【易错题】高中必修五数学上期末第一次模拟试卷附答案
- 格式:doc
- 大小:1.44 MB
- 文档页数:18
【易错题】高中必修五数学上期末试卷(含答案)(1)一、选择题1.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S2.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x +1;④y =sin44x ππ+()A .1B .2C .3D .43.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .04.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-315.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .36.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈u u u r u u u r的最小值为M ,若M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭7.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) A.38- B.34- C.38+ D8.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .569.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-10.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .2811.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .201912.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,二、填空题13.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.14.要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则a 的取值范围是__________.15.已知变量,x y 满足约束条件2{41y x y x y ≤+≥-≤,则3z x y =+的最大值为____________.16.在钝角ABC V 中,已知7,1AB AC ==,若ABC V 的面积为62,则BC 的长为______.17.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a =g ,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式112020|1|13n nT a -->成立的最大正整数n 的值是__________.18.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 19.已知是数列的前项和,若,则_____.20.若直线1(00)x ya b a b+=>,>过点(1,2),则2a+b 的最小值为______.三、解答题21.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a+的值; (2)若2a =,求ABC ∆面积的最大值.22.在条件①()(sin sin )()sin a b A B c b C +-=-,②sin cos()6a Bb A π=+,③sinsin 2B Cb a B +=中任选一个,补充到下面问题中,并给出问题解答.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,6b c +=,a =, . 求ABC ∆的面积.23.ABC 的内角A 、B 、C 所对的边分别为a b c ,,,且sin sin sin sin a A b B c C B +=+()1求角C ; ()2求cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值.24.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .25.已知数列{}n a 的前n 项和为n S ,且4133n n S a =-. (1)求{}n a 的通项公式;(2)若1n b n =+,求数列{}n n a b 的前n 项和n T . 26.已知0a >,0b >,且1a b +=. (1)若ab m ≤恒成立,求m 的取值范围; (2))若41212x x a b+≥--+恒成立,求x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.2.C解析:C 【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数; ④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.答案:C.3.C解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.4.C解析:C 【解析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q =, 因此,()()101105510555111111233111a q S q qq S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.5.B解析:B 【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S q q---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.6.C解析:C 【解析】试题分析:直线()4x m y =-恒过定点(0,4),当0m >时,约束条件()4{04y x y x m y ≤-≤≥-对应的可行域如图,则()OP OA R λλ-∈u u u r u u u r的最小值为0M=,满足2M ≤,当0m =时,直线()4x m y =-与y 轴重合,平面区域()4{04y x y x m y ≤-≤≥-为图中y 轴右侧的阴影区域,则()OP OA R λλ-∈u u u r u u u r的最小值为0M =,满足2M ≤,当0m <时,由约束条件()4{04y x y x m y ≤-≤≥-表示的可行域如图,点P 与点B 重合时,()OP OA R λλ-∈u u u r u u u r的最小值为M OB =u u u r ,联立{(4)y x x m y ==-,解得44(,)11m mB m m --,所以421m OB m =-u u u r ,由4221m m ≤-,解得1135m -≤≤,所以103m -≤≤,综上所述,实数m 的取值范围是1,3⎡⎫-+∞⎪⎢⎣⎭,故选C.考点:简单的线性规划.【方法点晴】本题主要考查了二元一次不等式组所表示的平面区域、简单的线性规划求最值问题,着重考查了数形结合思想方法及分类讨论的数学思想方法的应用,关键是正确的理解题意,作出二元一次不等式组所表示的平面区域,转化为利用线性规划求解目标函数的最值,试题有一定的难度,属于难题.7.A解析:A 【解析】【分析】由正弦定理求出c , 【详解】A 是三角形内角,1tan 3A =,∴sin 10A =, 由正弦定理sin sin a c A C=得sin sin a C c A ===, 又2222cos c a b ab C =+-,即22512cos15012b b b =+-︒=+,2302b +-=,32b =(32b =舍去),∴11sin 122ABC S ab C ∆==⨯︒=. 故选:A . 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查同角间的三角函数关系.解三角形中公式较多,解题时需根据已知条件确定先选用哪个公式,再选用哪个公式.要有统筹安排,不致于凌乱.8.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 9.A解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍, 联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划10.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质11.A解析:A 【解析】 【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n …时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立, ∴22n a n =-, ∴cos2n n n b a π==2(1)cos 2n n π-, ∵函数cos 2n y π=的周期242T ππ==,∴()2017152013T b b b =++++L (26b b +)2014b ++L ()()3720154820162017b b b b b b b +++++++++L L02(152013)0=-+++++L 2(3+72015)045042016+++=⨯=L ,故选:A. 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.12.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示:由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x=-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.二、填空题13.9【解析】【分析】将分式展开利用基本不等式求解即可【详解】又x +2y =4即当且仅当等号成立故原式故填9【点睛】本题考查基本不等式求最值考查等价变换思想与求解能力注意等号成立条件解析:9 【解析】 【分析】将分式展开,利用基本不等式求解即可 【详解】(4)(2)82416161x y xy x y xy xy xy xy xy++++++===+又x +2y =422,xy ≥即2xy ≤,当且仅当2,1x y ==等号成立,故原式9≥ 故填9 【点睛】本题考查基本不等式求最值,考查等价变换思想与求解能力,注意等号成立条件14.【解析】【分析】设要使得关于的方程的一根笔译1大且另一根比1小转化为即可求解【详解】由题意设要使得关于的方程的一根笔译1大且另一根比1小根据二次函数的图象与性质则满足即即解得即实数的取值范围是【点睛 解析:21a -<<【解析】 【分析】设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为()10f <,即可求解.【详解】由题意,设()22(1)2f x x a x a =+-+-, 要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小, 根据二次函数的图象与性质,则满足()10f <,即220a a +-<,即(1)(2)0a a -+<,解得21a -<<,即实数a 的取值范围是21a -<<.【点睛】本题主要考查了一元二次函数的图象与性质的应用问题,其中解答中把关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为(1)0f <是解得的关键,着重考查了转化思想,以及推理运算能力.15.11【解析】试题分析:由题意得作出不等式组所表示的可行域如图所示由得平移直线则由图象可知当直线经过点时直线的截距最大此时有最大值由解得此时考点:简单的线性规划解析:11【解析】试题分析:由题意得,作出不等式组所表示的可行域,如图所示,由3z x y =+,得3y x z =-+,平移直线3y x z =-+,则由图象可知当直线3y x z =-+经过点A 时,直线3y x z =-+的截距最大,此时z 有最大值,由2{1y x y =-=,解得(3,2)A ,此时33211z =⨯+=.考点:简单的线性规划.16.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题 10【解析】【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可.【详解】由题意得, 11sin sin 22A A =⨯⇒= 又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.17.8【解析】【分析】根据求得再求出带入不等式解不等式即可【详解】因为数列为正项的递增等比数列由解得则整理得:使不等式成立的最大整数为故答案为:【点睛】本题主要考查了等比数列的性质和等比数列的求和同时考 解析:8【解析】【分析】根据1524158281a a a a a a +=⎧⎨==⎩,求得15181a a =⎧⎨=⎩,13-=n n a .再求出13(1)3n n T =-,带入不等式112020|1|13n nT a -->,解不等式即可. 【详解】因为数列{}n a 为正项的递增等比数列,由1524158281a a a a a a +=⎧⎨==⎩,解得15181a a =⎧⎨=⎩. 则3q =,13-=n n a .1(1)1323(1)1313n n n T -=⨯=--. 112020|1|13n n T a -->⇒1112020|11|133n n ---->. 整理得:38080n <.使不等式成立的最大整数n 为8.故答案为:8【点睛】本题主要考查了等比数列的性质和等比数列的求和,同时考查了学生的计算能力,属于中档题.18.【解析】【分析】由已知推导出=(=1+()从而-=-由此能求出【详解】∵数列满足:∴()+()+……+()=++……+==(∴=(;又+……+()=1+++……+=1+=1+()即=1+()∴-=- 解析:23- 【解析】【分析】由已知推导出2n S =23(11)4n -,21n S -=1+13(1114n --),从而22n n a S =-21n S -=21132n -n -23,由此能求出2lim n n a →∞ 【详解】 ∵数列{}n a 满足:1 1a =,112nn n a a +⎛⎫+= ⎪⎝⎭, ∴(12 a a +)+(34 a a +)+……+(212 n n a a -+)=12+312⎛⎫ ⎪⎝⎭+……+2112n -⎛⎫ ⎪⎝⎭=11124114n ⎛⎫- ⎪⎝⎭-=23(11)4n -, ∴2n S =23(11)4n -; 又12345a a a a a +++++……+(2221 n n a a --+)=1+212⎛⎫ ⎪⎝⎭+412⎛⎫ ⎪⎝⎭+……+2212n -⎛⎫ ⎪⎝⎭=1+2111124114n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=1+13(1114n --), 即21n S -=1+13(1114n --) ∴22n n a S =-21n S -=21132n -n -23 ∴2211lim lim(32n n n n a n -→∞→∞=-2)3=-2 3, 故答案为:-2 3【点睛】本题考查数列的通项公式的求法,数列的极限的求法,考查逻辑思维能力及计算能力,属于中档题.19.4950【解析】【分析】由an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an =2n 即可计算【详解】解:∵an+Sn=2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an 解析:【解析】【分析】由a n +S n =2n ,a n +1+S n +1=2n +1,两式相减可得2a n +1﹣a n =2n .即可计算.【详解】解:∵a n +S n =2n ,a n +1+S n +1=2n +1,两式相减可得2a n +1﹣a n =2n .则(2a 2﹣a 1)(2a 3﹣a 2)…(2a 100﹣a 99)=21•22•23…299=24950.【点睛】本题考查了数列的递推式,属于中档题.20.【解析】当且仅当时取等号点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才能应用否则会出现解析:8【解析】12124412(2)()448b a b a a b a b a b a b a b a b+=∴+=++=++≥+⋅=Q ,当且仅当2b a = 时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.三、解答题21.(1)2224b c a+=(27 【解析】【分析】(I )由题意2sin 3tan c B a A =,利用正、余弦定理化简得2224b c a +=,即可得到答案. (II )因为2a =,由(I )知222416b c a +==,由余弦定理得6cos A bc=,进而利用基本不等式,得到6cos bc A =,且(0,)2A π∈,再利用三角形的面积公式和三角函数的性质,即可求解面积的最大值.【详解】 解:(I )∵2sin 3tan c B a A =,∴2sin cos 3sin c B A a A =,由正弦定理得22cos 3cb A a =, 由余弦定理得22222?32b c a cb a bc+-=,化简得2224b c a +=, ∴2224b c a +=. (II )因为2a =,由(I )知222416b c a +==, ∴由余弦定理得2226cos 2b c a A bc bc+-==, 根据重要不等式有222b c bc +≥,即8bc ≥,当且仅当b c =时“=”成立, ∴63cos 84A ≥=. 由6cos A bc =,得6cos bc A =,且0,2A π⎛⎫∈ ⎪⎝⎭, ∴ABC ∆的面积116sin sin 3tan 22cos S bc A A A A ==⨯⨯=. ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==,∴tan A =≤=∴3tan S A =≤∴ABC ∆的面积S .【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.22.见解析【解析】【分析】若选①:利用正弦定理可得(a b)()(c b)a b c +-=-,即222b c a bc +-=,再利用余弦定理求得cos A ,进而求得bc ,从而求得面积;若选②:利用正弦定理可得sin sin sin cos()6A B B A π=+,化简可得tan A =,即6A π=,利用余弦定理求得bc ,从而求得面积; 若选③:根据正弦定理得sin sinsin sin 2B C B A B +=,整理可得3A π=,进而求得面积 【详解】解:若选①: 由正弦定理得(a b)()(c b)a b c +-=-,即222b c a bc +-=, 所以2221cos 222b c a bc A bc bc +-===, 因为(0,)A π∈,所以3A π=. 又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 若选②: 由正弦定理得sin sin sin cos()6A B B A π=+.因为0B π<<,所以sin 0B ≠,sin cos()6A A π=+,化简得1sin sin 2A A A =-,即tan A =,因为0A π<<,所以6A π=. 又因为2222cos 6a b c bc π=+-,所以22bc =,即24bc =-所以111sin (246222ABC S bc A ∆==⨯-⨯=- 若选③: 由正弦定理得sin sin sin sin 2B C B A B +=, 因为0B π<<,所以sin 0B ≠,所以sinsin 2B C A +=,又因为B C A +=π-, 所以cos 2sin cos 222A A A =, 因为0A π<<,022A π<<,所以cos 02A ≠, 1sin22A ∴=,26A π=,所以3A π=. 又2222()3a b c bc b c bc =+-=+-,a =6bc +=,所以4bc =,所以11sin 4sin 223ABC S bc A π∆==⨯⨯= 【点睛】本题考查正弦定理与余弦定理处理三角形中的边角关系,考查三角形面积公式的应用,考查运算能力23.()()124C π=2【解析】试题分析:(1)由正弦定理得到222a b c +=,再由余弦定理得到()222cos 0224a b c C C C ab ππ+-==∈∴=,;(2)由第一问得到原式等价于3cos 44A A ππ⎛⎫--+ ⎪⎝⎭,化简后为2sin 6A π⎛⎫=+ ⎪⎝⎭,再根据角的范围得到三角函数的范围即可.解析:()2221sin sin sin sin a A b B c C B a b c +=∴+=Q即222a b c +-=由余弦定理()222cos 024a b c C C C ab ππ+-==∈∴=,(2cos 4A B π⎛⎫-+= ⎪⎝⎭31cos cos 2cos 4422A A A A A A ππ⎛⎫⎛⎫--+=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ 2sin 6A π⎛⎫=+ ⎪⎝⎭ ()110,,6612A A ππππ⎛⎫∈+∈ ⎪⎝⎭Q ,,12sin 26A π⎛⎫-≤+≤ ⎪⎝⎭cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值为2 24.(1)2n a n =;(2)S n =212n -•3n +1+32 【解析】【分析】(1)等差数列{a n }的公差设为d ,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得b n =2n •3n ,由数列的错位相减法求和即可.【详解】(1)等差数列{a n }的公差设为d ,a 3=6,且前7项和T 7=56.可得a 1+2d =6,7a 1+21d =56,解得a 1=2,d =2,则a n =2n ;(2)b n =a n •3n =2n •3n ,前n 项和S n =2(1•3+2•32+3•33+…+n •3n ),3S n =2(1•32+2•33+3•34+…+n •3n +1),相减可得﹣2S n =2(3+32+33+…+3n ﹣n •3n +1)=2•(()31313n --﹣n •3n +1), 化简可得S n =212n -•3n +1+32. 【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题.25.(1)14n n a -=(2)322499n n n T +=⨯- 【解析】【分析】(1)利用公式1n n n a S S -=-代入计算得到答案.(2)先计算得到()114n n na b n -=+⨯,再利用错位相减法计算得到答案. 【详解】(1)因为4133n n S a =-,所以()1141233n n S a n --=-≥, 所以当2n ≥时,14433n n n a a a -=-,即14n n a a -=, 当1n =时,114133S a =-,所以11a =,所以14n n a -=. (2)()114n n na b n -=+⨯, 于是()01221243444414n n n T n n --=⨯+⨯+⨯++⨯++⨯L ,①()12314243444414n n n T n n -=⨯+⨯+⨯++⨯++⨯L ,②由①-②,得()121223244414433n n n n T n n -⎛⎫-=++++-+⨯=-+⨯ ⎪⎝⎭L , 所以322499n n n T +=⨯-. 【点睛】 本题考查了数列的通项公式,利用错位相减法计算数列的前n 项和,意在考查学生对于数列公式方法的灵活运用.26.(1)14m ≥(2)[]6,12- 【解析】【分析】(1)由已知根据基本不等式得2124a b ab +⎛⎫≤= ⎪⎝⎭,再由不等式的恒成立的思想:ab m ≤恒成立,则需()max m ab ≥得所求范围;(2)根据基本不等式得()41419a b a b a b ⎛⎫+=++≥ ⎪⎝⎭,再根据不等式恒成立的思想得到绝对值不等式2129x x --+≤,运用分类讨论法可求出不等式的解集.【详解】(1)0a >,0b >,且1a b +=,∴2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时“=”成立,由ab m ≤恒成立,故14m ≥. (2)∵(),0,a b ∈+∞,1a b +=,∴()41414559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,故若41212x x a b+≥--+恒成立,则2129x x --+≤, 当2x -≤时,不等式化为1229x x -++≤,解得62x -≤≤-, 当122x -<<,不等式化为1229x x ---≤,解得122x -<<,当12x ≥时,不等式化为2129x x ---≤,解得1122x ≤≤. 综上所述,x 的取值范围为[]6,12-.【点睛】本题综合考查运用基本不等式求得最值,利用不等式的恒成立的思想建立相应的不等关系,分类讨论求解绝对值不等式,属于中档题.。
【易错题】高中必修五数学上期末一模试题含答案(1)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆的面积为2,则a 的值为( ) A .2BCD .13.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1764.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .45.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2016.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<7.已知数列{}n a的首项110,1n n a a a +==+,则20a =( ) A .99B .101C .399D .4018.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π9.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .310.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .1311.已知01x <<,01y <<,则)AB .CD .12.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=()ABCD 二、填空题13.数列{}n a 满足11,a =前n 项和为n S ,且*2(2,)n n S a n n N =≥∈,则{}n a 的通项公式n a =____;14.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________; 15.关于x 的不等式a 34≤x 2﹣3x +4≤b 的解集为[a ,b ],则b -a =________. 16.已知函数1()f x x x=-,数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()f a f a f a f a f a a +++⋅⋅⋅++=-,则1a =_______.17.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.18.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________19.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = . 20.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题21.在ABC V 中内角,,A B C 所对的边分别为,,a b c .已知2,a b ==,面积S =. (1)求sin A 的值;(2)若点D 在BC 上(不含端点),求sin BDBAD∠的最小值.22.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,sin tan cos sin tan cos b B C b B a A C a A -=-. (1)求证:A B =;(2)若c =3cos 4C =,求ABC ∆的周长.23.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .24.已知a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边,222sin 2cos 22B Aa b b c +=+. (1)求B ;(2)若6c =,[2,6]a ∈,求sin C 的取值范围.25.在等比数列{}n a 中,11a =,且2a 是1a 与31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足(1)1(1)n n n n a b n n ++=+(*n N ∈),求数列{}n b 的前n 项和n S .26.已知()f x a b =⋅v v ,其中()2cos ,2a x x =v,()cos ,1b x =v ,x ∈R .(1)求()f x 的单调递增区间;(2)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,()1f A =-,a =且向量()3,sin m B =v 与()2,sin n C =v共线,求边长b 和c 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx> 442244x y x yy x y x∴+≥⋅=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.2.B解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,23c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.3.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=.即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.5.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A .【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.6.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.7.C解析:C 【解析】 【分析】 【详解】由11n n a a +=+,可得)21111n a ++==,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.8.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.9.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示,由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.10.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.11.B解析:B 【解析】 【分析】2+≥x y ,边分别相加求解。
