第9章 力矩分配法(至诚土木)
- 格式:ppt
- 大小:1.30 MB
- 文档页数:27
土木工程力学辅导——力矩分配法1. 力矩分配法的基本运算● 三个基本概念转动刚度: 111z S M k k =k S 1:1k 杆的1用的弯矩。
分配系数: M SS M kkk )1(111=∑k 1μ:当结点1杆的1端的力矩。
传递系数: k k k M C M 111=k C 1矩的比值。
当单位力偶作用在结点1弯矩乘以传递系数。
● 一个基本运算如图1所示,各杆的转动刚度为:141413131212,4,3i S i S i S ===各杆的力矩分配系数为:∑∑∑===)1(11414)1(11313)1(11212,,kKkS S S S S S μμμ分配给各杆的分配力矩即近端弯矩为: M SS MM SS MM M SS Mkkk∑∑∑====)1(11414)1(1131312)1(11212,,μμμμ各杆的传递系数为:1,21,0141312-===C C C各杆的传递弯矩即远端弯矩为:144113131331121221,21,0M MM M C MM C MCCC -=====2.具有一个结点角位移结构的计算 步骤:●加约束:在刚结点i 处加一附加刚臂,求出固端弯矩,再求出附加刚臂给结点的约束力矩f i M 。
●放松约束:为消掉约束力矩f i M ,加-f i M ,求出各杆端弯矩。
分配系数固端弯矩分配及传递弯矩最后弯矩M图(单位:KN.m)附加刚臂对结点的约束力矩为:m KN MBf .7560135=-=● 放松结点:在结点B 上加外力偶Bf M-,求出分配弯矩和传递弯矩。
定义lEI i =转动刚度为:i i S i i S BC BC AB BA 44,33====分配系数为:57.043.0=+==+=BCAB BC BC BCBA BA BA S S S S S S μμ分配弯矩为: ()()mkN Mm kN M BCBA .25.327543.0.75.427557.0-=-⨯=-=-⨯=μμ传递弯矩为: ()mkN MM CBcABc .38.2175.42210-=-⨯==● 合并,固端弯矩+分配弯矩=近端弯矩,固端弯矩+传递弯矩=远端弯矩。
09第九章_力矩分配法第九章力矩分配法本章的问题:A.力矩分配法的适用条件是什么?B.什么叫固端弯矩?约束力矩如何计算?C.什么是转动刚度、分配系数和传递系数?D.什么是不平衡力矩?如何分配?E.力矩分配法的计算步骤如何?F.对于多结点的连续梁和无侧移的刚架是如何分配和传递弯矩的?力矩分配法是位移法的渐近法。
适用于连续梁和无结点线位移的刚架。
§ 9-1力矩分配法的基本概念力矩分配法的理论基础是位移法,属于位移法的渐近方法。
适用范围:是连续梁和无结点线位移的刚架。
针对本方法,下面介绍有关力矩分配法的几个相关概念。
1、名词解释(1)转动刚度转动刚度表示杆端对转动的抵抗能力。
杆端的转动刚度以S表示,它在数值上等于使杆端产生单位转角时需要施加的力矩。
图9-1给出了等截面杆件在A端的转动刚度S AB的数值。
关于S AB 应当(1)在S AB(2)S AB在图9-1中,由图9-1远端固定:远端简支:远端滑动:远端自由:i图9-1各种结构的转动刚度(2)分配系数图9-2所示三杆AB 、AD 、AC 在刚结点A 连接在一起。
远端B 、C 、D 端分别为固定端,滑动支座,铰支座。
假设有外荷载M 作用在A 端,使结点A 产生转角θA ,然后达到平衡。
试求杆端弯矩 M AB 、 M AC 、 M AD 。
由转动刚度的定义可知:M AB = S AB θA = 4i AB θA M AC = S AC θA = i AC θA M AD= S AD θA = 3i AD aθM A θ=式中将A θ即:杆AB的转动刚度与交于A点的各杆的转动刚度之和的比值。
注意:同一结点各杆分配系数之和应等于零。
即Σμ=μAB+μAC+μAD=1总之:作用于结点A的力偶荷载M,按各杆端的分配系数分配于各杆的A端。
(3)传递系数在图9-2中,力偶荷载M作用于结点A,使各杆近端产生弯矩,同时也使各杆远端产生弯矩。
由位移法的刚度方程可得杆端弯矩的具体数值如下:M AB = 4i ABθA M B A = 2i ABθAM AC = i ACθA M CA =-i ACθAM AD =3i ADθA M DA = 0由上式可看出,远端弯矩和近端弯矩的比值称为传递系数用C AB表示。
