b的值,然后分别代入计算可得.试题解:∵有理数a和b满足多项式A.A=(a﹣1)x5+x|b+2|﹣2x2+bx+b是关于x的二次三项式,∴a﹣1=0,解得:a=1.(1)当|b+2|=2时,解得:b=0或b=4.①当b=0时,此时A不是二次三项式;②当b=﹣4时,此时A是关于x的二次三项式.(2)当|b+2|=1时,解得:b=﹣1(舍)或b=﹣3.(3)当|b+2|=0时,解得:b=﹣2(舍)∴a=1,b=﹣4或a=1,b=﹣3.当a=1,b=﹣4时,(a﹣b)2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.3.数学课上,老师出示了这样一道题目:“当1,22a b ==-时,求多项式3233233733631061a a b a a b a b a a b +++----的值”.解完这道题后,张恒同学指出:“1,22a b ==-是多余的条件”师生讨论后,一致认为这种说法是正确的,老师及时给予表扬,同学们对张恒同学敢于提出自己的见解投去了赞赏的目光.(1)请你说明正确的理由;(2)受此启发,老师又出示了一道题目,“无论x 取任何值,多项式2233x mx nx x -++-+的值都不变,求系数m 、n 的值”.请你解决这个问题. 解析:(1)见解析;(2)3n =,1m =.【分析】(1)将原式进行合并同类项,然后进一步证明即可;(2)将原式进行合并同类项,根据“无论x 取任何值,多项式值不变”进一步求解即可.【详解】(1)3233233733631061a a b a a b a b a a b +++----=3332233731033661a a a a b a b a b a b +-+-+--=1-,∴该多项式的值与a 、b 的取值无关, ∴1,22a b ==-是多余的条件. (2)2233x mx nx x -++-+=2233x nx mx x -++-+=2(3n)(1)3x m x -++-+∵无论x 取任何值,多项式值不变,∴30n -+=,10m -=,∴3n =,1m =.【点睛】本题主要考查了多项式运算中的无关类问题,熟练掌握相关方法是解题关键.4.用代数式表示:某厂的产量每年增长15%,如果第一年的产量是a ,那么第二年的产量是多少?解析:15a【分析】设第一年的产量为a ,以15%的速度增长,表示在m 的基础上增长a 的15%.【详解】解:根据题意,得设第一年的产量为a,以15%的速度增长,∴第二年的产量为a(1+15%)=1.15a.【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找到所求的量的等量关系.。
[教育资源网] 百万教学资源,完全免费,无须注册,天天更新!
[教育资源网
] 教学资源集散地。
最大的免费教育资源网!
知识点复习
(一) 阅读书中第16页到第21页,理解正负数及有理数的分类,回答下列问题(注意先看书,然后答题)
1 海面上的高度记为正,海面下的高度记为负,那么海面上981m 记作
,
2 向北走-100m 的实际意义是
3 将下列各数分类;-5 0.05
4
24-4.2 26
-35
10.7
10%
300%
21
.0整数集合: {…}分数集合: {…}正整数集合: {…}负整数集合: {…}
自然数: {
…}
(二)阅读书22页到29页理解数轴的画法,能够利用数轴比较有理数的大小
,理解相反数的定义
,
回答下列各题:1 数轴的三要素
,
,
.
2 一个数是a,那么它的相反数可以表示成,零的相反数是
-(-5)是
的相反数
3 相反数是它本身的数是
,最小的正整数是
,最大的负整数是
,
4 先化简下列数,并画出数轴,表示出它们的相反数
(1)-(+3); (2)+(+
5
4); (3)-(-4); (4)+(-0.5).
5 如果将点B 向右移动3个单位长度,再向左移动
5个单位长度,终点表示的数是
-1,那么点B 所表示的数是 .
(三) 阅读书29页到30页仔细揣摩绝对值的定义,回答下列各题
1 距离原点有3个单位长度的点有个,它们分别是和
2 与3距离2个单位长度的点有个,它们分别是
和
-4与-4.5之间的距离是
3 一个数为a,那么它的绝对值可以表示成,任意有理数的绝对值都是
数.
4 一个数的绝对值是它本身,则这个数是5
5=
,
3
2的相反数是,
)
2
13(的倒数是(四)阅读书32页到34页,掌握如何比较有理数的大小1不小于-4的负整数有个,它们分别是
2 绝对值不超过4的整数有个,它们分别是
3
3
24
39
110
8
5-0.618
(五)阅读书64页到66页理解科学记数法,阅读书
71页到74页理解近似数和有效数字
1用科学记数法表示下列各数
(1)800= (2)1 800 000= (3)1230.67= (4)3210= (5)50600= 2 用四舍五入法,按要求对下列各数取近似数(1)1102.5
亿(精确到亿)
;(2)0.00291 (
精确到万分位) (3)0.07902 (
保留三位有效数字)
(4)129551(保留3个有效数字) ; (5) 4753010(保留2个有效数字)
(六)有理数的加减法(看书中第35页到48页) 重点有理数加法法则
1计算
(1)(-12)+(+3) (2)(+15)+(-4) (3)(-16)+(-8) (4)(+23)+(+24) (5)(-102)+132 (6)(-32)+(-11) (7) (-35)+0 (8) 78+(-85)
(9) (-14)-(+15) (10) (-14)-(-16) (11) 0-(+52) (12) 108-(-11).
2 列式并计算
(1)求+1.2的相反数与-3.1的绝对值的和; (2)
3
24
与
212
的和的相反数是多少?
(3)-1减去-
6
5与
6
1的和,所得得差是多少? (4) 什么数与
12
5
的和等于-1?
3(1) (+14)+(-4)+(-2)+(+26)+(-3) (2) (-1.8)+(+0.7)+(-0.9)+1.3+(-0.2) (3)
4
3411213)
5.2((4) [(-4)-(+7)]-(-5) (5)3-[(-3)-12] (6)
)
2
15()
4
32
()4
13
(2
1 (7) 2
11
1)4
3(
4
12
(七)有理数的乘除法
(看书50页到63页)重点是
有理数乘法法则
(1)
4
5
15
5(2)
2
11
6
71(3)
3
15
.06 (4)50)
10
1(
)
2(2
(5)
126
12
14
1 (6)
)5(98.4 (7)
4
12
2
11
4
3 (8)
5
.03
12
13
2(八)有理数的混合运算(看书67页到70页,注意运算顺序并且要认真看例2,例3,例4的解题步
骤)(1)
2
422; (2)
4
317
2
2
; (3) 2
2
119
8
5
225
.1。