【易错题】高中必修五数学上期末第一次模拟试卷附答案(1)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭3.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年4.设x y ,满足约束条件10102x y x y y -+≤⎧⎪+-⎨⎪≤⎩>,则yx 的取值范围是( )A .()[),22,-∞-+∞UB .(]2,2-C .(][),22,-∞-+∞UD .[]22-,5.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形6.已知数列{}n a 的首项110,211n n n a a a a +==+++,则20a =( ) A .99B .101C .399D .4017.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .238.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞9.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定10.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .8411.已知01x <<,01y <<,则)AB .CD .12.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-二、填空题13.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.14.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______15.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.16.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.17.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于_____.18.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 19.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.20.设x ,y 满足则220,220,20,x y x y x y --≤⎧⎪-+≥⎨⎪++≥⎩则3z x y =-的最小值是______.三、解答题21.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =. (1)若b =30A =︒,求角B 的值;(2)若ABC ∆的面积3ABC S ∆=,cos 45B =,求,b c 的值. 22.ABC 的内角A 、B 、C 所对的边分别为a b c ,,,且sin sin sin sin a A b B c C B +=+()1求角C ;()2求cos 4A B π⎛⎫-+⎪⎝⎭的最大值. 23.已知数列{}n a 的前n 项和为n S ,满足()*2N n n S a n n =-∈.(Ⅰ)证明:{}1n a +是等比数列; (Ⅱ)求13521n a a a a -+++⋯+的值.24.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表:已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润?25.在公差不为0的等差数列{}n a 中,1a ,3a ,9a 成公比为3a 的等比数列,又数列{}n b 满足*2,21,()2,2,n a n n k b k N n n k ⎧=-=∈⎨=⎩. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .26.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2. 则21221122a ab --==. 本题选择A 选项.2.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果3.C解析:C 【解析】记公元1984年为第一年,公元2047年为第64年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年. 故选C.4.A解析:A 【解析】 【分析】根据题意,作出可行域,分析yx的几何意义是可行域内的点(),x y 与原点O 连线的斜率,根据图象即可求解. 【详解】作出约束条件表示的可行域,如图所示,yx 的几何意义是可行域内的点(),x y 与原点O 连线的斜率,由102x y y -+=⎧⎨=⎩,得点A 的坐标为()1,2,所以2OA k =,同理,2OB k =-, 所以yx的取值范围是()[),22,-∞-+∞U . 故选:A 【点睛】本题考查简单的线性规划,考查斜率型目标函数问题,考查数形结合思想,属于中等题型.5.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.6.C解析:C 【解析】 【分析】 【详解】由11n n a a +=+,可得)21111n a ++==,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.7.C解析:C 【解析】 试题分析:∵24354{10a a a a +=+=,∴1122{35a d a d +=+=,∴14{3a d =-=, ∴1011091040135952S a d ⨯=+⨯=-+=. 考点:等差数列的通项公式和前n 项和公式.8.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤,则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.9.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.10.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.11.B解析:B 【解析】 【分析】2222++≥x y x y 222+x y ()2212+-x y ,()2212-+x y ()()22112-+-x y 边分别相加求解。
【易错题】高中必修五数学上期末第一次模拟试卷(带答案)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S3.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .14.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A.2+B1C.2D15.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117 D .1166.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞7.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .138.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项的和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A .24B .48C .60D .849.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .3210.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .911.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22 B .24 C .26 D .2812.在中,,,,则A .B .C .D .二、填空题13.数列{}21n-的前n 项1,3,7..21n-组成集合{}()*1,3,7,21nn A n N=-∈,从集合nA中任取()1,2,3?··n k k =个数,其所有可能的k 个数的乘积的和为(若只取一个数,规定乘积为此数本身),记12n n S T T T =++⋅⋅⋅+,例如当1n =时,{}1111,1,1===A T S ;当2n =时,{}21221,2,13,13,13137A T T S ==+=⨯=++⨯=,试写出n S =___14.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223)S a b c =+-,则角C =__________. 15.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 16.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积623S =+形的外接圆半径是______17.设122012(1)(1)(1)n nn x x x a a x a x a x ++++++=++++L L ,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=L ,则n =_____18.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式n a =_______.19.设(32()lg 1f x x x x =++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一)20.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 三、解答题21.已知数列中,,. (1)求证:是等比数列,并求的通项公式; (2)数列满足,求数列的前项和.22.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式;(2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .23.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .24.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<L . 25.在△ABC 中,角A B C 、、的对边分别为a b c 、、,已知3cos()16cos cos B C B C --=,(1)求cos A (2)若3a =,△ABC 的面积为22求b c 、26.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,()()22a b <,即a b <.选D.2.C解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.3.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.4.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.5.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅.6.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.7.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.8.C解析:C 【解析】试题分析:∵11011101100000a a a d a a ⋅∴>,<,<,>,<, ∴18110111810181060T a a a a S S S =+⋯+--⋯-=--=(),选C . 考点:1.等差数列的求和;2.数列的性质.9.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号.故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.10.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+,联立20x y y k +=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k-=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.11.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质12.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.二、填空题13.【解析】【分析】通过计算出并找出的共同表示形式进而利用归纳推理即可猜想结论【详解】当时则由猜想:故答案为:【点睛】本题考查元素与集合关系的判断以及数列前项和的归纳猜想属于中档题 解析:1()221n n +-【解析】 【分析】通过计算出3S ,并找出1S 、2S 、3S 的共同表示形式,进而利用归纳推理即可猜想结论. 【详解】当3n =时,{}31,3,7A =,则113711T =++=,213173731T =⨯+⨯+⨯=,313721T =⨯⨯=,∴312311312163S T T T =++=++=,由1212112121S ⨯==-=-,2332272121S ⨯==-=-, 34623632121S ⨯==-=-,⋯猜想:(1)221n n n S +=-.故答案为:1()221n n +-.【点睛】本题考查元素与集合关系的判断以及数列前n 项和的归纳猜想,属于中档题.14.【解析】分析:利用面积公式和余弦定理结合可得详解:由余弦定理:可得:∴∵∴故答案为:点睛:在解三角形时有许多公式到底选用哪个公式要根据已知条件根据待求式子灵活选用象本题出现因此联想余弦定理由于要求角解析:π3. 【解析】分析:利用面积公式in 12s S ab C =和余弦定理结合可得.详解:由)2221sin 2S a b c ab C =+-=. 余弦定理:2222cos a b c ab C +-=,可得:12cos sin 42ab C ab C =,∴tan C = ∵0πC <<, ∴π3C =. 故答案为:π3. 点睛:在解三角形时,有许多公式,到底选用哪个公式,要根据已知条件,根据待求式子灵活选用,象本题出现222a b c +-,因此联想余弦定理2222cos a b c ab C +-=,由于要求C 角,因此面积公式自然而然 选用in 12s S ab C =.许多问题可能比本题要更复杂,目标更隐蔽,需要我们不断探索,不断弃取才能得出正确结论,而这也要求我们首先要熟记公式.15.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号 考点:1线性规划的应用;2利解析:7 【解析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.考点:1、线性规划的应用;2、利用基本不等式求最值.16.【解析】【分析】设三角形外接圆半径R由三角形面积公式解方程即可得解【详解】由题:设三角形外接圆半径为R()根据正弦定理和三角形面积公式:即解得:故答案为:【点睛】此题考查三角形面积公式和正弦定理的应解析:2【解析】【分析】设三角形外接圆半径R ,由三角形面积公式21sin 2sin sin sin 2S ab C R A B C ==解方程即可得解.【详解】由题:1sin sin 75sin(4530)22224B =︒=︒+︒=+=设三角形外接圆半径为R (0R >),根据正弦定理和三角形面积公式:211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅=即2622R ⨯+=,解得:R =故答案为:【点睛】此题考查三角形面积公式和正弦定理的应用,利用正弦定理对面积公式进行转化求出相关量,需要对相关公式十分熟练.17.9【解析】【分析】记函数利用等比数列求和公式即可求解【详解】由题:记函数即故答案为:9【点睛】此题考查多项式系数之和问题常用赋值法整体代入求解体现出转化与化归思想解析:9【解析】【分析】记函数122012()(1)(1)(1)n n n f x x x x a a x a x a x =++++++=++++L L ,012222(1)2n n f a a a a =+++=++++L L ,利用等比数列求和公式即可求解.【详解】由题:记函数212012()(1)(1)(1)n n n f x a a x a x a x x x x =++++=++++++L L ,021222(12)(21)212n nn f a a a a -=++++++=-=+L L , 即1221022n +-=,121024,9n n +==故答案为:9【点睛】 此题考查多项式系数之和问题,常用赋值法整体代入求解,体现出转化与化归思想. 18.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项解析:2221n n -- 【解析】【分析】 构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列 1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】 本题考查了数列的通项公式的求法,构造数列11n n b a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.19.充要【解析】所以为奇函数又为单调递增函数所以即是的充要条件点睛:充分必要条件的三种判断方法1定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条件2等价法:利用⇒与非⇒非⇒与非⇒非解析:充要【解析】33()()lg(()lg(lg10f x f x x x x x +-=++-+-== ,所以()f x 为奇函数,又()f x 为单调递增函数,所以0()()()()()()0a b a b f a f b f a f b f a f b +≥⇔≥-⇔≥-⇔≥-⇔+≥ ,即“0a b +≥”是“()()0f a f b +≥”的充要条件点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.20.【解析】【分析】由已知推导出=(=1+()从而-=-由此能求出【详解】∵数列满足:∴()+()+……+()=++……+==(∴=(;又+……+()=1+++……+=1+=1+()即=1+()∴-=- 解析:23- 【解析】【分析】由已知推导出2n S =23(11)4n -,21n S -=1+13(1114n --),从而22n n a S =-21n S -=21132n -n -23,由此能求出2lim n n a →∞ 【详解】 ∵数列{}n a 满足:1 1a =,112nn n a a +⎛⎫+= ⎪⎝⎭, ∴(12 a a +)+(34 a a +)+……+(212 n n a a -+)=12+312⎛⎫ ⎪⎝⎭+……+2112n -⎛⎫ ⎪⎝⎭=11124114n ⎛⎫- ⎪⎝⎭-=23(11)4n -, ∴2n S =23(11)4n -; 又12345 a a a a a +++++……+(2221 n n a a --+)=1+212⎛⎫ ⎪⎝⎭+412⎛⎫ ⎪⎝⎭+……+2212n -⎛⎫ ⎪⎝⎭=1+2111124114n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=1+13(1114n --), 即21n S -=1+13(1114n --) ∴22n n a S =-21n S -=21132n -n -23 ∴2211lim lim(32n n n n a n -→∞→∞=-2)3=-2 3, 故答案为:-2 3【点睛】本题考查数列的通项公式的求法,数列的极限的求法,考查逻辑思维能力及计算能力,属于中档题. 三、解答题21.(1)答案见解析;(2).【解析】试题分析:⑴根据数列的递推关系,结合等比数列的定义即可证明是等比数列,并求的通项公式,⑵利用错位相减法即可求得答案;解析:(1)∵∴∴,∵,,∴是以为首项,以4为公比的等比数列∴,∴,∴,(2),∴①②①-②得∴.22.(1)13n n a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】【分析】 (1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nn n a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13n n a ⎛⎫= ⎪⎝⎭,所以3n n n n a =⋅, 所以1231323333n n T n =⨯+⨯+⨯++⋅L , 则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n n T n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭, 所以()132134n n n T ++-⋅= 【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和.23.(1)2n a n =;(2)S n =212n -•3n +1+32 【解析】【分析】(1)等差数列{a n }的公差设为d ,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得b n =2n •3n ,由数列的错位相减法求和即可.【详解】(1)等差数列{a n }的公差设为d ,a 3=6,且前7项和T 7=56.可得a 1+2d =6,7a 1+21d =56,解得a 1=2,d =2,则a n =2n ;(2)b n =a n •3n =2n •3n ,前n 项和S n =2(1•3+2•32+3•33+…+n •3n ),3S n =2(1•32+2•33+3•34+…+n •3n +1),相减可得﹣2S n =2(3+32+33+…+3n ﹣n •3n +1)=2•(()31313n --﹣n •3n +1), 化简可得S n =212n -•3n +1+32. 【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题.24.(1)证明见解析;(2)证明见解析【解析】【分析】(1)当n ≥2时,S n ﹣S n ﹣121n n S S =-⇒S n ﹣S n ﹣1=S n •S n ﹣1(n ≥2),取倒数,可得111n n S S --=1,利用等差数列的定义即可证得:数列{1nS }是等差数列; (2)利用222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭进行放缩并裂项求和即可证明 【详解】(1)当2n ≥时,211n n n n S S S S --=-, 11n n n n S S S S ---=,即1111n n S S --= 从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列. (2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭L L 1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<L . 法二:则当2n ≥时22211111n S n n n n n=<=---,那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L 又当1n =时,21714S =<,当时,21714S =<满足题意, 【点睛】本题考查数列递推式的应用,考查等差数列的判定,考查等价转化思想,突出裂项法、放缩法应用的考查,属于难题.25.:(1)1cos 3A =(2)3{2b c ==或23b c =⎧⎨=⎩ 【解析】:(1)由3cos()16cos cos B C B C --=得3(cos cos sin sin )1B C B C -=- 即1cos()3B C +=-从而cos A 1cos()3B C =-+= (2)由于0,A π<<1cos 3A =,所以sin A =又ABC S =V1sin 2bc A =6bc =由余弦定理2222cos a b c bc A =+-,得2213b c += 解方程组2213{6b c bc +==,得3{2b c ==或23b c =⎧⎨=⎩26.(1)212n a n =-;(2)4(13)n n S =-.【解析】【分析】【详解】本试题主要是考查了等差数列的通项公式的求解和数列的前n 项和的综合运用.、 (1)设{}n a 公差为d ,由已知得1126{50a d a d +=-+=解得110{2a d =-=, 212n a n =-(2)21232324b a a a a =++==-Q ,∴等比数列{}n b 的公比212438b q b -===- 利用公式得到和8(13)4(13)13n n n S -⨯-==--.。
【易错题】高中必修五数学上期末试题(含答案)(1)一、选择题1.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x+1;④y =sin44x ππ+()A .1B .2C .3D .42.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .3.已知点(),P x y 是平面区域()4{04y x y x m y ≤-≤≥-内的动点, 点()1,1,A O -为坐标原点, 设()OP OA R λλ-∈u u u r u u u r的最小值为M ,若2M ≤恒成立, 则实数m 的取值范围是( )A .11,35⎡⎤-⎢⎥⎣⎦B .11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .1,2⎡⎫-+∞⎪⎢⎣⎭4.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( ) A .4126B .2314C .117D .1165.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,„„…则2z x y =-的最大值为( ).A .10B .8C .3D .26.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .147.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .788.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,且()cos 4cos a B c b A =-,则cos2A =( ) A .78B .18C.78-D .18-9.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( )A . 3-1B . 3+1C .23+2D .23-210.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A .322B .5C .5D .9211.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6012.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.设x >0,y >0,x +2y =4,则(4)(2)x y xy++的最小值为_________.15.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.16.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升;17.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.18.设n S 是等差数列{}n a 的前n 项和,若510S =,105S =-,则公差d =(___). 19.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积6S =+形的外接圆半径是______20.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值.22.ABC △的内角,,A B C 的对边分别为,,a b c,且cos )()cos a B C c b A -=-.(1)求A ; (2)若b =D 在BC 边上,2CD =,3ADC π∠=,求ABC △的面积.23.在ABC ∆sin cos C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若ABC S ∆,2b c +=+a 的值. 24.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式. 25.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.26.已知函数()2sin(2)(||)2f x x πϕϕ=+<部分图象如图所示.(1)求ϕ值及图中0x 的值;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c,已知()2,c f C ==-sin B =2sin A ,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数; ④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.答案:C.2.C解析:C 【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.3.C解析:C 【解析】试题分析:直线()4x m y =-恒过定点(0,4),当0m >时,约束条件()4{04y x y x m y ≤-≤≥-对应的可行域如图,则()OP OA R λλ-∈u u u r u u u r的最小值为0M=,满足2M ≤,当0m =时,直线()4x m y =-与y 轴重合,平面区域()4{04y x y x m y ≤-≤≥-为图中y 轴右侧的阴影区域,则()OP OA R λλ-∈u u u r u u u r的最小值为0M =,满足2M ≤,当0m <时,由约束条件()4{04y x y x m y ≤-≤≥-表示的可行域如图,点P 与点B 重合时,()OP OA R λλ-∈u u u r u u u r的最小值为M OB =u u u r ,联立{(4)y x x m y ==-,解得44(,)11m mB m m --,所以421m OB m =-u u u r ,由4221m m ≤-,解得1135m -≤≤,所以103m -≤≤,综上所述,实数m 的取值范围是1,3⎡⎫-+∞⎪⎢⎣⎭,故选C.考点:简单的线性规划.【方法点晴】本题主要考查了二元一次不等式组所表示的平面区域、简单的线性规划求最值问题,着重考查了数形结合思想方法及分类讨论的数学思想方法的应用,关键是正确的理解题意,作出二元一次不等式组所表示的平面区域,转化为利用线性规划求解目标函数的最值,试题有一定的难度,属于难题.4.A解析:A【解析】依题意,113713113713132412226132a aa Sb bb T+⋅===+⋅.5.B解析:B【解析】【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解.【详解】作出可行域如图:化目标函数为2y x z=-,联立70310x yx y+-=⎧⎨-+=⎩,解得5,2A().由图象可知,当直线过点A时,直线在y轴上截距最小,z有最大值25-28⨯=.【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.6.C解析:C【解析】【分析】由题意可得90a>,10a<,且910a a+<,由等差数列的性质和求和公式可得结论.【详解】∵等差数列{}n a的前n项和有最大值,∴等差数列{}n a为递减数列,又1091aa<-,∴90a>,10a<,∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.7.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.8.C解析:C 【解析】 【分析】根据题目条件结合三角形的正弦定理以及三角形内角和定理可得sin A ,进而利用二倍角余弦公式得到结果. 【详解】∵()cos 4cos a B c b A =-. ∴sin A cos B =4sin C cos A ﹣sin B cos A 即sin A cos B +sin B cos A =4cos A sin C ∴sin C =4cos A sin C ∵0<C <π,sin C ≠0. ∴1=4cos A ,即cos A 14=, 那么27cos2218A cos A =-=-. 故选C 【点睛】本题考查了正弦定理及二倍角余弦公式的灵活运用,考查计算能力,属于基础题.9.D解析:D 【解析】由a (a +b +c )+bc =4-,得(a +c )·(a +b )=4-23. ∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c ≥2423-=2(3-1)=23-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误10.C解析:C 【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.11.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度.【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