13 力矩分配法力法和位移法的优点是计算结果准确可靠。
力矩分配法,是一种渐近计算法。
简便。
只适合于连续梁及无侧移刚架的计算。
13.1 力矩分配法的基本原理1、名词解释(1)转动刚度: 111z S M k k =:1k 杆的1端产生单位转角时,在该端所需作用的弯矩。
(2)分配系数:MM S S M k kk k1)1(111μ==∑ k 1μ:当结点1处作用有单位力偶时,分配给1k 杆的1端的力矩。
(3)传递系数:k k k M C M 111=:当杆件近端发生转角时,远端弯矩与近端弯矩的比值。
当单位力偶作用在结点1时,按分配系数分配给各杆的近端为近端弯矩;远端弯矩等于近端弯矩乘以传递系数。
2、力矩分配法的基本原理(1)计算各杆的分配系数=(2)由分配系数计算近端的弯矩。
=M(3)计算各杆的远端弯矩。
= C A k3、非结点荷载作用下单结点结构的计算 力矩分配法的计算步骤如下:(1)固定结点B ,即在结点B 加附加刚臂。
计算各杆的固端弯矩,并求出结点不平衡力矩F BK F B M M ∑=。
(2)放松结点B ,相当于在结点B 加力矩-。
计算下列各项 分配系数B BKBKS S ∑=μ分配弯矩 BK μ=(-)传递弯矩 μBK BK M C =(3)叠加,计算各杆杆端最后弯矩μBK F BKBK M M M +=CKB F KB KB M M M +=13.2力矩分配法计算连续梁及无侧移刚架1.掌握力矩分配法中正负号规定。
理解转动刚度、分配系数、传递系数概念的物理意义;掌握它们的取值。
能够根据远端的不同支承条件熟练地写出各种情形的杆端转动刚度、向远端的传递系数,并计算分配系数。
2.通过单结点的力矩分配法,理解力矩分配法的物理意义,掌握力矩分配法的主要环节:(1) 固定刚结点。
对刚结点施加阻止转动的约束,根据荷载,计算各杆的固端弯矩和结点的约束力矩;(2) 放松刚结点。
根据各杆的转动刚度,计算分配系数,将结点的约束力矩相反值乘以分配系数,得各杆的分配弯矩;(3) 将各杆端的分配弯矩乘以传递系数,得各杆远端的传递弯矩。
第十八章力矩分配法力矩分配法理论基础:位移法;计算对象:杆端弯矩;适用范围:连续梁和无侧移刚架。
一、转动刚度转动刚度表示杆端对转动的抵抗能力。
它在数值上等于使杆端产生单位转角时需要施加的力矩,以SAB表示。
A是施力端(近端),B为远端。
1S AB=4i1S AB=3iS AB= i1S AB=0远端固定远端铰支远端滑动远端自由第一节力矩分配法的基本原理1S AB =4i1S AB =3iS AB = i 1S AB =0远端固定远端铰支远端滑动远端自由转动刚度远端固定,S =4i 远端简支,S =3i 远端定向,S =i 远端自由,S =0S AB 与杆的线刚度i 和远端支承情况有关。
i —杆件的线刚度,lEI i二、传递系数M AB = 4i AB ϕAM BA = 2i AB ϕA21==AB BA ABM M C M AB = 3i AB ϕA 0==ABBA ABM M C M AB = i AB ϕAM BA = -i AB ϕA1-==ABBA ABM M C ϕAlAB远端固定ABϕAϕAAB远端铰支远端滑动M BA = 0远端支承转动刚度传递系数固定S=4i C =1/2简支S=3i C =0定向S=i C = -1自由S=0三、力矩分配法的基本原理杆端弯距:取结点A 作隔离体,由∑M =0,得分配系数CA BDi ABi AC i ADAAB A AB AB S i M ϕϕ==4A AC A AC AC S i M ϕϕ==AAD A AD AD S i M ϕϕ==3}M M ABM ACM ADAAD AC AB S S S M ϕ)(++=∑=++=AAD AC AB A SMS S S M ϕMSSM AADAD ∑=M SS M A ABAB ∑=M S S M AACAC ∑=注:1)分配弯矩是杆端转动时产生的近端弯矩。
2)结点集中力偶顺时针为正。
∑=AAkAkSS μMM Ak Ak μ=分配弯矩A ϕM1321=++=∑A A A Ak μμμμ各杆的远端弯矩M kA 可以利用传递系数求出。