【易错题】高中必修五数学上期末模拟试卷(附答案)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,若,1,3A b π==ABC ∆则a 的值为( ) A .2BC.2D .12.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .43.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .44.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .35.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .26.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .17.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 8.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为 ( )A .15B .25C .35D .459.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .910.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .3211.一个递增的等差数列{}n a ,前三项的和12312a a a ++=,且234,,1a a a +成等比数列,则数列{}n a 的公差为 ( ) A .2±B .3C .2D .112.在直角梯形ABCD 中,//AB CD ,90ABC ∠=o ,22AB BC CD ==,则cos DAC ∠=( )ABCD二、填空题13.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.14.已知函数()2xf x =,等差数列{}n a 的公差为2,若()2468104f a a a a a ++++=,则()()()()212310log f a f a f a f a ⋅⋅⋅⋅=⎡⎤⎣⎦L ___________.15.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________.16.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.17.已知0,0a b >>,且20a b +=,则lg lg a b +的最大值为_____. 18.设无穷等比数列{}n a 的公比为q ,若1345a a a a =+++…,则q =__________________.19.在数列{}n a 中,11a =,且{}n a 是公比为13的等比数列.设13521T n n a a a a L -=++++,则lim n n T →∞=__________.(*n ∈N ) 20.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.某企业生产A 、B 两种产品,生产每1t 产品所需的劳动力和煤、电消耗如下表: 产品品种劳动力(个)煤()t电()kW h ⋅A3 94 B1045已知生产1t A 产品的利润是7万元,生产1t B 产品的利润是12万元.现因条件限制,企业仅有劳动力300个,煤360t ,并且供电局只能供电200kW h ⋅,则企业生产A 、B 两种产品各多少吨,才能获得最大利润? 23.已知函数f(x)=x 2-2ax -1+a ,a∈R. (1)若a =2,试求函数y =()f x x(x>0)的最小值; (2)对于任意的x∈[0,2],不等式f(x)≤a 成立,试求a 的取值范围. 24.已知数列{}n a 的前n 项和为n S ,且4133n n S a =-. (1)求{}n a 的通项公式;(2)若1n b n =+,求数列{}n n a b 的前n 项和n T .25.在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin a bA B=. (1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积. 26.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:由已知条件及三角形面积计算公式得131sin ,2,23c c π⨯⨯=∴=由余弦定理得考点:考查三角形面积计算公式及余弦定理.2.A解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.3.B解析:B 【解析】 【分析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121284448222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.4.B解析:B 【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S qq---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.5.C解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .6.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.7.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.8.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案.【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q ,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.9.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+, 联立20x y y k+=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k-=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.10.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.11.C解析:C 【解析】 【分析】 【详解】解:∵234,,1a a a +成等比数列, ∴,∵数列{}n a 为递增的等差数列,设公差为d , ∴,即,又数列{}n a 前三项的和,∴,即,即d =2或d =−2(舍去), 则公差d =2. 故选:C .12.C解析:C 【解析】 【分析】设1BC CD ==,计算出ACD ∆的三条边长,然后利用余弦定理计算出cos DAC ∠. 【详解】如下图所示,不妨设1BC CD ==,则2AB =,过点D 作DE AB ⊥,垂足为点D , 易知四边形BCDE 是正方形,则1BE CD ==,1AE AB BE ∴=-=, 在Rt ADE ∆中,222AD AE DE =+=,同理可得225AC AB BC =+=,在ACD ∆中,由余弦定理得2222310cos 210252AC AD CD DAC AC AD +-∠===⋅⨯⨯, 故选C .【点睛】本题考查余弦定理求角,在利用余弦定理求角时,首先应将三角形的边长求出来,结合余弦定理来求角,考查计算能力,属于中等题.二、填空题13.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +.【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.14.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等 解析:6-【解析】【分析】根据指数运算出2468102a a a a a ++++=,再利用等差中项的性质得出625a =,并得出56825a a =-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a ⋅⋅⋅⋅⎡⎤⎣⎦L 的值.【详解】依题意有246810625a a a a a a ++++==,625a ∴=,且56282255a a =-=-=-. 则()()()110123101105610825556255a a a a a a a a a a +⎛⎫++++==+=+=⨯-+=- ⎪⎝⎭L , 而()()()()1231061231022a a a a f a f a f a f a ++++-⋅⋅⋅⋅==L L ,因此,()()()()62123102log log 26f a f a f a f a -⋅⋅⋅⋅==-⎡⎤⎣⎦L .故答案为6-.【点睛】 本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题.15.4980【解析】【分析】表中第行共有个数字此行数字构成以为首项以2为公差的等差数列根据等差数列求和公式及通项公式确定求解【详解】解:表中第行共有个数字此行数字构成以为首项以2为公差的等差数列排完第行 解析:4980【解析】【分析】表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.根据等差数列求和公式及通项公式确定求解.【详解】解:表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.排完第k 行,共用去1124221k k -+++⋯+=-个数字,2018是该表的第1009个数字,由19021100921-<<-,所以2018应排在第10行,此时前9行用去了921511-=个数字,由1009511498-=可知排在第10行的第498个位置,即104984980m n =⨯=g, 故答案为:4980【点睛】此题考查了等比数列求和公式,考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.16.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8【解析】【分析】【详解】作出不等式组表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移,当l 经过点A (2,2)时,目标函数z 达到最小值∴z 最小值=F (2,2)=8故选:C 17.【解析】【分析】由为定值运用均值不等式求的最大值即可【详解】当且仅当时等号成立即而当且仅当时等号成立故的最大值为2故答案为:2【点睛】本题主要考查了基本不等值求积的最大值对数的运算属于中档题解析:2【解析】【分析】由0,0a b >>,20a b +=为定值,运用均值不等式求ab 的最大值即可.【详解】0,0a b ∴>>,20a b +=,20a b ∴=+≥当且仅当10a b ==时,等号成立,即100ab ≤,而lg lg lg lg1002a b ab +=≤=,当且仅当10a b ==时,等号成立,故lg lg a b +的最大值为2,故答案为:2【点睛】本题主要考查了基本不等值求积的最大值,对数的运算,属于中档题.18.【解析】【分析】由可知算出用表示的极限再利用性质计算得出即可【详解】显然公比不为1所以公比为的等比数列求和公式且故此时当时求和极限为所以故所以故又故故答案为:【点睛】本题主要考查等比数列求和公式当时【解析】【分析】由1345a a a a =+++…可知1q <,算出345a a a +++…用1a 表示的极限,再利用性质计算得出q 即可.【详解】 显然公比不为1,所以公比为q 的等比数列{}n a 求和公式1(1)1-=-n n a q S q, 且1345a a a a =+++…,故01q <<.此时1(1)1-=-n n a q S q当n →∞时,求和极限为11a q -,所以3345...1a a a a q +++=-,故2311345...=11a a q a a a a q q=+++=--,所以2211101a q a q q q =⇒+-=-,故12q -=,又01q <<,故q =. 【点睛】 本题主要考查等比数列求和公式1(1)1-=-n n a q S q,当01q <<时1lim 1n n a S q →∞=-. 19.【解析】【分析】构造新数列计算前n 项和计算极限即可【详解】构造新数列该数列首项为1公比为则而故【点睛】本道题考查了极限计算方法和等比数列前n 项和属于中等难度的题目 解析:9lim 8n n T →∞= 【解析】【分析】构造新数列{}21n a -,计算前n 项和,计算极限,即可。
【易错题】高中必修五数学上期末试卷含答案(1)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .43.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n = C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数4.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( ) A .243- B .242- C .162-D .2435.在ABC ∆中,2AC =,22BC =,135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) A .25B .2C .3D .56.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .37.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年8.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( )A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃ 9.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( ) A .140B .280C .168D .5610.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定11.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .201912.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 二、填空题13.若变量,x y 满足约束条件12,{20,20,x y x y x y +≤-≥-≤ 则z y x =-的最小值为_________.14.ABC ∆内角A 、B 、C 的对边分别是a ,b ,c ,且2cos (32)cos b C a c B =-.当42b =,2a c =,ABC ∆的面积为______.15.设,,若,则的最小值为_____________.16.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若acosB =5bcosA ,asinA ﹣bsinB =2sinC ,则边c 的值为_______.17.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L ________.18.设正项数列{}n a 的前n 项和是n S ,若{}n a 和{}nS 都是等差数列,且公差相等,则1a =_______.19.已知不等式250ax x b -+>的解集是{}|32x x -<<-,则不等式250bx x a -+>的解集是_________.20.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 三、解答题21.已知等差数列{}n a 的前n 项和为n S ,且满足37a =,999S =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()2nn n a b n N *=∈,求数列{}n b 的前n 项和n T . 22.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 23.ABC 的内角A 、B 、C 所对的边分别为a b c ,,,且sin sin sin sin a A b B c C B +=+()1求角C ;()2求cos 4A B π⎛⎫-+⎪⎝⎭的最大值. 24.已知等差数列{}n a 的所有项和为150,且该数列前10项和为10,最后10项的和为50.(1)求数列{}n a 的项数; (2)求212230a a a ++⋅⋅⋅+的值.25.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,设平面向量()()sin cos ,sin ,cos sin ,sin p A B A q B A B =+=-v v ,且2cos p q C ⋅=v v(Ⅰ)求C ;(Ⅱ)若c a b =+=ABC ∆中边上的高h .26.已知函数()21f x x =-. (1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y y af x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.B解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.3.A解析:A 【解析】 【分析】先根据2n S n =,求出数列{}n a 的通项公式,然后利用错位相减法求出{}n b 的前n 项和n T .【详解】解:∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()()()()123113151121nn T n =⨯-+⨯-+⨯-+⋅⋅⋅+--①,∴()()()()()2341113151121n n T n +-=⨯-+⨯-+⨯-+⋅⋅⋅+--②,①-②,得()()()()()()23412121111211n n n T n +⎡⎤=-+⨯-+-+-+⋅⋅⋅+---⨯-⎣⎦()()()()()()211111122112111n n n n n -+⎡⎤---⎣⎦=-+⨯--⨯-=---,∴()1nn T n =-,∴数列{}n b 的前n 项和()1nn T n =-.故选:A . 【点睛】本题考查了根据数列的前n 项和求通项公式和错位相减法求数列的前n 项和,考查了计算能力,属中档题.4.B解析:B 【解析】 【分析】 【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S S a a a a ---=-=+--=-,即11322n n a a -=,即()132nn a n a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.5.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=-⨯⨯将2AC =,BC =,代入等式得到AB=再由等面积法得到11222CD CD ⨯=⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6.B解析:B【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S qq---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.7.C解析:C 【解析】记公元1984年为第一年,公元2047年为第64年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年. 故选C.8.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可.详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0, ∴不等式f (x )≤5的解集为[﹣2,4], 故选B .点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.9.A解析:A由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 10.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.11.A解析:A 【解析】 【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n …时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立, ∴22n a n =-, ∴cos2n n n b a π==2(1)cos 2n n π-,∵函数cos 2n y π=的周期242T ππ==,∴()2017152013T b b b =++++L (26b b +)2014b ++L ()()3720154820162017b b b b b b b +++++++++L L02(152013)0=-+++++L 2(3+72015)045042016+++=⨯=L ,故选:A. 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.12.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键二、填空题13.【解析】由约束条件作出可行域如图联立解得化目标函数得由图可知当直线过点时直线在y 轴上的截距最小有最小值为故答案为点睛:本题主要考查线性规划中利用可行域求目标函数的最值属简单题求目标函数最值的一般步骤 解析:4-【解析】由约束条件12,20,20,x y x y x y +≤⎧⎪-≥⎨⎪-≤⎩作出可行域如图,联立12 {20x y x y +=-=,解得()84A ,,化目标函数z y x =-,得y x z =+,由图可知,当直线y x z =+过点()84A ,时,直线在y 轴上的截距最小,z 有最小值为4-,故答案为4-. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.【解析】【分析】由利用正弦定理得到再用余弦定理求得b 可得ac 利用面积公式计算可得结果【详解】由正弦定理可化为所以在三角形中所以因为所以又所以由余弦定理得又所以有故的面积为故答案为【点睛】本题考查了正 325 【解析】 【分析】由()2cos 32cos b C a c B =-,利用正弦定理得到2cos 3B =,再用余弦定理求得b ,可得a 、c ,利用面积公式计算可得结果. 【详解】由正弦定理()2cos 32cos b C a c B =-可化为2sin cos 3sin cos 2sin cos B C A B C B =-, 所以()2sin 3sin cos B C A B +=, 在三角形中,()sin sin B C A +=,所以2sin 3sin cos A A B =,因为sin 0A ≠,所以2cos 3B =, 又0B π<<,所以25sin 1cos B B =-= 由余弦定理得2224323b a c ac =+-=,又2a c =,所以有2967c =. 故ABC ∆的面积为22196965325sin sin sin 277S ac B c B c B ======故答案为3257. 【点睛】本题考查了正弦定理、余弦定理的应用,考查了三角形面积计算公式,考查了推理能力与计算能力,属于中档题.15.3+22【解析】【分析】由已知可得a-1+b=1从而有2a-1+1b=(2a-1+1b)(a-1+b)展开后利用基本不等式即可求解【详解】由题意因为a>1b>2满足a+b=2所以a-1+b=1且a- 解析:【解析】 【分析】 由已知可得,从而有,展开后利用基本不等式,即可求解. 【详解】 由题意,因为满足, 所以,且,则,当且仅当且,即时取得最小值.【点睛】本题主要考查了利用基本不等式求最值问题的应用,其中解答中根据题意配凑基本不等式的使用条件,合理利用基本不等式求得最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16.3【解析】【分析】由acosB =5bcosA 得由asinA ﹣bsinB =2sinC 得解方程得解【详解】由acosB =5bcosA 得由asinA ﹣bsinB =2sinC 得所以故答案:3【点睛】本题主要解析:3 【解析】 【分析】由acosB =5bcosA 得22223a b c -=,由asinA ﹣bsinB =2sinC 得222a b c -=,解方程得解. 【详解】由acosB =5bcosA 得22222222225,223a cb bc a a b a b c ac bc +-+-⋅=⋅∴-=.由asinA ﹣bsinB =2sinC 得222a b c -=,所以222,33c c c =∴=. 故答案:3 【点睛】本题主要考查正弦定理和余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.2018【解析】【分析】数列{an}{bn}满足bn =lnann ∈N*其中{bn}是等差数列可得bn+1﹣bn =lnan+1﹣lnan =ln 常数t 常数et =q >0因此数列{an}为等比数列由可得a1解析:2018 【解析】 【分析】数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,可得b n +1﹣b n =lna n +1﹣lna n =ln 1n n a a +=常数t .1n na a +=常数e t =q >0,因此数列{a n }为等比数列.由431007e a a ⋅=, 可得a 1a 1009=a 2a 1008431007a a e =⋅==L .再利用对数运算性质即可得出.【详解】解:数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列, ∴b n +1﹣b n =lna n +1﹣lna n =ln1n na a +=常数t . ∴1n na a +=常数e t =q >0, 因此数列{a n }为等比数列.且431007e a a ⋅=,∴a 1a 1009=a 2a 1008431007a a e =⋅==L .则b 1+b 2+…+b 1009=ln (a 1a 2…a 1009)==lne 2018=2018. 故答案为:2018. 【点睛】本题考查了等比数列的通项公式与性质、对数运算性质,考查了推理能力与计算能力,属于中档题.18.【解析】分析:设公差为d 首项利用等差中项的性质通过两次平方运算即可求得答案详解:设公差为d 首项和都是等差数列且公差相等即两边同时平方得:两边再平方得:又两数列公差相等即解得:或为正项数列故答案为:点 解析:14【解析】分析:设公差为d ,首项1a ,利用等差中项的性质,通过两次平方运算即可求得答案. 详解:设公差为d ,首项1a ,Q {}n a 和都是等差数列,且公差相等,∴=,即=,两边同时平方得:()1114233a d a a d +=+++14a d +=两边再平方得:()221111168433a a d d a a d ++=+,∴2211440a a d d -+=,12d a =,又两数列公差相等,2112a a d a =-==,12a =, 解得:114a =或10a =, Q {}n a 为正项数列,∴114a =.故答案为:14. 点睛:本题考查等差数列的性质,考查等差中项的性质,考查化归与方程思想.19.【解析】【分析】根据不等式的解集是求得的值从而求解不等式的解集得到答案【详解】由题意因为不等式的解集是可得解得所以不等式为即解得即不等式的解集为【点睛】本题主要考查了一元二次不等式的解法其中解答中根解析:11(,)23--【解析】 【分析】根据不等式250ax x b -+>的解集是{}|32x x -<<-,求得,a b 的值,从而求解不等式250bx x a -+>的解集,得到答案.【详解】由题意,因为不等式250ax x b -+>的解集是{}|32x x -<<-,可得53(2)(3)(2)a b a ⎧-+-=⎪⎪⎨⎪-⨯-=⎪⎩,解得1,6a b =-=-,所以不等式250bx x a -+>为26510x x --->, 即2651(31)(21)0x x x x ++=++<,解得1123x -<<-, 即不等式250bx x a -+>的解集为11(,)23--. 【点睛】本题主要考查了一元二次不等式的解法,其中解答中根据三个二次式之间的关键,求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.20.【解析】【分析】由已知推导出=(=1+()从而-=-由此能求出【详解】∵数列满足:∴()+()+……+()=++……+==(∴=(;又+……+()=1+++……+=1+=1+()即=1+()∴-=-解析:23-【解析】 【分析】 由已知推导出2n S =23(11)4n -,21n S -=1+13(1114n --),从而22n n a S =-21n S -=21132n -n -23,由此能求出2lim n n a →∞【详解】 ∵数列{}n a 满足:1 1a =,112nn n a a +⎛⎫+= ⎪⎝⎭, ∴(12a a +)+(34 a a +)+……+(212 n n a a -+)=12+312⎛⎫ ⎪⎝⎭+……+2112n -⎛⎫ ⎪⎝⎭=11124114n ⎛⎫- ⎪⎝⎭-=23(11)4n-, ∴2n S =23(11)4n -; 又12345a a a a a +++++……+(2221 n n a a --+)=1+212⎛⎫ ⎪⎝⎭+412⎛⎫ ⎪⎝⎭+……+2212n -⎛⎫ ⎪⎝⎭=1+2111124114n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=1+13(1114n --),即21n S -=1+13(1114n --) ∴22n n a S =-21n S -=21132n -n -23∴2211lim lim(32n n n n a n -→∞→∞=-2)3=-23,故答案为:-2 3【点睛】本题考查数列的通项公式的求法,数列的极限的求法,考查逻辑思维能力及计算能力,属于中档题.三、解答题21. (Ⅰ)21n a n =+,n *∈N (Ⅱ)2552n nn T +=- 【解析】试题分析:(1)先根据条件列出关于首项与公差的方程组,解得首项与公差,代入等差数列通项公式即可(2)利用错位相减法求和, 利用错位相减法求和时,注意相减时项的符号变化,中间部分利用等比数列求和时注意项数,最后要除以1q -试题解析:(Ⅰ)由题意得:1127989992a d a d +=⎧⎪⎨⨯+=⎪⎩,解得132a d =⎧⎨=⎩ , 故{}n a 的通项公式为21n a n =+,*n N ∈ (Ⅱ)由(Ⅰ)得:212n nn b +=23435792122222n n n T +=++++⋯+ ① 234113572121222222n n n n n T +-+=+++⋯++ ② ①-②得:23411311112122222222n n n n T ++⎛⎫=++++⋯+- ⎪⎝⎭ 152522n n ++=- 故2552n nn T +=-点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.22.(1)3π;(2)33. 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >, 则31sin cos cos sin 622B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin 3cos B B =,tan 3B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由13sin 2ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r ,所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r ,则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题. 23.()()124C π=2【解析】试题分析:(1)由正弦定理得到222a b c +=,再由余弦定理得到()222cos 0224a b c C C C ab ππ+-==∈∴=,;(2)由第一问得到原式等价于3cos 44A A ππ⎛⎫--+ ⎪⎝⎭,化简后为2sin 6A π⎛⎫=+ ⎪⎝⎭,再根据角的范围得到三角函数的范围即可. 解析:()2221sin sin sin sin a A b B c C B a b c +=∴+=Q即222a b c +-=由余弦定理()222cos 0224a b c C C C ab ππ+-==∈∴=,(2cos 4A B π⎛⎫-+= ⎪⎝⎭31cos cos 2cos 442A A A A A A ππ⎫⎛⎫--+=-=+⎪ ⎪⎪⎝⎭⎝⎭2sin 6A π⎛⎫=+ ⎪⎝⎭()110,,6612A A ππππ⎛⎫∈+∈ ⎪⎝⎭Q ,, 12sin 26A π⎛⎫-≤+≤ ⎪⎝⎭cos 4A B π⎛⎫-+ ⎪⎝⎭的最大值为224.(1)50;(2)30 【解析】 【分析】(1)根据条件结合等差数列的性质可得16n a a +=,再根据{}n a 的所有项和为150,即可求出项数n 的值;(2)根据(1)求出{}n a 的首项1a 和公差d ,然后将212230a a a ++⋅⋅⋅+用1a 和d 表示,再求出其值. 【详解】解:(1)由题意,得1231010a a a a +++⋅⋅⋅+=,12950n n n n a a a a ---+++⋅⋅⋅+=, ∴()()()()1213210960n n n n a a a a a a a a ---++++++⋅⋅⋅++=, 根据等差数列性质,可知12132109n n n n a a a a a a a a ---+=+=+=⋅⋅⋅=+, ∴()11060n a a +=,∴16n a a +=,又{}n a 的所有项和为150,∴()11502n n a a +=, ∴50n =,即数列{}n a 的项数为50.(2)由(1)知,1501610910102a a a d +=⎧⎪⎨⨯+=⎪⎩,即112496292a d a d +=⎧⎨+=⎩,∴11120110a d ⎧=⎪⎪⎨⎪=⎪⎩, ∴()2122233021305a a a a a a +++⋅⋅⋅+=+()15249a d =+11152492010⎛⎫=⨯+⨯ ⎪⎝⎭30=.【点睛】本题考查了等差数列的性质和前n 项和公式,考查了转化思想和方程思想,属基中档题. 25.(1)3C π=;(2)32. 【解析】分析:(1)由向量的数量积的运算,得222sin sin sin sin sin A B C A B +-=, 根据正弦、余弦定理得1cos 2C =,即可得到3C π=; (2)由余弦定理和a b +=3ab =,再利用三角形的面积公式,求得32h =,即可得到结论.详解:(1)因为22cos sin sin sin p q B A A B v v⋅=-+,所以222cos sin sin sin cos B A A B C -+=,即2221sin sin sin sin 1sin B A A B C --+=-, 即222sin sin sin sin sin A B C A B +-=,根据正弦定理得222a b c ab +-=,所以2221cos 222a b c ab C ab ab +-===,所以3C π=;(2)由余弦定理()22232cos33a b ab a b ab π=+-=+-,又a b +=3ab =,根据ABC ∆△的面积11sin 22S ab C ch ==,即11322⨯=, 解得32h =, 所以ABC ∆中AB 边上的高32h =. 点睛:本题主要考查了利用正弦定理、余弦定理和三角形的面积公式的应用,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 26.(1) 32m =;(2)4. 【解析】试题分析:(Ⅰ)先根据绝对值定义解不等式解集为][(),22,-∞-⋃+∞,再根据解集相等关系得122m +=,解得32m =.(Ⅱ)不等式恒成立问题,一般转化为对应函数最值问题,即()max212322y yax x --+≤+,根据绝对值三角不等式可得()max21234x x --+=,再利用变量分离转化为对应函数最值问题:()max242y ya ⎡⎤≥-⎣⎦,根据基本不等式求最值: ()()224224242y yy y ⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,因此4a ≥,所以实数a 的最小值为4.试题解析:(Ⅰ)由题意知不等式221(0)x m m ≤+>的解集为][(),22,-∞-⋃+∞. 由221x m ≤+,得1122m x m --≤≤+, 所以,由122m +=,解得32m =. (Ⅱ)不等式()2232y y a f x x ≤+++等价于212322yya x x --+≤+, 由题意知()max212322y yax x --+≤+. 因为()()212321234x x x x --+≤--+=, 所以242y y a +≥,即()242y y a ⎡⎤≥-⎣⎦对任意y R ∈都成立,则()max 242y ya ⎡⎤≥-⎣⎦.而()()224224242y yy y⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,当且仅当242y y =-,即1y =时等号成立, 故4a ≥,所以实数a 的最小值为4.。
【易错题】高中必修五数学上期末模拟试卷(及答案)一、选择题1.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-2.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 CD.23.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形5.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a b a+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形6.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .787.已知集合2A {t |t 40}=-≤,对于满足集合A 的所有实数t ,使不等式2x tx t 2x 1+->-恒成立的x 的取值范围为( )A .()(),13,∞∞-⋃+B .()(),13,∞∞--⋃+C .(),1∞--D .()3,∞+8.已知01x <<,01y <<,则)AB .CD .9.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( )A .322B .5C .5D .9210.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .6011.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .312.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,二、填空题13.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.14.设函数2()1f x x =-,对任意2,3x ⎡⎫∈+∞⎪⎢⎣⎭,24()(1)4()x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是 .15.计算:23lim 123n n nn→+∞-=++++L ________16.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且2cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.17.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.18.若变量,x y满足约束条件{241yx yx y≤+≥-≤,则3z x y=+的最小值为_____.19.已知n S为数列{}n a的前n项和,且13a=,131n na S+=+,*n∈N,则5S=______. 20.已知是数列的前项和,若,则_____.三、解答题21.在等差数列{}n a中,2723a a+=-,3829a a+=-.(1)求数列{}n a的通项公式.(2)若数列{}n na b+的首项为1,公比为q的等比数列,求{}nb的前n项和nS.22.如图,在ABC∆中,45B︒∠=,10AC=,25cos5C∠=点D是AB的中点, 求(1)边AB的长;(2)cos A的值和中线CD的长23.ABCV的内角A,B,C的对边分别为a,b,c,已知ABCV的外接圆半径为R,且23sin sin cos0R A B b A--=.(1)求A∠;(2)若tan2tanA B=,求sin2sin2sinb Ca b B c C+-的值.24.已知{}n a是等差数列,{}n b是等比数列,且23b=,39b=,11a b=,144a b=.(1)求{}n a的通项公式;(2)设n n nc a b=+,求数列{}n c的前n项和.25.已知a,b,c分别为ABC∆内角A,B,C的对边,222sin2cos22B Aa b b c+=+.(1)求B;(2)若6c=,[2,6]a∈,求sin C的取值范围.26.已知0a>,0b>,且1a b+=.(1)若ab m≤恒成立,求m的取值范围;(2))若41212x xa b+≥--+恒成立,求x的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx>424x y y x ∴+≥=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以q212a a q ===,故选D. 3.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t ++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减.可得t=12处,此时q=2f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.4.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.5.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a ba+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状. 【详解】22cos 2a baC +=Q1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Q sin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.6.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.7.B解析:B 【解析】 【分析】由条件求出t 的范围,不等式221x tx t x +->-变形为2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,再由不等式的左边两个因式同为正或同为负处理. 【详解】由240t -≤得,22t -≤≤,113t ∴-≤-≤不等式221x tx t x +->-恒成立,即不等式2210x tx t x +--+>恒成立,即不等式()()110x t x +-->恒成立,∴只需{1010x t x +->->或{1010x t x +-<-<恒成立, ∴只需{11x tx >->或{11x tx <-<恒成立,113t -≤-≤Q只需3x >或1x <-即可. 故选:B . 【点睛】本题考查了一元二次不等式的解法问题,难度较大,充分利用恒成立的思想解题是关键.8.B解析:B 【解析】 【分析】2+≥x y ,边分别相加求解。
【易错题】高中必修五数学上期末第一次模拟试卷(附答案)一、选择题1.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形 C .等腰三角形 D .等腰三角形或直角三角形2.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2C .2D .223.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .4.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A .223+B 31C .232D 315.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .36.已知数列{}n a 的首项110,211n n n a a a a +==++,则20a =( ) A .99B .101C .399D .4017.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,„„…则2z x y =-的最大值为( ).A .10B .8C .3D .28.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞9.若a 、b 、c >0且a (a +b +c )+bc =4-3,则2a +b +c 的最小值为( ) A . 31 B . 31 C .3+2D .3210.已知等差数列{}n a ,前n 项和为n S ,5628a a +=,则10S =( )A .140B .280C .168D .5611.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S 12.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.14.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1yx +的最大值为_______.15.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________16.在平面直角坐标系中,设点()0,0O ,(3A ,点(),P x y 的坐标满足303200x y x y -≤+≥⎨⎪≥⎪⎩,则OA u u u v 在OP uuu v 上的投影的取值范围是__________ 17.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______18.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于_____.19.若正项数列{}n a 满足11n n a a +-<,则称数列{}n a 为D 型数列,以下4个正项数列{}n a 满足的递推关系分别为:①2211n n a a +-= ②1111n na a +-= ③121n n n a a a +=+④2121n n a a +-=,则D 型数列{}n a 的序号为_______.20.已知△ABC 中,角A 、B 、C 对应的边分别为a 、b 、c ,且bcosC ﹣ccosB 14=a 2,tanB =3tanC ,则a =_____.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,且满足37a =,999S =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()2nn n a b n N *=∈,求数列{}n b 的前n 项和n T . 22.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值.23.已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.24.在ABC ∆中,,A B C 的对边分别,,a b c ,若()2sin(2)()26f x x f C π=+=-,,c =sin B =2sin A ,(1)求C (2)求a 的值.25.在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c sin bB=. (1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积. 26.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q =,故2122a a q ===,故选D. 3.C解析:C 【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.4.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.5.B解析:B【解析】 【分析】首先由等比数列前n 项和公式列方程,并解得3q ,然后再次利用等比数列前n 项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S qq---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.6.C解析:C 【解析】 【分析】 【详解】由11n n a a +=+,可得)21111n a ++==,是以1为公差,以1为首项的等差数列.2,1n n a n ==-,即220201399a =-=.故选C.7.B解析:B 【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-,联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.8.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.9.D解析:D 【解析】由a (a +b +c )+bc =4-, 得(a +c )·(a +b )=4-∵a 、b 、c >0.∴(a +c )·(a +b )≤22b c 2a ++⎛⎫ ⎪⎝⎭(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c=1)=-2. 故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误10.A解析:A 【解析】由等差数列的性质得,5611028a a a a +==+,∴其前10项之和为()11010102814022a a +⨯==,故选A. 11.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
【易错题】高中必修五数学上期末模拟试卷(含答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <3.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是( ) ①y =2x +1;②y =log 2x ;③y =2x +1;④y =sin44x ππ+()A .1B .2C .3D .44.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .15.在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若 2?a bcos C =,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形6.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD7.若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅< ,则使0n S >成立的最大自然数n 是( ) A .198B .199C .200D .2018.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a ba+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形9.数列{}{},n n a b 为等差数列,前n 项和分别为,n n S T ,若3n 22n n S T n +=,则77a b =( )A .4126B .2314C .117D .11610.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .7811.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .3212.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .45二、填空题13.已知实数,且,则的最小值为____14.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则y x的最小值为__________.15.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______16.在钝角ABC V 中,已知7,1AB AC ==,若ABC V 的面积为62BC 的长为______.17.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 18.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.19.设(32()lg 1f x x x x =++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一)20.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 三、解答题21.已知正项等比数列{}n a 满足26S =,314S =. (1)求数列{}n a 的通项公式; (2)若2log n n b a =,已知数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和为n T 证明:1n T <. 22.已知在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,sin tan cos sin tan cos b B C b B a A C a A -=-. (1)求证:A B =;(2)若c =3cos 4C =,求ABC ∆的周长.23.已知函数f(x)=x 2-2ax -1+a ,a∈R.(1)若a =2,试求函数y =()f x x(x>0)的最小值; (2)对于任意的x∈[0,2],不等式f(x)≤a 成立,试求a 的取值范围.24.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值. 25.已知{}n a 为等差数列,且36a =-,60a =. (1)求{}n a 的通项公式;(2)若等比数列{}n b 满足18b =-,2123b a a a =++,求数列{}n b 的前n 项和公式. 26.已知数列{}n a 的前n 项和为n S ,且4133n n S a =-. (1)求{}n a 的通项公式;(2)若1n b n =+,求数列{}n n a b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.D解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D中,因为0≤<,由不等式的平方法则,22<,即a b <.选D.3.C解析:C 【解析】①y =2x +1,n ∈N *,是等差源函数;②因为log 21,log 22,log 24构成等差数列,所以y =log 2x 是等差源函数;③y =2x +1不是等差源函数,因为若是,则2(2p +1)=(2m +1)+(2n +1),则2p +1=2m +2n ,所以2p +1-n =2m -n +1,左边是偶数,右边是奇数,故y =2x +1不是等差源函数; ④y =sin 44x ππ⎛⎫+⎪⎝⎭是周期函数,显然是等差源函数.答案:C.4.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.5.C解析:C 【解析】在ABC ∆中,222222cos ,2cos 222a b c a b c C a b C b ab abQ +-+-=∴==⋅,2222a a b c ∴=+-,,b c ∴=∴此三角形一定是等腰三角形,故选C.【方法点睛】本题主要考查利用余弦定理判断三角形形状,属于中档题.判断三角形状的常见方法是:(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;(2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;(3)根据余弦定理确定一个内角为钝角进而知其为钝角三角形.6.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=⨯⨯将2AC =,22BC =,代入等式得到AB=5 再由等面积法得到112252522222CD CD ⨯=⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7.A解析:A 【解析】 【分析】先根据10a >,991000a a +>,991000a a ⋅<判断出991000,0a a ><;然后再根据等差数列前n 项和公式和等差中项的性质,即可求出结果. 【详解】∵991000a a ⋅<, ∴99a 和100a 异号; ∵1991000,0a a a >+>,991000,0a a ∴><, 有等差数列的性质可知,等差数列{}n a 的公差0d <, 当99,*n n N ≤∈时,0n a >;当100,*n n N ≥∈时,0n a <; 又()()119899100198198198022a a a a S +⨯+⨯==> ,()119919910019919902a a S a+⨯==<,由等差数列的前n 项和的性质可知,使前n 项和0n S >成立的最大自然数n 是198. 故选:A . 【点睛】本题主要考查了等差数列的性质.考查了学生的推理能力和运算能力.8.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状. 【详解】22cos 2a b aC +=Q 1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Qsin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.9.A解析:A 【解析】依题意,113713113713132412226132a a a S b b b T +⋅===+⋅.10.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.11.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PAk +==最大.故答案为32. 【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.12.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.二、填空题13.3+54【解析】【分析】由a+b=2得出b=2﹣a代入代数式中化简后换元t =2a﹣1得2a=t+1得出1<t<3再代入代数式化简后得出2t6t-(t2+5)然后在分式分子分母中同时除以t利用基本不等解析:【解析】【分析】由a+b=2得出b=2﹣a,代入代数式中,化简后换元t=2a﹣1,得2a=t+1,得出1<t<3,再代入代数式化简后得出,然后在分式分子分母中同时除以t,利用基本不等式即可求出该代数式的最小值.【详解】解:由于a+b=2,且a>b>0,则0<b<1<a<2,所以,,令t=2a﹣1∈(1,3),则2a=t+1,所以,.当且仅当,即当时,等号成立.因此,的最小值为.故答案为:.【点睛】本题考查利用基本不等式求最值,解本题的关键就是对代数式进行化简变形,考查计算能力,属于中等题.14.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线解析:【解析】 【分析】根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x=+,利用基本不等式求得其最小值,得到结果. 【详解】∵()1,a x =r , (),2b x y =-r ,其中0x >,且a r 与b r共线∴()12y x x ⨯-=⋅,即22y x =+∴222y x x x x x+==+≥,当且仅当2x x =即x =时取等号∴yx的最小值为 【点睛】该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.15.【解析】【分析】根据题意化简得利用式相加得到进而得到即可求解结果【详解】因为所以所以将以上各式相加得又所以解得或【点睛】本题主要考查了数列的递推关系式应用其中解答中利用数列的递推关系式得到关于数列首解析:34,- 【解析】 【分析】根据题意,化简得22111n n n a a a ++-=-,利用式相加,得到2213113112S a a a --=-,进而得到211120a a --=,即可求解结果.【详解】因为22111n n n a a a ++-=-,所以22111n n n a a a ++-=-, 所以2222222213321313121,1,,1a a a a a a a a a -=--=--=-L ,将以上各式相加,得2213113112S a a a --=-,又21313S a =,所以211120a a --=,解得13a =-或14a =.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.16.【解析】【分析】利用面积公式可求得再用余弦定理求解即可【详解】由题意得又钝角当为锐角时则即不满足钝角三角形故为钝角此时故即故答案为:【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用属于中等题【解析】【分析】利用面积公式可求得A ,再用余弦定理求解BC 即可.【详解】由题意得, 11sin sin 22A A =⨯⇒= 又钝角ABC V ,当A 为锐角时,cos A ==则2717BC =+-=,即BC =.故A 为钝角.此时cos A ==故27110BC =++=.即BC =【点睛】本题主要考查了解三角形中面积公式与余弦定理的运用,属于中等题型.17.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题解析:2【解析】【分析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论.【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q =, ∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2.【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.18.5【解析】【分析】画出不等式表示的可行域利用目标函数的几何意义当截距最小时取z 取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示)化直线为当直线平移过点A 时z 取得最大值联立直线得A ( 解析:5【解析】【分析】画出不等式表示的可行域,利用目标函数的几何意义当截距最小时取z 取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示),化直线2z x y =+为122z y x =-+ 当直线平移过点A 时,z 取得最大值,联立直线3010x y x y +-=⎧⎨-+=⎩得A (1,2),故max 145z =+=故答案为:5【点睛】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值,是基础题19.充要【解析】所以为奇函数又为单调递增函数所以即是的充要条件点睛:充分必要条件的三种判断方法1定义法:直接判断若则若则的真假并注意和图示相结合例如⇒为真则是的充分条件2等价法:利用⇒与非⇒非⇒与非⇒非 解析:充要【解析】3232()()lg(1)()lg(1)lg10f x f x x x x x x x +-=+++-+-+== ,所以()f x 为奇函数,又()f x 为单调递增函数,所以0()()()()()()0a b a b f a f b f a f b f a f b +≥⇔≥-⇔≥-⇔≥-⇔+≥ ,即“0a b +≥”是“()()0f a f b +≥”的充要条件点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.20.【解析】【分析】由已知推导出=(=1+()从而-=-由此能求出【详解】∵数列满足:∴()+()+……+()=++……+==(∴=(;又+……+()=1+++……+=1+=1+()即=1+()∴-=- 解析:23- 【解析】【分析】由已知推导出2n S =23(11)4n -,21n S -=1+13(1114n --),从而22n n a S =-21n S -=21132n -n -23,由此能求出2lim n n a →∞ 【详解】 ∵数列{}n a 满足:1 1a =,112nn n a a +⎛⎫+= ⎪⎝⎭, ∴(12 a a +)+(34 a a +)+……+(212 n n a a -+)=12+312⎛⎫ ⎪⎝⎭+……+2112n -⎛⎫ ⎪⎝⎭=11124114n ⎛⎫- ⎪⎝⎭-=23(11)4n-, ∴2n S =23(11)4n -; 又12345 a a a a a +++++……+(2221 n n a a --+)=1+212⎛⎫ ⎪⎝⎭+412⎛⎫ ⎪⎝⎭+……+2212n -⎛⎫ ⎪⎝⎭=1+2111124114n -⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭-=1+13(1114n --), 即21n S -=1+13(1114n --) ∴22n n a S =-21n S -=21132n -n -23∴2211lim lim(32n n n n a n -→∞→∞=-2)3=-2 3, 故答案为:-2 3【点睛】本题考查数列的通项公式的求法,数列的极限的求法,考查逻辑思维能力及计算能力,属于中档题. 三、解答题21.(1)2n n a =; (2)见解析.【解析】【分析】(1)由等比数列前n 项和公式求出公比q 和首项1a ,得通项公式;(2)用裂项相消法求出和n T ,可得结论.【详解】(1)设等比数列的首项及公比分别为10a >,0q >,26S =Q ,314S =,显然1q ≠,()()21311611141a q q a q q ⎧-⎪=-⎪∴⎨-⎪=⎪-⎩,解得122a q =⎧⎨=⎩, 2n n a ∴=;(2)证明:由(1)知,n b n =,则11111(1)1n n b b n n n n +==-++, 121n n n T b b b b -∴=++⋯⋯++1111111111223111n n n n n =-+-+⋯⋯+-+-=--++, *n N ∈Q ,1n T ∴<.【点睛】本题考查等比数列的前n 项和与通项公式,考查裂项相消法求数列的和.基本量法是解决等差数列和等比数列的常用方法.裂项相消法、错位相减法、分组(并项)求和法是数列求和的特殊方法,它们针对的是特殊的数列求和.22.(1)证明见解析;(2).【解析】【分析】(1)利用三角函数恒等变换的应用化简已知等式可求in 0()s A B -=,可得()A B k k Z π-=∈,结合范围A ,(0,)B π∈,即可得证A B =.(2)由(1)可得a b =,进而根据余弦定理可求a b ==ABC ∆的周长.【详解】(1)sin tan cos sin tan cos b B C b B a A C a A -=-Q , ∴sin sin sin sin cos cos cos cos b B C a A C b B a A C C-=-, sin sin cos cos sin sin cos cos b B C b B C a A C a A C ∴-=-,cos()cos()a A C b B C ∴+=+,又A B C π++=Q ,cos cos a B b A ∴-=-,sin cos sin cos A B B A ∴-=-,sin()0A B ∴-=,()A B k k Z π∴-=∈,又A Q ,(0,)B π∈,A B ∴=.(2)Q 由(1)可知A B =,可得a b =,又c =Q 3cos 4C =,∴2232342a a-==,226a b ∴==,可得a b ==ABC ∆∴的周长a b c ++=【点睛】本题考查三角函数恒等变换的应用、余弦定理在解三角形中的综合应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意三角函数求值时,要先写出角的范围.23.(1)2-;(2)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据基本不等式求最值,注意等号取法,(2)先化简不等式,再根据二次函数图像确定满足条件的不等式,解不等式得结果.【详解】(1)依题意得y=()f x x =2-41x x x+=x+1x -4. 因为x>0,所以x+1x ≥2.当且仅当x=1x时, 即x=1时,等号成立.所以y≥-2.所以当x=1时,y=()f x x的最小值为-2. (2)因为f(x)-a=x 2-2ax-1, 所以要使得“对任意的x∈[0,2],不等式f(x)≤a 成立”只要“x 2-2ax-1≤0在[0,2]恒成立”.不妨设g(x)=x 2-2ax-1,则只要g(x)≤0在[0,2]上恒成立即可.所以(0)0,(2)0,g g ≤⎧⎨≤⎩ 即0-0-10,4-4-10,a ≤⎧⎨≤⎩解得a≥34,则a 的取值范围为3,4∞⎡⎫+⎪⎢⎣⎭. 【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.24.(Ⅰ)3π;(Ⅱ)b =14. 【解析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得tanB =,则B =π3.(Ⅱ)在△ABC 中,由余弦定理可得b .结合二倍角公式和两角差的正弦公式可得()214sin A B -= 详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB =,可得bsinA asinB =, 又由π6bsinA acos B ⎛⎫=-⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=- ⎪⎝⎭,可得tanB = 又因为()0πB ∈,,可得B =π3. (Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有22227b a c accosB =+-=,故b由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,可得sinA =a <c ,故cosA =.因此227sin A sinAcosA ==,212217cos A cos A =-=. 所以,()222sin A B sin AcosB cos AsinB -=-=1127-= 点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.25.(1)212n a n =-;(2)4(13)n n S =-.【解析】【分析】【详解】本试题主要是考查了等差数列的通项公式的求解和数列的前n 项和的综合运用.、 (1)设{}n a 公差为d ,由已知得1126{50a d a d +=-+=解得110{2a d =-=, 212n a n =-(2)21232324b a a a a =++==-Q ,∴等比数列{}n b 的公比212438b q b -===- 利用公式得到和8(13)4(13)13n n n S -⨯-==--. 26.(1)14n n a -=(2)322499n n n T +=⨯- 【解析】【分析】(1)利用公式1n n n a S S -=-代入计算得到答案.(2)先计算得到()114n n na b n -=+⨯,再利用错位相减法计算得到答案. 【详解】(1)因为4133n n S a =-,所以()1141233n n S a n --=-≥, 所以当2n ≥时,14433n n n a a a -=-,即14n n a a -=, 当1n =时,114133S a =-,所以11a =, 所以14n n a -=.(2)()114n n na b n -=+⨯, 于是()01221243444414n n n T n n --=⨯+⨯+⨯++⨯++⨯L ,①()12314243444414n n n T n n -=⨯+⨯+⨯++⨯++⨯L ,②由①-②,得()121223244414433n n n n T n n -⎛⎫-=++++-+⨯=-+⨯ ⎪⎝⎭L , 所以322499n n n T +=⨯-. 【点睛】本题考查了数列的通项公式,利用错位相减法计算数列的前n 项和,意在考查学生对于数列公式方法的灵活运用.。
【易错题】高中必修五数学上期末一模试题附答案(1)一、选择题1.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( )A .243-B .242-C .162-D .2432.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .3.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-314.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( ) A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃5.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20586.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .147.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .38.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .329.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =10.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-11.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)12.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S二、填空题13.已知,x y 满足约束条件420y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则2z x y =+的最大值为__________.14.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________;15.已知数列{}n a 中,其中199199a =,11()an n a a -=,那么99100log a =________16.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______17.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________.18.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 19.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积6S =+形的外接圆半径是______20.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 三、解答题21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 22.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a Bπ⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 23.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式; (2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 24.在ABC △中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=. (Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值. 25.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长26.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =; (2)若1,3c a ==求S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【解析】 【分析】 【详解】因为2,,3n n S a 成等差数列,所以223n n S a =+,当1n =时,111223,2S a a =+∴=-;当2n ≥时,1113333112222n n n n n n n a S Sa aa a ---=-=+--=-,即11322n n a a -=,即()132nn a n a -=≥,∴数列{}n a 是首项12a =-,公比3q =的等比数列,()()55151213242113a q S q---∴===---,故选B.2.C解析:C 【解析】 【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.3.C解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q =, 因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.4.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可.详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0, ∴不等式f (x )≤5的解集为[﹣2,4], 故选B .点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.5.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列,∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .6.C解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列,又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.7.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示,由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题. 8.D解析:D【解析】【分析】由约束条件确定可行域,由1yx+的几何意义,即可行域内的动点与定点P(0,-1)连线的斜率求得答案.【详解】由约束条件242210x yx yx-≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220xx y-=⎧⎨+-=⎩,解得A(112,),1yx+的几何意义为可行域内的动点与定点P(0,-1)连线的斜率,由图可知,113212PAk +==最大. 故答案为32. 【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.9.B解析:B 【解析】分析:由等差数列的性质,即2852a a a +=,得5=0a ,又由545S S a =+,得54S S =. 详解:Q 数列{}n a 为等差数列, 2852a a a ∴+= 又286,6a a =-=Q ,5=0a ∴由数列前n 项和的定义545S S a =+,54S S ∴= 故选B.点睛:本题考查等差数列的性质与前n 项和计算的应用,解题时要认真审题,注意灵活运用数列的基本概念与性质.10.A解析:A 【解析】 【分析】 【详解】作出不等式50{03x y x y x -+≥+≥≤所表示可行域如图所示,作直线:24l z x y =+,则z 为直线l 在y 轴上截距的4倍, 联立3{x x y =+=,解得3{3x y ==-,结合图象知,当直线l 经过可行域上的点()3,3A -时,直线l 在y 轴上的截距最小, 此时z 取最小值,即()min 23436z =⨯+⨯-=-,故选A. 考点:线性规划11.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.12.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0 ∵87a a -<1<0∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.二、填空题13.10【解析】【分析】画出不等式组表示的可行域由得平移直线根据的几何意义求出最优解进而得到所求的最大值【详解】画出不等式组表示的可行域如图阴影部分所示由得平移直线结合图形可得当直线经过可行域内的点A 时解析:10 【解析】 【分析】画出不等式组表示的可行域,由2z x y =+得2y x z =-+,平移直线2y x z =-+,根据z 的几何意义求出最优解,进而得到所求的最大值.【详解】画出不等式组表示的可行域,如图阴影部分所示.由2z x y =+得2y x z =-+.平移直线2y x z =-+,结合图形可得,当直线经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最大值. 由402x y y +-=⎧⎨=-⎩,解得62x y =⎧⎨=-⎩,故点A 的坐标为(6,2)-, 所以max 26210z =⨯-=. 故答案为10. 【点睛】用线性规划求目标函数的最值体现了数形结合在数学中的应用,解题时要先判断出目标函数中z 的几何意义,然后再结合图形求解,常见的类型有截距型、斜率型和距离型三种,其中解题的关键是正确画出不等式组表示的可行域.14.【解析】【分析】由余弦定理得结合条件将式子通分化简得再由辅助角公式得出当时取得最大值从而求出结果【详解】在中由余弦定理可得所以其中当取得最大值时∴故答案为:【点睛】本题考查解三角形及三角函数辅助角公 解析:213【解析】 【分析】由余弦定理得2222cos c a b ab C =+-,结合条件23sin c ab C =,将式子b aa b+通分化简得3sin 2cos C C +,再由辅助角公式得出b aa b +()13sin C ϕ=+,当2C πϕ+=时,b aa b +取得最大值,从而求出结果. 【详解】在ABC ∆中由余弦定理可得2222cos c a b ab C =+-,所以2222cos 3sin 2cos 3sin 2cos b a a b c ab C ab C ab C C C a b ab ab ab++++====+()13sin C ϕ=+,其中213sin ϕ=,313cos ϕ=, 当b a a b +132C πϕ+=,∴213cos cos sin 2C πϕϕ⎛⎫=-== ⎪⎝⎭.213【点睛】本题考查解三角形及三角函数辅助角公式,考查逻辑思维能力和运算能力,属于常考题.15.1【解析】【分析】由已知数列递推式可得数列是以为首项以为公比的等比数列然后利用等比数列的通项公式求解【详解】由得则数列是以为首项以为公比的等比数列故答案为:1【点睛】本题考查数列的递推关系等比数列通解析:1【解析】 【分析】由已知数列递推式可得数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列,然后利用等比数列的通项公式求解. 【详解】由11()an n a a -=,得991991log log n n a a a -=,∴199991991l 9og log 9n n a a a -==, 则数列99{log }n a 是以199991991log 9999log a ==为首项,以19999为公比的等比数列, ∴19999991001log (99)199a =⋅=. 故答案为:1. 【点睛】本题考查数列的递推关系、等比数列通项公式,考查运算求解能力,特别是对复杂式子的理解.16.【解析】【分析】根据题意化简得利用式相加得到进而得到即可求解结果【详解】因为所以所以将以上各式相加得又所以解得或【点睛】本题主要考查了数列的递推关系式应用其中解答中利用数列的递推关系式得到关于数列首解析:34,- 【解析】 【分析】根据题意,化简得22111n n n a a a ++-=-,利用式相加,得到2213113112S a a a --=-,进而得到211120a a --=,即可求解结果.【详解】因为22111n n n a a a ++-=-,所以22111n n n a a a ++-=-, 所以2222222213321313121,1,,1a a a a a a a a a -=--=--=-L ,将以上各式相加,得2213113112S a a a --=-,又21313S a =,所以211120a a --=,解得13a =-或14a =.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.17.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的解析:2210a <<【解析】由三角形中三边关系及余弦定理可得a应满足22222222224130130310a a a a <<⎧⎪+->⎪⎨+->⎪⎪+->⎩,解得2210a <<, ∴实数a 的取值范围是(22,10). 答案:(22,10) 点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围.18.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号 考点:1线性规划的应用;2利解析:7 【解析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.考点:1、线性规划的应用;2、利用基本不等式求最值.19.【解析】【分析】设三角形外接圆半径R 由三角形面积公式解方程即可得解【详解】由题:设三角形外接圆半径为R ()根据正弦定理和三角形面积公式:即解得:故答案为:【点睛】此题考查三角形面积公式和正弦定理的应 解析:2【解析】 【分析】设三角形外接圆半径R ,由三角形面积公式21sin 2sin sin sin 2S ab C R A B C ==解方程即可得解. 【详解】由题:232162sin sin 75sin(4530)2B +=︒=︒+︒==设三角形外接圆半径为R (0R >),根据正弦定理和三角形面积公式:211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅= 即223623226R ++=, 解得:22R = 故答案为:2【点睛】此题考查三角形面积公式和正弦定理的应用,利用正弦定理对面积公式进行转化求出相关量,需要对相关公式十分熟练.20.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力 解析:3116【解析】 【分析】由题意首先求得1S ,然后结合递推关系求解5S 即可. 【详解】由题意可知:12221S a =-=,且:()122n n n S S S +=--,整理可得:()11222n n S S +-=-, 由于121S -=-,故()455113121,21616S S ⎛⎫-=-⨯=-∴= ⎪⎝⎭. 【点睛】本题主要考查递推关系的应用,前n 项和与通项公式的关系等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)1628(0)1y x x x =--+≥+;(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【解析】 【分析】(1)由不搞促销活动,则该产品的年销售量只能是1万件,可求k 的值,再求出每件产品销售价格的代数式,则利润y (万元)表示为年促销费用x (万元)的函数可求. (2)由(1)得16281y x x =--++,再根据均值不等式可解.注意取等号. 【详解】(1)由题意知,当0x =时,1,m = 所以213,2,31k k m x =-==-+, 每件产品的销售价格为8161.5mm+⨯元. 所以2020年的利润816161.581628(0)1m y m m x x x m x +=⨯---=--+≥+; (2)由(1)知,161628(1)292111y x x x x =--+=--++≤++, 当且仅当16(1)1x x =++,即3x =时取等号,该厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【点睛】考查均值不等式的应用以及给定值求函数的参数及解析式.题目较易,考查的均值不等式,要注意取等号. 22.(1)3π;(2)3. 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >, 则31sin cos cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin 3cos B B =,tan 3B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由13sin 24ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r ,所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r ,则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆的面积最大值为343433⨯=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.23.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333nn T n =⨯+⨯+⨯++⋅L ,则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和. 24.(Ⅰ)π3A =(Ⅱ)1114- 【解析】 【分析】(Ⅰ)先根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(Ⅱ)根据余弦定理求a,代入条件求得sin B =,解得cos B =,最后根据两角和余弦定理得结果.【详解】(Ⅰ)解:由条件1cos 2a C c b +=,得1sin sin sin sin 2A C CB +=,又由()sin sin B AC =+,得1sin cos sin sin cos cos sin 2A C C A C A C +=+.由sin 0C ≠,得1cos 2A =,故π3A =.(Ⅱ)解:在ABC V 中,由余弦定理及π4,6,3b c A ===,有2222cos a b c bc A =+-,故a = 由sin sin b A a B =得sin B =,因为b a <,故cos B =.因此sin22sin cos 7B B B ==,21cos22cos 17B B =-=.所以()11cos 2cos cos2sin sin214A B A B A B +=-=-. 【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的. 25.(1)2 (2【解析】 【分析】 【详解】((1)由cos 0ACB ∠=>可知,ACB ∠是锐角,所以,sin ACB ∠===由正弦定理sin sin AC AB B ACB=∠,sin 2sin 5AC AB ACB B =∠== (2)cos cos(18045)cos(135)A C C ︒︒︒=--=-(cos sin ),210C C =-+=- 由余弦定理:CD === 考点:1正弦定理;2余弦定理.26.(1)证明解析,(2)2【解析】 【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A=代入即可.(2)因为1c =,a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,cos A =tan A ⇒=,b =⇒166S =⨯=. 【详解】(1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b Ac A A=, 又0A π<<,所以sin 0A ≠,因此3cos b c A =.(2)由(1)得3b ccosA =.因为1c =,a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2229cos 16cos A A =+-,解得:22cos 3A =.因为3b cosA =,所以cos 0A >,cos A =.tan A ⇒=,b .211tan 66622S b A ==⨯⨯=. 【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.。
【易错题】高中必修五数学上期末一模试卷附答案一、选择题1.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S2.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <3.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .115.已知x ,y 满足2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,z =2x +y 的最大值为m ,若正数a ,b 满足a +b =m ,则14a b+的最小值为( ) A .3B .32C .2D .526.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年7.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .98.已知01x <<,01y <<,则)A .5B .22C .10D .239.已知x 、y 满足约束条件50{03x y x y x -+≥+≥≤,则24z x y =+的最小值是( )A .6-B .5C .10D .10-10.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .2811.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 12.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,二、填空题13.已知函数1()f x x x=-,数列{}n a 是公比大于0的等比数列,且61a =,1239101()()()()()f a f a f a f a f a a +++⋅⋅⋅++=-,则1a =_______.14.已知数列{}n a ,11a =,1(1)1n n na n a +=++,若对于任意的[2,2]a ∈-,*n ∈N ,不等式1321t n a a n +<-⋅+恒成立,则实数t 的取值范围为________ 15.若实数,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y =-的最小值等于_____.16.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若acosB =5bcosA ,asinA ﹣bsinB =2sinC ,则边c 的值为_______.17.设无穷等比数列{}n a 的公比为q ,若1345a a a a =+++…,则q =__________________.18.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积623S =+形的外接圆半径是______19.已知不等式250ax x b -+>的解集是{}|32x x -<<-,则不等式250bx x a -+>的解集是_________.20.已知数列{}n a (*n ∈N ),若11a =,112nn n a a +⎛⎫+= ⎪⎝⎭,则2lim n n a →∞= . 三、解答题21.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,且3sin cos 20b A a B a --=.(Ⅰ)求B 的大小; (Ⅱ)若7b =,ABC ∆的面积为32,求a c +的值. 22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。
【易错题】高中必修五数学上期末第一次模拟试题(附答案)一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .43.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭4.若直线()100,0ax by a b ++=>>把圆()()224116x y +++=分成面积相等的两部分,则122a b+的最小值为( ) A .10B .8C .5D .45.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-316.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .27.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a b a+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,………则2z x y =-的最大值为( ).A .10B .8C .3D .29.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .50510.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .7811.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .1312.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件二、填空题13.若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.14.数列{}n a 满足11,a =前n 项和为n S ,且*2(2,)n n S a n n N =≥∈,则{}n a 的通项公式n a =____;15.在等差数列{}n a 中,首项13a =,公差2d =,若某学生对其中连续10项进行求和,在遗漏掉一项的情况下,求得余下9项的和为185,则此连续10项的和为 . 16.已知数列{}n a 的前n 项和n s =23n -2n+1,则通项公式.n a =_________17.已知0,0x y >>,1221x y +=+,则2x y +的最小值为 . 18.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________. 19.已知n S 为数列{}n a 的前n 项和,且13a =,131n n a S +=+,*n ∈N ,则5S =______. 20.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______.三、解答题21.已知在等比数列{}n a 中, 11a =,且2a 是1a 和31a -的等差中项. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足()*21n n b n a n N=-+∈,求{}nb 的前n 项和nS.22.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a +的值;(2)若2a =,求ABC ∆面积的最大值.23.在数列{}n a 中, 已知11a =,且数列{}n a 的前n 项和n S 满足1434n n S S +-=, n *∈N . (1)证明数列{}n a 是等比数列;(2)设数列{}n na 的前n 项和为n T ,若不等式3()1604nn aT n+⋅-<对任意的n *∈N 恒成立, 求实数a 的取值范围.24.在等比数列{}n a 中,125a a +=,且2320a a +=. (1)求{}n a 的通项公式;(2)求数列{}3n n a a +的前n 项和n S . 25.已知{}n a 是递增数列,其前n 项和为n S ,11a >,且10(21)(2)n n n S a a =++,*n ∈N . (Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)是否存在*,,m n k N ∈使得2()m n k a a a +=成立?若存在,写出一组符合条件的,,m n k 的值;若不存在,请说明理由;(Ⅲ)设32n n n b a -=-,若对于任意的*n N ∈,不等式 125111(1)(1)(1)3123n m b b b n ≤+++⋅+L 恒成立,求正整数m 的最大值. 26.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC∠及AC的长;(2) 求BC的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】由题意可知:数列1,a1,a2,4成等差数列,设公差为d,则4=1+3d,解得d=1,∴a1=1+2=2,a2=1+2d=3.∵数列1,b1,b2,b3,4成等比数列,设公比为q,则4=q4,解得q2=2,∴b2=q2=2.则21221122a ab--==.本题选择A选项.2.B解析:B【解析】【分析】【详解】∵点M(a,b)与点N(0,−1)在直线3x−4y+5=0的两侧,∴()()34530450a b-+⨯++<,即3450a b-+<,故①错误;当0a>时,54a b+>,a+b即无最小值,也无最大值,故②错误;设原点到直线3x−4y+5=0的距离为d,则22513(4)==+-d,则22a b+>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.3.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果4.B解析:B 【解析】由于直线将圆平分,故直线过圆的圆心,将圆心坐标代入直线方程,利用“1”的代换的方法以及基本不等式,求得所求和的最小值. 【详解】圆的圆心为()4,1--,由于直线将圆平分,故直线过圆心,即410a b --+=,即41a b +=,故()121284448222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当82b aa b =,即11,82a b ==时,取得最小值为8.故选B. 【点睛】本小题主要考查直线和圆的位置关系,考查利用“1”的代换和基本不等式求解和式的最小值问题.直线能将圆平分成面积相等的两个部分,则这条直线是经过圆心的.要注意的是,圆的标准方程是()()222x a y b r -+-=,圆心是(),a b ,所以本题的圆心是()4,1--,而不是()4,1.5.C解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q =, 因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.解析:C 【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .7.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状. 【详解】22cos 2a baC +=Q 1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Qsin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.8.B【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-,联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.9.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.10.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.11.C解析:C 【解析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果. 【详解】由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯= 故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.12.C解析:C 【解析】先考虑充分性,当x>0时,1122x x x x+≥⋅=,当且仅当x=1时取等.所以充分条件成立. 再考虑必要性,当12x x+≥时,如果x>0时,22210(1)0x x x -+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0. 故选C.二、填空题13.4【解析】(前一个等号成立条件是后一个等号成立的条件是两个等号可以同时取得则当且仅当时取等号)【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式(1)当且仅当时取等号;(2)当且仅【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当2224a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;(2),a b R +∈,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.14.【解析】【分析】根据递推关系式可得两式相减得:即可知从第二项起数列是等比数列即可写出通项公式【详解】因为所以两式相减得:即所以从第二项起是等比数列又所以故又所以【点睛】本题主要考查了数列的递推关系式解析:21,12,2n n n a n -=⎧=⎨≥⎩【解析】 【分析】根据递推关系式()*22,n n S a n n N=≥∈可得()*1123,n n Sa n n N --=≥∈,两式相减得:122(3,)n n n a a a n n N *-=-≥∈,即12(3,)nn a n n N a *-=≥∈,可知从第二项起数列是等比数列,即可写出通项公式. 【详解】因为()*22,n n S a n n N=≥∈所以()*1123,n n S a n n N--=≥∈两式相减得:122(3,)n n n a a a n n N *-=-≥∈即12(3,)nn a n n N a *-=≥∈ 所以{}n a 从第二项起是等比数列, 又22221+S a a ==,所以21a =故22(2,n n a n -=≥ *)n N ∈,又11a =所以21,12,2n n n a n -=⎧=⎨≥⎩.本题主要考查了数列的递推关系式,等比数列,数列的通项公式,属于中档题.15.200【解析】试题分析:等差数列中的连续10项为遗漏的项为且则化简得所以则连续10项的和为考点:等差数列解析:200 【解析】试题分析:等差数列{}n a 中的连续10项为*+129,,,,,()x x x x a a a a x N ++⋯∈,遗漏的项为*+,x n a n N ∈且19,n ≤≤则9()10(18)10(2)22x x x x x n x a a a a a a n +++⨯++⨯-=-+,化简得4494352x n ≤=+≤,所以5x =,511a =,则连续10项的和为(1111+18)10=2002+⨯.考点:等差数列.16.【解析】试题分析:n=1时a1=S1=2;当时-2n+1--2(n-1)+1=6n-5a1=2不满足所以数列的通项公式为考点:1数列的前n 项和;2数列的通项公式解析:na =2,1{65,2n n n =-≥ 【解析】试题分析:n=1时,a 1=S 1=2;当2n ≥时,1n n n a S S -=-=23n -2n+1-[23(1)n --2(n-1)+1]=6n-5, a 1=2不满足61n a n =-,所以数列{}n a 的通项公式为n a =2,1{65,2n n n =-≥.考点:1.数列的前n 项和;2.数列的通项公式.17.3【解析】试题分析:根据条件解得那么当且仅当时取得等号所以的最小值为3故填:3考点:基本不等式解析:3 【解析】试题分析:根据条件,解得,那么,当且仅当时取得等号,所以的最小值为3,故填:3. 考点:基本不等式18.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n ()∴an+1an+2=2n+【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈)∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222n n a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.19.853【解析】【分析】由与的关系可得即进而得到是以为首项为公比的等比数列可得令即可得到的值【详解】由题即则是以为首项为公比的等比数列即当时故答案为:853【点睛】本题考查等比数列通项公式考查由与的关解析:853 【解析】 【分析】由n S 与n a 的关系可得,131n n n S S S +-=+,即141n n S S +=+,进而得到13n S ⎧+⎫⎨⎬⎩⎭是以103为首项,4为公比的等比数列,可得1101433n n S -=⋅-,令5n =,即可得到5S 的值 【详解】由题,1131n n n n a S S S ++=-=+,即141n n S S +=+,则()14n n S S λλ++=+143n n S S λ+∴=+,13λ∴=13a =Q ,111110333S a ∴+=+=,∴13n S ⎧+⎫⎨⎬⎩⎭是以103为首项,4为公比的等比数列,∴1110433n n S -+=⋅,即1101433n n S -=⋅- 当5n =时,51510110142568533333S -=⨯-=⨯-= 故答案为:853 【点睛】本题考查等比数列通项公式,考查由n S 与n a 的关系求n S ,根据1n n S k S b +=⋅+,可构造数列{}n S λ+为等比数列,公比为k20.【解析】【分析】利用1的代换将求式子的最小值等价于求的最小值再利用基本不等式即可求得最小值【详解】因为等号成立当且仅当故答案为:【点睛】本题考查1的代换和基本不等式求最值考查转化与化归思想的运用求解 解析:25【解析】 【分析】利用1的代换,将求式子43a b +的最小值等价于求43()(3)a b a b++的最小值,再利用基本不等式,即可求得最小值. 【详解】因为4343123()(3)491325b a a b a b a b a b +=++=+++≥+, 等号成立当且仅当21,55a b ==. 故答案为:25. 【点睛】本题考查1的代换和基本不等式求最值,考查转化与化归思想的运用,求解时注意一正、二定、三等的运用,特别是验证等号成立这一条件.三、解答题21.(1) 12n n a -=(2) n S 221n n =+-【解析】 【分析】(1)由题意结合等差数列的性质得到关于公比的方程,解方程求得公比的值,然后结合首项求解数列的通项公式即可.(2)结合(1)的结果首先确定数列{}n b 的通项公式,然后分组求和即可求得数列{}n b 的前n 项和n S . 【详解】(1)设等比数列{}n a 的公比为q ,则2a q =,23a q =,∵2a 是1a 和31a -的等差中项, ∴()21321a a a =+-, 即()2211q q =+-, 解得2q =,∴12n n a -=.(2) 121212n n n b n a n -=-+=-+,则()()11321122n n S n -⎡⎤=+++-++++⎣⎦L L()12112212n n n ⎡⎤+--⎣⎦=+-. 221n n =+-.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.22.(1)2224b c a+=(2 【解析】 【分析】(I )由题意2sin 3tan c B a A =,利用正、余弦定理化简得2224b c a +=,即可得到答案. (II )因为2a =,由(I )知222416b c a +==,由余弦定理得6cos A bc=,进而利用基本不等式,得到6cos bc A =,且(0,)2A π∈,再利用三角形的面积公式和三角函数的性质,即可求解面积的最大值. 【详解】解:(I )∵2sin 3tan c B a A =, ∴2sin cos 3sin c B A a A =, 由正弦定理得22cos 3cb A a =,由余弦定理得22222?32b c a cb a bc+-=,化简得2224b c a +=,∴2224b c a+=. (II )因为2a =,由(I )知222416b c a +==,∴由余弦定理得2226cos 2b c a A bc bc+-==, 根据重要不等式有222b c bc +≥,即8bc ≥,当且仅当b c =时“=”成立, ∴63cos 84A ≥=. 由6cos A bc =,得6cos bc A =,且0,2A π⎛⎫∈ ⎪⎝⎭, ∴ABC ∆的面积116sin sin 3tan 22cos S bc A A A A==⨯⨯=. ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==,∴tan A =≤=∴3tan S A =≤∴ABC ∆的面积S. 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 23.(1)见解析(2) (,20)-∞ 【解析】分析:(1)利用1434n n S S +-=推出134n n a a +=是常数,然后已知2134a a =,即可证明数列{}n a 是等比数列;(2)利用错位相减法求出数列{}n na 的前n 项和为n T n ,化简不等式31604nn aT n⎛⎫+⋅-< ⎪⎝⎭,通过对任意的*n N ∈恒成立,求实数a 的取值范围.详解:(1) Q 已知*1434,n n S S n N +-=∈,∴ 2n ≥时, 143 4.n n S S --= 相减得1430n n a a +-=. 又易知0,n a ≠134n n a a +∴=.又由*1434,n n S S n N +-=∈得()121434,a a a +-=22133,44a a a ∴=∴=. 故数列{}n a 是等比数列.(2)由(1)知1133144n n n a --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.1133312444n n T n -⎛⎫⎛⎫⎛⎫∴=⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ,123333124444nn T n ⎛⎫⎛⎫⎛⎫∴=⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L . 相减得213113333341344444414nn n nn T n n -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=++++-⨯=-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-L , 331616444n nn T n ⎛⎫⎛⎫∴=-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭, ∴不等式31604n n a T n ⎛⎫+⨯-< ⎪⎝⎭为33316164160444n n na n n⎛⎫⎛⎫⎛⎫-⨯-⨯+⨯-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 化简得2416n n a +>. 设()2416f n n n =+,*n N ∈Q ()()120min f n f ∴==.故所求实数a 的取值范围是(),20-∞.点睛:本题考查等比数列的判断,数列通项公式与前n 项和的求法,恒成立问题的应用,考查计算能力. 24.(1)14n n a -=;(2)n S 4121n n =-+-.【解析】 【分析】(1)由数列{}n a 是等比数列,及125a a +=,且2320a a +=,两式相除得到公比q ,再代入125a a +=可求1a ,则通项公式可求.(2)利用分组求和求出数列{3n a 的前n 项和n S . 【详解】解:(1)因为等比数列{}n a 中,125a a +=,且2320a a +=. 所以公比23124a a q a a +==+,所以12155a a a +==, 即11a =, 故14n n a -=.(2)因为14n n a -=所以113342n n n a --=⋅+,所以141231412n nn S --=⨯+-- 4121n n =-+- 422n n =+-. 【点睛】本题考查等比数列的通项公式的计算与等比数列前n 项和公式的应用,属于基础题. 25.(1)1(51)2n -(2)不存在(3)8 【解析】 【分析】 【详解】(Ⅰ)11110(21)(2)a a a =++,得2112520a a -+=,解得12a =,或112a =. 由于11a >,所以12a =.因为10(21)(3)n n n S a a =++,所以210252n n n S a a =++.故221111101010252252n n n n n n n a S S a a a a ++++=-=++---,整理,得22112()5()0n n n n a a a a ++--+=,即11()[2()5]0n n n n a a a a +++--=.因为{}n a 是递增数列,且12a =,故10n n a a ++≠,因此152n n a a +-=. 则数列{}n a 是以2为首项,52为公差的等差数列. 所以512(1)(51)22n a n n =+-=-.………………………………………………5分 (Ⅱ)满足条件的正整数,,m n k 不存在,证明如下:假设存在*,,m n k N ∈,使得2()m n k a a a +=,则15151(51)2m n k -+-=-. 整理,得3225m n k +-=, ① 显然,左边为整数,所以①式不成立.故满足条件的正整数,,m n k 不存在. ……………………8分(Ⅲ)313(51)21222n n n n b a n n --=-=--=+,12111(1)(1)(1)n b b b ≤+++L≤3121231111n n b b b b b b b b ++++⋅⋅L4682235721n n +=⋅⋅⋅⋅+L .设46822()35721n f n n +=⋅⋅⋅⋅+L则(1)()35721f n f n n +=⋅⋅⋅⋅+L2423n n +==+24124n n +=>===+. 所以(1)()f n f n +>,即当n 增大时,()f n 也增大.12111(1)(1)(1)n b b b ≤+++L 对于任意的*n N ∈恒成立,只需min ()31f n ≤即可.因为min 4()(1)3f n f ===≤. 即43112448151515m ⨯≤==. 所以,正整数m 的最大值为8. ………………………………………14分26.(1) cos DAC ∠=AC =(2) 3 【解析】 【分析】(1)用余弦定理求AC ,再求cos DAC ∠;(2)先求出sin BAC ∠和sin B ,再用正弦定理可求得BC . 【详解】(1)ACD ∆中,由余弦定理可得:222164222277AC ⎛⎫=⨯-⨯⨯-=⎪⎝⎭,解得7AC =,11272cos 27AC DAC AD ∴∠===; (2)设DAC DCA α∠==∠, 由(1)可得:cos sin 7αα==, ()sin sin 120BAC α︒∴∠=-1272714=+⨯=,()sin sin()sin 1802B BAC BCA α︒=∠+∠=-sin 22777α==⨯=在BAC V 中,由正弦定理可得:sin sin BC ACBAC B=∠,3BC ∴==. 【点睛】本题考查余弦定理,正弦定理,考查两角和与差的正弦公式,诱导公式,二倍角公式等.本题属于中档题.解三角形注意公式运用:①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;②利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的.。
【易错题】高中必修五数学上期末模拟试题(附答案)一、选择题1.设数列{}n a 的前n 项和为n S ,若2,n S ,3n a 成等差数列,则5S 的值是( )A .243-B .242-C .162-D .2432.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .43.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=L A .110B .100C .55D .04.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年5.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033B .1034C .2057D .20586.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5057.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .38.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定9.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .- 5B .-15C .5D .1510.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .911.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016B .2017C .2018D .201912.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( ) A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦,D .3153⎡⎤-⎢⎥⎣⎦,二、填空题13.已知实数,且,则的最小值为____14.数列{}n a 满足11,a =前n 项和为n S ,且*2(2,)n n S a n n N =≥∈,则{}n a 的通项公式n a =____;15.已知0a >,0b >,当()214a b ab++取得最小值时,b =__________. 16.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S ,且数列{}n S n +也为公差为d 的等差数列,则d =______. 17.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =cos A =__________18.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c ,且22cos C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.19.若正数,a b 满足3ab a b =++,则+a b 的取值范围_______________。
【易错题】高中必修五数学上期末第一次模拟试题附答案一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.设,x y 满足约束条件 202300x y x y x y --≤⎧⎪-+≥⎨⎪+≤⎩,则46y x ++的取值范围是A .3[3,]7- B .[3,1]- C .[4,1]-D .(,3][1,)-∞-⋃+∞3.已知数列{}n a 的前n 项和2n S n =,()1nn n b a =-则数列{}n b 的前n 项和n T 满足( ) A .()1nn T n =-⨯ B .n T n =C .n T n =-D .,2,.n n n T n n ⎧=⎨-⎩为偶数,为奇数4.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .45.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD6.已知实数,x y 满足0{20x y x y -≥+-≤则2y x -的最大值是( )A .-2B .-1C .1D .27.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5058.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712 B .714 C .74D .789.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( )A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞10.已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a =A .4B .10C .16D .3211.在中,,,,则A .B .C .D .12.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .60二、填空题13.要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则a 的取值范围是__________.14.已知数列{}n a 满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,记数列{}n a 的前n项和为n S ,若对所有满足条件的{}n a ,10S 的最大值为M 、最小值为m ,则M m +=______.15.已知向量()()1,,,2a x b x y ==-r r ,其中0x >,若a r 与b r 共线,则yx的最小值为__________.16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知()3cos cos ,60a C c A b B -==︒,则A 的大小为__________.17.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223()4S a b c =+-,则角C =__________. 18.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L ________.19.设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 20.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题21.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式; (2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 22.已知等差数列{}n a 的公差为()0d d ≠,等差数列{}n b 的公差为2d ,设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,53A B =. (1)求数列{}n a ,{}n b 的通项公式; (2)设11n n n n c b a a +=+•,数列{}n c 的前n 项和为n S ,证明:2(1)n S n <+.23.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a 的正三角形ABC 绕其中心O 逆时针旋转θ到三角形A 1B 1C 1,且20,3πθ⎛⎫∈ ⎪⎝⎭.顺次连结A ,A 1,B ,B 1,C ,C 1,A ,得到六边形徽标AA 1BB 1CC 1 .(1)当θ=6π时,求六边形徽标的面积; (2)求六边形徽标的周长的最大值.24.已知数列{}n a 中,11a =,121n n a a n +=+-,n n b a n =+. (1)求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .25.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<L . 26.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量=(2sinB,2-cos2B),=(2sin 2(),-1),.(1)求角B 的大小; (2)若a =,b =1,求c 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项A 中,当c=0时不符,所以A 错.选项B 中,当2,1a b =-=-时,符合22a b >,不满足a b >,B 错.选项C 中, a c b c +>+,所以C 错.选项D 中,因为0a ≤<b ,由不等式的平方法则,22ab <,即a b <.选D.2.B解析:B 【解析】 【分析】 【详解】 先作可行域,而46y x ++表示两点P (x,y )与A (-6,-4)连线的斜率,所以46y x ++的取值范围是[,][3,1]AD AC k k =-,选B.点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.3.A解析:A 【解析】 【分析】先根据2n S n =,求出数列{}n a 的通项公式,然后利用错位相减法求出{}n b 的前n 项和n T .【详解】解:∵2n S n =,∴当1n =时,111a S ==;当2n ≥时,()221121n n n a S S n n n -=-=--=-, 又当1n =时,11a =符合上式,∴21n a n =-, ∴()()()1121nnn n b a n =-=--,∴()()()()()123113151121nn T n =⨯-+⨯-+⨯-+⋅⋅⋅+--①,∴()()()()()2341113151121n n T n +-=⨯-+⨯-+⨯-+⋅⋅⋅+--②,①-②,得()()()()()()23412121111211n n n T n +⎡⎤=-+⨯-+-+-+⋅⋅⋅+---⨯-⎣⎦()()()()()()211111122112111n n n n n -+⎡⎤---⎣⎦=-+⨯--⨯-=---, ∴()1nn T n =-,∴数列{}n b 的前n 项和()1nn T n =-.故选:A .本题考查了根据数列的前n项和求通项公式和错位相减法求数列的前n项和,考查了计算能力,属中档题.4.A解析:A【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C处取得最大值,其最大值为max 33329z x y=+=+⨯=.本题选择A选项.5.A解析:A【解析】【分析】先由余弦定理得到AB边的长度,再由等面积法可得到结果.【详解】根据余弦定理得到22222AC BC ABAC BC+-=⨯⨯将2AC=,22BC=,代入等式得到AB=5再由等面积法得到11225 2522222CD CD⨯=⨯⇒=故答案为A.【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab及2b、2a时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.6.C【解析】作出可行域,如图BAC ∠内部(含两边),作直线:20l y x -=,向上平移直线l ,2z y x =-增加,当l 过点(1,1)A 时,2111z =⨯-=是最大值.故选C .7.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.8.D解析:D 【解析】因为11,8m n m n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.9.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出.详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.10.C解析:C 【解析】由64S S -=6546a a a +=得,()22460,60q q a q q +-=+-=,解得2q =,从而3522=28=16a a =⋅⨯,故选C.11.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.12.B解析:B 【解析】 【分析】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,在ABD ∆中由正弦定理求得AD ,在Rt ADF ∆中求得DF ,从而求得灯塔CD 的高度. 【详解】过点B 作BE DC ⊥于点E ,过点A 作AF DC ⊥于点F ,如图所示,在ABD ∆中,由正弦定理得,sin sin AB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cos sin()h AD αβα∴=-,在Rt ADF ∆中,cos sin sin sin()h DF AD αβββα==-,又山高为a ,则灯塔CD 的高度是3340cos sin 22356035251sin()2h CD DF EF a αββα⨯⨯=-=-=-=-=-. 故选B .【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.二、填空题13.【解析】【分析】设要使得关于的方程的一根笔译1大且另一根比1小转化为即可求解【详解】由题意设要使得关于的方程的一根笔译1大且另一根比1小根据二次函数的图象与性质则满足即即解得即实数的取值范围是【点睛 解析:21a -<<【解析】 【分析】设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为()10f <,即可求解. 【详解】由题意,设()22(1)2f x x a x a =+-+-,要使得关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,根据二次函数的图象与性质,则满足()10f <,即220a a +-<, 即(1)(2)0a a -+<,解得21a -<<,即实数a 的取值范围是21a -<<. 【点睛】本题主要考查了一元二次函数的图象与性质的应用问题,其中解答中把关于x 的方程22(1)20x a x a +-+-=的一根笔译1大且另一根比1小,转化为(1)0f <是解得的关键,着重考查了转化思想,以及推理运算能力.14.1078【解析】【分析】根据数列的递推关系求出数列的前四项的最大最小值得出何时和最大何时和最小进而求得结论【详解】解:因为数列{an}满足:即解得;或或;或所以最小为4最大为8;所以数列的最大值为时解析:1078 【解析】 【分析】根据数列的递推关系,求出数列的前四项的最大,最小值,得出何时和最大,何时和最小,进而求得结论. 【详解】解:因为数列{a n }满足:11a =,{}112,,,n n n a a a a a +-∈⋅⋅⋅()*n ∈N ,{}211a a a ∴-∈即211a a a -=解得22a =;{}3212,a a a a ∴-∈321a a ∴-=或322a a -= 33a ∴=或34a =;{}43123,,a a a a a ∴-∈431a a ∴-=或432a a -=,433a a -=,434a a -=所以4a 最小为4,4a 最大为8;所以,数列10S 的最大值为M 时,是首项为1,公比为2的等比数列的前10项和:()10112102312M ⨯-==-;10S 取最小值m 时,是首项为1,公差为1的等差数列的前10项和:()101011011552m ⨯-=⨯+⨯=; ∴1078M m +=. 故答案为:1078. 【点睛】本题考查了数列的递推关系式,等比数列以及等差数列的通项公式与前n 项和公式,考查了推理能力与计算能力,属于中档题.本题的关键在于观察出数列的规律.15.【解析】【分析】根据两个向量平行的充要条件写出向量的坐标之间的关系之后得出利用基本不等式求得其最小值得到结果【详解】∵其中且与共线∴即∴当且仅当即时取等号∴的最小值为【点睛】该题考查的是有关向量共线解析:【解析】【分析】 根据两个向量平行的充要条件,写出向量的坐标之间的关系,之后得出2y x x x =+,利用基本不等式求得其最小值,得到结果.【详解】 ∵()1,a x =r , (),2b x y =-r ,其中0x >,且a r 与b r 共线∴()12y x x ⨯-=⋅,即22y x =+∴222y x x x x x+==+≥,当且仅当2x x =即x =时取等号∴y x 的最小值为 【点睛】 该题考查的是有关向量共线的条件,涉及到的知识点有向量共线坐标所满足的条件,利用基本不等式求最值,属于简单题目.16.【解析】由根据正弦定理得即又因为所以故答案为解析:75︒【解析】)acosC ccosA b -=)sinAcosC sinCcosA sinB -=,即()2A C -=, ()1sin ,?3026A C A C π-=-==︒, 又因为180B 120AC +=︒-=︒,所以2150,A 75A =︒=︒,故答案为75︒.17.【解析】分析:利用面积公式和余弦定理结合可得详解:由余弦定理:可得:∴∵∴故答案为:点睛:在解三角形时有许多公式到底选用哪个公式要根据已知条件根据待求式子灵活选用象本题出现因此联想余弦定理由于要求角 解析:π3. 【解析】 分析:利用面积公式in 12s S ab C =和余弦定理结合可得.详解:由()2221sin 42S a b c ab C =+-=. 余弦定理:2222cos a b c ab C +-=,12cos sin 2ab C ab C =,∴tan C =∵0πC <<, ∴π3C =. 故答案为:π3. 点睛:在解三角形时,有许多公式,到底选用哪个公式,要根据已知条件,根据待求式子灵活选用,象本题出现222a b c +-,因此联想余弦定理2222cos a b c ab C +-=,由于要求C 角,因此面积公式自然而然 选用in 12s S ab C =.许多问题可能比本题要更复杂,目标更隐蔽,需要我们不断探索,不断弃取才能得出正确结论,而这也要求我们首先要熟记公式.18.2018【解析】【分析】数列{an}{bn}满足bn =lnann∈N*其中{bn}是等差数列可得bn+1﹣bn =lnan+1﹣lnan =ln 常数t 常数et =q >0因此数列{an}为等比数列由可得a1解析:2018【解析】【分析】数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,可得b n +1﹣b n =lna n +1﹣lna n =ln 1n n a a +=常数t .1n na a +=常数e t =q >0,因此数列{a n }为等比数列.由431007e a a ⋅=, 可得a 1a 1009=a 2a 1008431007a a e =⋅==L .再利用对数运算性质即可得出.【详解】解:数列{a n }、{b n }满足b n =lna n ,n ∈N *,其中{b n }是等差数列,∴b n +1﹣b n =lna n +1﹣lna n =ln 1n na a +=常数t . ∴1n na a +=常数e t =q >0, 因此数列{a n }为等比数列.且431007e a a ⋅=,∴a 1a 1009=a 2a 1008431007a a e =⋅==L .则b 1+b 2+…+b 1009=ln (a 1a 2…a 1009)==lne 2018=2018.故答案为:2018.【点睛】本题考查了等比数列的通项公式与性质、对数运算性质,考查了推理能力与计算能力,属于中档题.19.-8【解析】设等比数列的公比为很明显结合等比数列的通项公式和题意可得方程组:由可得:代入①可得由等比数列的通项公式可得【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题解决这类问题的关键在于 解析:-8【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:()()12121311113a a a q a a a q ⎧+=+=-⎪⎨-=-=-⎪⎩,①,②,由②①可得:2q =-,代入①可得11a =, 由等比数列的通项公式可得3418a a q ==-.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.20.【解析】【分析】首先根据无穷等比数列的各项和为2可以确定其公比满足利用等比数列各项和的公式得到得到分和两种情况求得的取值范围得到结果【详解】因为无穷等比数列的各项和为2所以其公比满足且所以当时当时所 解析:(0,2)(2,4)U .【解析】【分析】首先根据无穷等比数列{}n a 的各项和为2,可以确定其公比满足01q <<,利用等比数列各项和的公式得到121a q=-,得到122a q =-,分01q <<和10q -<<两种情况求得1a 的取值范围,得到结果.【详解】因为无穷等比数列{}n a 的各项和为2,所以其公比q 满足01q <<,且121a q=-, 所以122a q =-,当01q <<时,1(0,2)a ∈,当10q -<<时,1(2,4)a ∈,所以首项1a 的取值范围为(0,2)(2,4)U ,故答案是:(0,2)(2,4)U .【点睛】该题考查的是有关等比数列各项和的问题,涉及到的知识点有等比数列存在各项和的条件,各项和的公式,注意分类讨论,属于简单题目.三、解答题21.(1)13n n a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nn n a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13n n a ⎛⎫= ⎪⎝⎭,所以3n n n n a =⋅, 所以1231323333n n T n =⨯+⨯+⨯++⋅L , 则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n n T n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭, 所以()132134n n n T ++-⋅= 【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和.22.(1)n a n =,21n b n =+;(2)见解析【解析】【分析】(1)由等差数列的通项公式及求和公式列1a d ,的方程组求解则n a n =可求,进而得21n b n =+(2)利用()111212111n c n n n n n n ⎛⎫=++=++- ⎪⋅++⎝⎭分组求和即可证明 【详解】 (1)因为数列{}n a ,{}n b 是等差数列,且23A =,53A B =,所以112351096a d a d d +=⎧⎨+=+⎩. 整理得1123549a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩, 所以()11?n a a n d n =+-=,即n a n =,()11221n b b n d n =+-⋅=+,即21n b n =+.综上,n a n =,21n b n =+.(2)由(1)得()111212111n c n n n n n n ⎛⎫=++=++- ⎪⋅++⎝⎭, 所以()11111352112231n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫=++⋯+++-+-+⋯+- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦, 即()()22211211111n S n n n n n n =++-=+-<+++. 【点睛】 本题考查等差数列的通项公式及求和公式,裂项相消求和,考查推理计算能力,是中档题23.(1)234a ;(2) 【解析】【分析】 (1)连接OB ,则123AOB πθ∠=-,由等边三角形ABC 的边长为a ,可得OA OB ==,再利用三角形面积公式求解即可; (2)根据三角形的对称性可得12sin sin 232AA OA a θθ==,112sin sin 3232222A B OB πθθθ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,则周长为关于θ的函数,进而求得最值即可【详解】(1)Q 等边三角形ABC 的边长为a ,OA OB ∴==,连接OB ,123AOB πθ∴∠=-,22123sin sin sin 2326S OA ππθθθ⎡⎤⎛⎫⎛⎫∴=⨯+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴当6πθ=时,六边形徽标的面积为234S a = (2)在1AOA V 中,12sinsin 22AA OA θθ==, 在1BOA V 中,112sin sin 32222A B OB πθθθ⎫⎛⎫=-=-⎪ ⎪⎪⎝⎭⎝⎭, 设周长为()f q ,则()()113sin 23f AA A B θπθ⎛⎫=+=+⎪⎝⎭,20,3θπ⎛⎫∈ ⎪⎝⎭, 当且仅当232θππ+=,即3πθ=时,()max f θ=【点睛】本题考查三角形面积的应用,考查正弦型函数的最值问题,考查三角函数在几何中的应用,考查数形结合思想24.(1)证明见解析(2)()11222n n n n S ++=-- 【解析】【分析】(1)根据n n b a n =+求得1n b +,化简成含n a 的表达式再得12n n b b +=即可.(2)根据(1)中等比数列的首项与公比求得数列{}n b 的通项公式,再代入n n b a n =+即可求得数列{}n a 的通项公式,再根据分组求和求解即可.【详解】(1)证明:因为121,n n n n a a n b a n +=+-=+所以()()()11121122n n n n n b a n a n n a n b ++=++=+-++=+=,又因为11120b a =+=≠,则12n nb b +=, 所以数列{}n b 是首项为2,公比为2的等比数列.(2)由(1)知2n n n a n b +==,所以2n n a n =-,所以()()()()232122232n n S n =-+-+-+⋅⋅⋅+- ()()232222123n n =+++⋅⋅⋅+-+++⋅⋅⋅+()()()121211221222n n n n n n +-++=-=---【点睛】 本题主要考查了数列的递推公式证明等比数列的方法,同时也考查了分组求和与等比等差数列求和的公式等.属于中等题型.25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)当n ≥2时,S n ﹣S n ﹣121n n S S =-⇒S n ﹣S n ﹣1=S n •S n ﹣1(n ≥2),取倒数,可得111n n S S --=1,利用等差数列的定义即可证得:数列{1nS }是等差数列; (2)利用222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭进行放缩并裂项求和即可证明 【详解】(1)当2n ≥时,211n n n n S S S S --=-, 11n n n n S S S S ---=,即1111n n S S --= 从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列. (2)由(1)可知,()11111n n n S S =+-⨯=,1n S n ∴=. 则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭. 故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭L L 1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭ 又当1n =时,21714S =<满足题意,故2221274n S S S +++<L . 法二:则当2n ≥时22211111n S n n n n n=<=---, 那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L L 又当1n =时,21714S =<,当时,21714S =<满足题意, 【点睛】本题考查数列递推式的应用,考查等差数列的判定,考查等价转化思想,突出裂项法、放缩法应用的考查,属于难题.26.(1)或;(2)c=2或c=1.【解析】【分析】(1)根据=0得到4sinB·sin2+cos2B-2=0,再化简即得B=或 .(2)先确定B的值,再利用余弦定理求出c的值.【详解】(1)∵,∴=0,∴4sinB·sin2+cos2B-2=0,∴2sinB[1-cos]+cos2B-2=0,∴2sinB+2sin2B+1-2sin2B-2=0,∴sinB=,∵0<B<π,∴B=或 .(2)∵a=,b=1,∴a>b,∴此时B=,由余弦定理得:b2=a2+c2-2accosB,∴c2-3c+2=0,∴c=2或c=1.综上c=2或c=1.【点睛】本题主要考查三角恒等变换,考查正弦定理余弦定理在解三角形中的应用,意在考查学生对这些知识的掌握水平和分析推理能力.。
【易错题】高中必修五数学上期末模拟试卷及答案(1)一、选择题1.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( )A .2B .-4C .2或-4D .42.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭3.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-4.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .15.在等差数列{}n a 中,若1091a a <-,且它的前n 项和n S 有最大值,则使0n S >成立的正整数n 的最大值是( ) A .15B .16C .17D .146.已知等比数列{}n a 的各项都是正数,且13213,,22a a a 成等差数列,则8967a a a a +=+ A .6B .7C .8D .97.已知正项等比数列{}n a 的公比为3,若229m n a a a =,则212m n+的最小值等于( ) A .1B .12C .34 D .328.等差数列{}n a 中,34512a a a ++=,那么{}n a 的前7项和7S =( ) A .22B .24C .26D .289.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .5710.已知x,y均为正实数,且111226x y+=++,则x y+的最小值为()A.20B.24C.28D.3211.若变量x,y满足约束条件1358xy xx y≥-⎧⎪≥⎨⎪+≤⎩,,,则2yzx=-的取值范围是()A.113⎡⎤-⎢⎥⎣⎦,B.11115⎡⎤--⎢⎥⎣⎦,C.111153⎡⎤-⎢⎥⎣⎦,D.3153⎡⎤-⎢⎥⎣⎦,12.已知函数1()2xf x⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a->的解集为( )A.(4,1)-B.(1,4)-C.(1,4)D.(0,4)二、填空题13.若首项为1a,公比为q(1q≠)的等比数列{}na满足21123lim()2nnaqa a→∞-=+,则1a的取值范围是________.14.如图,在ABCV中,,43C BCπ==时,点D在边AC上,AD DB=,DE AB⊥,E为垂足若22DE=,则cos A=__________15.已知函数()2xf x=,等差数列{}n a的公差为2,若()2468104f a a a a a++++=,则()()()()212310log f a f a f a f a⋅⋅⋅⋅=⎡⎤⎣⎦L___________.16.若关于x的不等式()2221x ax-<的解集中的整数恰有3个,则实数a的取值范围是________________.17.若变量,x y满足约束条件{241yx yx y≤+≥-≤,则3z x y=+的最小值为_____.18.已知0,0a b>>,且20a b+=,则lg lga b+的最大值为_____.19.已知数列{}n a 满足51()1,62,6n n a n n a a n -⎧-+<⎪=⎨⎪≥⎩,若对任意*n N ∈都有1n n a a +>,则实数a 的取值范围是_________.20.数列{}n a 满足10a =,且()1*11211n nn N a a +-=∈--,则通项公式 n a =_______.三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (1)求角A 的大小(2)若3a =,求ABC △的周长最大值. 22.若0,0a b >>,且11a b+=(1)求33+a b 的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由. 23.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .24.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S .25.已知()f x a b =⋅v v,其中()2cos ,2a x x =v,()cos ,1b x =v ,x ∈R .(1)求()f x 的单调递增区间;(2)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,()1f A =-,a =且向量()3,sin m B =v 与()2,sin n C =v共线,求边长b 和c 的值.26.已知点(1,2)是函数()(0,1)xf x a a a =>≠的图象上一点,数列{}n a 的前n 项和是()1n S f n =-.(1)求数列{}n a 的通项公式;(2)若1log n a n b a +=,求数列{}n n a b •的前n 项和n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.2.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果3.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t q f t q t t t++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减. 可得t=12处,此时f (t )取得最小值,且为274,则a 8+λa 9的最小值为274; 故选C.4.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】 目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.5.C解析:C 【解析】 【分析】由题意可得90a >,100a <,且9100a a +<,由等差数列的性质和求和公式可得结论. 【详解】∵等差数列{}n a 的前n 项和有最大值, ∴等差数列{}n a 为递减数列,又1091a a <-, ∴90a >,100a <, ∴9100a a +<, 又()118181802a a S +=<,()117179171702a a S a +==>,∴0n S >成立的正整数n 的最大值是17, 故选C . 【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.6.D解析:D 【解析】 【分析】设各项都是正数的等比数列{a n }的公比为q ,(q >0),由题意可得关于q 的式子,解之可得q ,而所求的式子等于q 2,计算可得. 【详解】设各项都是正数的等比数列{a n }的公比为q ,(q >0)由题意可得31212322a a a ⨯=+, 即q 2-2q-3=0, 解得q=-1(舍去),或q=3,故()26728967679a a qa a q a a a a .++===++ 故选:D . 【点睛】本题考查等差数列和等比数列的通项公式,求出公比是解决问题的关键,属基础题.7.C解析:C 【解析】∵正项等比数列{}n a 的公比为3,且229m n a a a =∴2224222223339m n m n a a a a --+-⋅⋅⋅=⋅=∴6m n +=∴121121153()()(2)(2)62622624m n m n m n n m ⨯++=⨯+++≥⨯+=,当且仅当24m n ==时取等号. 故选C.点睛:利用基本不等式解题的注意点:(1)首先要判断是否具备了应用基本不等式的条件,即“一正、二正、三相等”,且这三个条件必须同时成立.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等. (3)多次使用基本不等式求最值时,要注意只有同时满足等号成立的条件才能取得等号.8.D解析:D 【解析】试题分析:由等差数列的性质34544123124a a a a a ++=⇒=⇒=,则考点:等差数列的性质9.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.10.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出. 详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++226(2)46(242022y x x y ++=++-≥+-=++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.11.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示:由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x =-⎧⎨=⎩,解得(11)B --,,而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.12.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.二、填空题13.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22U【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+Q 21123lim 2n a a a →∞∴=+,lim 0nn q →∞= 故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈U 故答案为:33(0,)(,3)22U 【点睛】本题考查数列极限以及不等式的性质,属于中档题.14.【解析】在△ABC 中∵DE ⊥ABDE=∴AD=∴BD=AD=∵AD=BD ∴A=∠ABD ∴∠BDC=∠A+∠ABD =2∠A 在△BCD 中由正弦定理得即整理得cosA=解析:4【解析】在△ABC 中,∵DE ⊥AB ,DE=,∴AD, ∴BD =AD=sin A. ∵AD =BD ,∴A =∠ABD , ∴∠BDC =∠A +∠ABD =2∠A , 在△BCD 中,由正弦定理得sin sin BD BCC BDC=∠ ,4sin22A=,整理得cosA15.【解析】【分析】根据指数运算出再利用等差中项的性质得出并得出然后再利用等差数列的性质和指数对数的运算法则求出的值【详解】依题意有且则而因此故答案为【点睛】本题考查等差数列基本性质的计算同时也考查了等解析:6-【解析】【分析】根据指数运算出2468102a a a a a++++=,再利用等差中项的性质得出625a=,并得出56825a a=-=-,然后再利用等差数列的性质和指数、对数的运算法则求出()()()()212310log f a f a f a f a⋅⋅⋅⋅⎡⎤⎣⎦L的值.【详解】依题意有246810625a a a a a a++++==,625a∴=,且56282255a a=-=-=-.则()()()110123101105610825556255a aa a a a a a a a+⎛⎫++++==+=+=⨯-+=-⎪⎝⎭L,而()()()()1231061231022a a a af a f a f a f a++++-⋅⋅⋅⋅==LL,因此,()()()()62123102log log26f a f a f a f a-⋅⋅⋅⋅==-⎡⎤⎣⎦L.故答案为6-.【点睛】本题考查等差数列基本性质的计算,同时也考查了等差数列的定义以及指数、对数的运算,解题时充分利用等差中项的性质,可简化计算,考查计算能力,属于中等题. 16.【解析】试题分析:关于x的不等式(2x-1)2<ax2等价于其中且有故有不等式的解集为所以解集中一定含有123可得所以解得考点:含参数的一元二次方程的解法解析:2549,916⎡⎤⎢⎥⎣⎦【解析】试题分析:关于x的不等式(2x-1)2<ax2等价于2(4)410a x x-+-+<,其中40a∆=>且有40a->,故有04a<<x<<,所以111422a <<+解集中一定含有1,2,3,可得,所以5374a a ≥≤,解得2549916a ≤≤. 考点:含参数的一元二次方程的解法.17.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8 【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C18.【解析】【分析】由为定值运用均值不等式求的最大值即可【详解】当且仅当时等号成立即而当且仅当时等号成立故的最大值为2故答案为:2【点睛】本题主要考查了基本不等值求积的最大值对数的运算属于中档题 解析:2【解析】 【分析】由0,0a b >>,20a b +=为定值,运用均值不等式求ab 的最大值即可. 【详解】0,0a b ∴>>,20a b +=,202a b ab ∴=+≥当且仅当10a b ==时,等号成立,即100ab ≤,而lg lg lg lg1002a b ab +=≤=,当且仅当10a b ==时,等号成立, 故lg lg a b +的最大值为2, 故答案为:2 【点睛】本题主要考查了基本不等值求积的最大值,对数的运算,属于中档题.19.【解析】【分析】由题若对于任意的都有可得解出即可得出【详解】∵若对任意都有∴∴解得故答案为【点睛】本题考查了数列与函数的单调性不等式的解法考查了推理能力与计算能力属于中档题解析:17,212⎛⎫⎪⎝⎭【解析】 【分析】由题若对于任意的*n N ∈都有1n n a a +>,可得5610012a a a a -<,>,<<. 解出即可得出. 【详解】∵511,62,6n n a n n a a n -⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩,若对任意*n N ∈都有1n n a a +>, ∴5610012a a a a -<,>,<<.. ∴11 0()510122a a a a --⨯+<,>,<< , 解得17 212a <<. 故答案为17,212⎛⎫⎪⎝⎭.【点睛】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.20.【解析】【分析】构造数列得到数列是首项为1公差为2的等差数列得到【详解】设则数列是首项为1公差为2的等差数列故答案为【点睛】本题考查了数列的通项公式的求法构造数列是解题的关键意在考查学生对于数列通项 解析:2221n n -- 【解析】 【分析】构造数列11n nb a =-,得到数列n b 是首项为1公差为2的等差数列21n b n =-,得到2221n n a n -=-. 【详解】 设11n n b a =-,则12n n b b +-=,11111b a ==- 数列n b 是首项为1公差为2的等差数列1222121121n n n b n n a n n a -=⇒=--⇒--= 故答案为2221n n -- 【点睛】本题考查了数列的通项公式的求法,构造数列11n nb a =-是解题的关键,意在考查学生对于数列通项公式的记忆,理解和应用.三、解答题21.(1)3A π= (2)9【解析】试题分析:(1)由()2cos cos b c A a C -=,根据正弦定理,得2sin cos sin B A B =, 可得1cos 2A =,进而可得A 的值;(2)由(1)及正弦定理,得;b B c C ==,可得ABC ∆的周长,33636l B B sin B ππ⎛⎫⎛⎫=+++=++ ⎪ ⎪⎝⎭⎝⎭,结合范围20,3B π⎛⎫∈ ⎪⎝⎭,即可求ABC ∆的最大值.试题解析:(1)由()2cos cos b c A a C -=及正弦定理,得()2sin sin cos sin cos B C A A C -=2sin cos sin cos sin cos B A C A A C ∴=+()2sin cos sin sin B A C A B ∴=+=()0,B π∈Q sin 0B ∴≠ ()0,A π∈Q1cos 2A =3A π∴=(2)解:由(I )得3A π∴=,由正弦定理得sin sin sin b c a B C A ====所以;b B c C ==ABC ∆的周长33l B π⎛⎫=+++ ⎪⎝⎭3sinBcos sin 33cosB ππ⎫=+++⎪⎭33cosB =++36sin 6B π⎛⎫=++ ⎪⎝⎭ 20,3B π⎛⎫∈ ⎪⎝⎭Q 当3B π=时,ABC ∆的周长取得最大值为9.22.(1);(2)不存在. 【解析】 【分析】 (1)由已知11a b+=,利用基本不等式的和积转化可求2ab ≥,利用基本不等式可将33+a b 转化为ab ,由不等式的传递性,可求33+a b 的最小值;(2)由基本不等式可求23a b +的最小值为6>,故不存在. 【详解】 (111a b =+≥,得2ab ≥,且当a b ==故33+ab ≥≥a b ==所以33+a b的最小值为(2)由(1)知,23a b +≥≥由于6>,从而不存在,a b ,使得236a b +=成立. 【考点定位】 基本不等式.23.(1)2n a n =;(2)S n =212n -•3n +1+32【解析】 【分析】(1)等差数列{a n }的公差设为d ,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得b n =2n •3n ,由数列的错位相减法求和即可. 【详解】(1)等差数列{a n }的公差设为d ,a 3=6,且前7项和T 7=56. 可得a 1+2d =6,7a 1+21d =56,解得a 1=2,d =2,则a n =2n ; (2)b n =a n •3n =2n •3n ,前n 项和S n =2(1•3+2•32+3•33+…+n •3n ), 3S n =2(1•32+2•33+3•34+…+n •3n +1),相减可得﹣2S n =2(3+32+33+…+3n ﹣n •3n +1)=2•(()31313n --﹣n •3n +1),化简可得S n =212n -•3n +1+32.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题. 24.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q-⎡⎤=++++-+++++⎣⎦L L()()213112n n n q q q --=+++++L .∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-. 25.(1),()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)3,2b c ==.【解析】试题分析:(1)化简()f x 得()12cos 23f x x π⎛⎫=++⎪⎝⎭,代入[]()2,2k k k Z πππ-∈,求得增区间为()2,36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦;(2)由()1f A =-求得3A π=,余弦定理得()22222cos 3a b c bc A b c bc =+-=+-.因为向量()3,sin m B =r 与()2,sin n C r=共线,所以2sin 3sin B C =,由正弦定理得23b c =,解得3,12b c ==.试题解析:(1)由题意知,()22cos 21cos 2212cos 23f x x x x x x π⎛⎫==+-=++⎪⎝⎭, cos y x =Q 在[]()2,2k k k Z πππ-∈上单调递增,∴令2223k x k ππππ-≤+≤,得236k x k ππππ-≤≤-,()f x ∴的单调递增区间()2,36k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦. (2)()12cos 21,cos 2133f A A A ππ⎛⎫⎛⎫=++=-∴+=- ⎪ ⎪⎝⎭⎝⎭Q ,又72,23333A A πππππ<+<∴+=,即3A π=.a =Q ,由余弦定理得()22222cos 3a b c bc A b c bc =+-=+-.因为向量()3,sin m B =r 与()2,sin n C r=共线,所以2sin 3sin B C =,由正弦定理得323,,12b c b c =∴==.考点:三角函数恒等变形、解三角形. 26.(1)a n =2n -1;(2)T n =(n -1)2n+1.【解析】 【分析】(1)由点(1,2)在()xf x a =图像上求出2a =,再利用n S 法求出n a .(2)利用错位相减法求和,注意相减时项的符号,求和时项数的确定. 【详解】(1)把点(1,2)代入函数f (x )=a x 得a =2, 所以数列{a n }的前n 项和为S n =f (n )-1=2n -1. 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,对n =1时也适合, ∴a n =2n -1.(2)由a =2,b n =log a a n +1得b n =n , 所以a n b n =n ·2n -1.T n =1·20+2·21+3·22+…+n ·2n -1,①2T n =1·21+2·22+3·23+…+(n -1)·2n -1+n ·2n .② 由①-②得:-T n =20+21+22+…+2n -1-n ·2n,所以T n =(n -1)2n +1. 【点睛】(1)主要考查了n S 法求通项公式,即11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩(2)用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。
【易错题】高中必修五数学上期末模拟试题含答案一、选择题1.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1762.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .43.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD4.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( )A .-3B .5C .33D .-315.在△ABC 中,若1tan 15013A C BC ︒===,,,则△ABC 的面积S 是( ) A.38- B.34- CD6.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .37.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .98.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .579.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .310.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)11.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S 12.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .24二、填空题13.已知变数,x y 满足约束条件340{210,380x y x y x y -+≥+-≥+-≤目标函数(0)z x ay a =+≥仅在点(2,2)处取得最大值,则a 的取值范围为_____________.14.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.15.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.16.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S ,且数列{}n S n +也为公差为d 的等差数列,则d =______.17.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .18.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知)3cos cos ,60a C c A b B -==︒,则A 的大小为__________.19.在平面直角坐标系中,设点()0,0O ,(3A ,点(),P x y 的坐标满足303200x y x y -≤+≥⎨⎪≥⎪⎩,则OA u u u v 在OP uuu v 上的投影的取值范围是__________20.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .三、解答题21.设函数()112f x x =++|x |(x ∈R)的最小值为a . (1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求11m n+的最小值. 22.在△ABC 中,角,,A B C 所对的边分别为,,,a b c 向量()23,3m a b c =-u r,向量s )(co ,n B cosC =r ,且//m n u r r .(1)求角C 的大小; (2)求3()3y sinA sin B π=+-的最大值.23.已知实数x 、y 满足6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若z ax y =+的最大值为39a +,最小值为33a -,求实数a 的取值范围.24.△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,向量=(2sinB,2-cos2B),=(2sin 2(),-1),.(1)求角B 的大小; (2)若a =,b =1,求c 的值.25.在ABC ∆中,角A ,B 、C 的对边分别为a ,b ,c ,且3cos sin a bA B=. (1)求A ;(2)若2a =,且()cos 2sin sin cos B C B C C -=-,求ABC ∆的面积.26.设递增等比数列{a n }的前n 项和为S n ,且a 2=3,S 3=13,数列{b n }满足b 1=a 1,点P (b n ,b n +1)在直线x ﹣y +2=0上,n ∈N *. (1)求数列{a n },{b n }的通项公式; (2)设c n nnb a =,求数列{c n }的前n 项和T n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=, 解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.2.A解析:A 【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C 处取得最大值,其最大值为max 33329z x y =+=+⨯=.本题选择A 选项.3.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=⨯⨯将2AC =,22BC =,代入等式得到AB=再由等面积法得到112222CD CD⨯=⨯⨯⇒=故答案为A.【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab及2b、2a时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.C解析:C【解析】【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105SS.【详解】设等比数列{}n a的公比为q(公比显然不为1),则()()61636333111119111a qS qqqS qa qq---===+=---,得2q=,因此,()()101105510555111111233111a qS qqqS qa qq---===+=+=---,故选C.【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.5.A解析:A【解析】【分析】由正弦定理求出c,【详解】A 是三角形内角,1tan 3A =,∴sin A =由正弦定理sin sin a c A C=得sin sin 10a C c A ===, 又2222cos c a b ab C =+-,即22512cos15012b b b =+-︒=+,2302b +-=,32b =(32b =舍去),∴11sin 122ABC S ab C ∆==⨯︒=. 故选:A . 【点睛】本题考查正弦定理、余弦定理、三角形面积公式,考查同角间的三角函数关系.解三角形中公式较多,解题时需根据已知条件确定先选用哪个公式,再选用哪个公式.要有统筹安排,不致于凌乱.6.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示,由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题.7.C解析:C 【解析】因为等差数列{}n a 中,611 a a =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.故选C. 8.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.9.C解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a bA B=知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.10.B解析:B 【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.11.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.12.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
【易错题】高中必修五数学上期末第一次模拟试卷附答案一、选择题1.设,x y 满足约束条件330280440x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,则3z x y =+的最大值是( )A .9B .8C .3D .42.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-3.设,x y 满足约束条件3002x y x y x -+≥⎧⎪+≥⎨⎪≤⎩, 则3z x y =+的最小值是 A .5-B .4C .3-D .114.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .35.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形6.已知函数223log ,0(){1,0x x f x x x x +>=--≤,则不等式()5f x ≤的解集为 ( ) A .[]1,1-B .[]2,4-C .(](),20,4-∞-⋃D .(][],20,4-∞-⋃ 7.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5058.数列{}n a 为等比数列,若11a =,748a a =,数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则5(S = )A .3116B .158C .7D .319.设,x y 满足约束条件0,20,240,x y x y x y -≥⎧⎪+-≥⎨⎪--≤⎩则2z x y =+的最大值为( )A .2B .3C .12D .1310.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为( ) A .15B .25C .35D .4511.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .1512.在中,,,,则A .B .C .D .二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________;14.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.15.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________.16.已知数列{}n a 的前n 项和为2*()2n S n n n N =+∈,则数列{}n a 的通项公式n a =______.17.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 18.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.19.已知递增等比数列{}n a 的前n 项和为n S ,且满足:11a =,45234a a a a +=+,则144S S a +=______. 20.已知x ,y 满足3010510x y x y x y +-≤⎧⎪-+≥⎨⎪-+≤⎩,则2z x y =+的最大值为______.三、解答题21.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)m 万件与年促销费用x 万元,满足31km x =-+(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润y (万元)表示为年促销费用x (万元)的函数; (2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大? 22.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C的对边,且sin cos 20A a B a --=.(Ⅰ)求B 的大小;(Ⅱ)若b =ABC ∆a c +的值. 23.设{}n a 是等比数列,公比不为1.已知113a =,且1a ,22a ,33a 成等差数列. (1)求{}n a 的通项公式; (2)设数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 24.在△ABC 中,角A B C 、、的对边分别为a b c 、、,已知3cos()16cos cos B C B C --=,(1)求cos A (2)若3a =,△ABC的面积为求b c 、25.已知数列{}n a的前n项和为n S,且4133 n nS a=-.(1)求{}n a的通项公式;(2)若1nb n=+,求数列{}n na b的前n项和nT.26.已知函数()11f x x x=-++.(1)解不等式()2f x≤;(2)设函数()f x的最小值为m,若a,b均为正数,且14ma b+=,求+a b的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标还是在点()3,2C处取得最大值,其最大值为max33329z x y=+=+⨯=.本题选择A选项.2.C解析:C【解析】设等比数列的公比为q(q>1),1+(a2-a4)+λ(a3-a5)=0,可得λ=24531a aa a+--则a8+λa9=a8+666 929498385888222 535353111a a a a a a a a aq q qa a aa a a a q a a q q--+=++=+-=------令21t q=-,(t>0),q2=t+1,则设f(t)=()()()()()()3232622213112111t t t t t tqf tq t t t++-+-+=='=∴-当t>12时,f(t)递增;当0<t<12时,f(t)递减.可得t=12处,此时q=62,f(t)取得最小值,且为274,则a8+λa9的最小值为274;故选C.3.C解析:C【解析】画出不等式组表示的可行域如图阴影部分所示.由3z x y=+可得3y x z=-+.平移直线3y x z=-+,结合图形可得,当直线3y x z=-+经过可行域内的点A时,直线在y轴上的截距最小,此时z也取得最小值.由30x yx y-+=⎧⎨+=⎩,解得3232xy⎧=-⎪⎪⎨⎪=⎪⎩,故点A的坐标为33(,)22-.∴min333()322z=⨯-+=-.选C.4.B解析:B【解析】【分析】首先由等比数列前n项和公式列方程,并解得3q,然后再次利用等比数列前n项和公式,则求得答案. 【详解】设公比为q ,则616363313(1)1113(1)11a q S q q q a q S qq---===+=---, ∴32q =,∴93962611271123S q S q --===--. 故选:B . 【点睛】本题考查等比数列前n 项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.5.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C. 【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.6.B解析:B 【解析】分析:根据分段函数,分别解不等式,再求出并集即可.详解:由于()223log ,01,0x x f x x x x +>⎧=⎨--≤⎩,当x >0时,3+log 2x≤5,即log 2x≤2=log 24,解得0<x≤4, 当x≤0时,x 2﹣x ﹣1≤5,即(x ﹣3)(x+2)≤0,解得﹣2≤x≤0, ∴不等式f (x )≤5的解集为[﹣2,4],点睛:本题考查了分段函数以及不等式的解法和集合的运算,分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.7.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.8.A解析:A 【解析】 【分析】先求等比数列通项公式,再根据等比数列求和公式求结果. 【详解】Q 数列{}n a 为等比数列,11a =,748a a =,638q q ∴=,解得2q =, 1112n n n a a q --∴==, Q 数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S , 55111111131211248161612S ⎛⎫⨯- ⎪⎝⎭∴=++++==-.故选A . 【点睛】本题考查等比数列通项公式与求和公式,考查基本分析求解能力,属基础题.9.C解析:C 【解析】 【分析】由约束条件可得可行域,将问题变成1122y x z =-+在y 轴截距最大问题的求解;通过平移直线可确定最大值取得的点,代入可得结果.由约束条件可得可行域如下图所示:当2z x y =+取最大值时,1122y x z =-+在y 轴截距最大 平移直线12y x =-,可知当直线1122y x z =-+过图中A 点时,在y 轴截距最大由240y xx y =⎧⎨--=⎩得:()4,4A max 42412z ∴=+⨯=故选:C 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距最值问题的求解,属于常考题型.10.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.11.A【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.12.D解析:D 【解析】 【分析】根据三角形内角和定理可知,再由正弦定理即可求出AB .【详解】 由内角和定理知,所以,即,故选D. 【点睛】本题主要考查了正弦定理,属于中档题.二、填空题13.【解析】【分析】由余弦定理得结合条件将式子通分化简得再由辅助角公式得出当时取得最大值从而求出结果【详解】在中由余弦定理可得所以其中当取得最大值时∴故答案为:【点睛】本题考查解三角形及三角函数辅助角公 解析:1313【解析】 【分析】由余弦定理得2222cos c a b ab C =+-,结合条件23sin c ab C =,将式子b aa b+通分化简得3sin 2cos C C +,再由辅助角公式得出b aa b +()13sin C ϕ=+,当2C πϕ+=时,b aa b +取得最大值,从而求出结果. 【详解】在ABC ∆中由余弦定理可得2222cos c a b ab C =+-,所以2222cos 3sin 2cos 3sin 2cos b a a b c ab C ab C ab C C C a b ab ab ab++++====+()13sin C ϕ=+,其中213sin ϕ=,313cos ϕ=, 当b a a b +132C πϕ+=,∴213cos cos sin 2C πϕϕ⎛⎫=-== ⎪⎝⎭.213【点睛】本题考查解三角形及三角函数辅助角公式,考查逻辑思维能力和运算能力,属于常考题.14.【解析】【分析】直接利用分组法和分类讨论思想求出数列的和【详解】数列满足:(且为常数)当时则所以(常数)故所以数列的前项为首项为公差为的等差数列从项开始由于所以奇数项为偶数项为所以故答案为:【点睛】 解析:1849【解析】 【分析】直接利用分组法和分类讨论思想求出数列的和. 【详解】数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则1100a =, 所以13n n a a +-=-(常数), 故()10031n a n =--,所以数列的前34项为首项为100,公差为3-的等差数列. 从35项开始,由于341a =,所以奇数项为3、偶数项为1, 所以()()1001001346631184922S +⨯=+⨯+=,故答案为:1849【点睛】本题考查了由递推关系式求数列的性质、等差数列的前n 项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.15.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n()∴an+1an+2=2n+解析:512 【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈)∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222nn a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.16.【解析】【分析】由当n =1时a1=S1=3当n≥2时an =Sn ﹣Sn ﹣1即可得出【详解】当且时又满足此通项公式则数列的通项公式故答案为:【点睛】本题考查求数列通项公式考查了推理能力与计算能力注意检验 解析:*2)1(n n N +∈【解析】 【分析】由2*2n S n n n N =+∈,,当n =1时,a 1=S 1=3.当n ≥2时,a n =S n ﹣S n ﹣1,即可得出.【详解】当2n ≥,且*n N ∈时,()()()2212121n n n a S S n n n n -⎡⎤=-=+--+-⎣⎦()2222122n n n n n =+--++-21n =+,又211123S a ==+=,满足此通项公式,则数列{}n a 的通项公式()*21n a n n N =+∈.故答案为:()*21n n N +∈【点睛】本题考查求数列通项公式,考查了推理能力与计算能力,注意检验n=1是否符合,属于中档题.17.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号 考点:1线性规划的应用;2利解析:7 【解析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.考点:1、线性规划的应用;2、利用基本不等式求最值.18.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC及其内部其中A(22)B()C(32)设z=F(xy)=3x+y将直线l:z=3x+y 进行平移当l经过点A(22)时目标函数z达解析:8【解析】【分析】【详解】作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,2),B(53,22),C(3,2)设z=F(x,y)=3x+y,将直线l:z=3x+y进行平移,当l经过点A(2,2)时,目标函数z达到最小值∴z最小值=F(2,2)=8故选:C19.2【解析】【分析】利用已知条件求出公比再求出后可得结论【详解】设等比数列公比为则又数列是递增的∴∴故答案为:2【点睛】本题考查等比数列的通项公式和前项和公式属于基础题解析:2【解析】【分析】利用已知条件求出公比q ,再求出144,,S S a 后可得结论. 【详解】设等比数列{}n a 公比为q ,则2454232(1)4(1)a a a q q a a a q ++===++,又数列{}n a 是递增的,∴2q =,∴44121512S -==-,111S a ==,3428a ==,14411528S S a ++==. 故答案为:2. 【点睛】本题考查等比数列的通项公式和前n 项和公式,属于基础题.20.5【解析】【分析】画出不等式表示的可行域利用目标函数的几何意义当截距最小时取z 取得最大值求解即可【详解】画出不等式组表示的平面区域(如图阴影所示)化直线为当直线平移过点A 时z 取得最大值联立直线得A (解析:5 【解析】 【分析】画出不等式表示的可行域,利用目标函数的几何意义当截距最小时取z 取得最大值求解即可 【详解】画出不等式组表示的平面区域(如图阴影所示),化直线2z x y =+为122zy x =-+ 当直线平移过点A 时,z 取得最大值,联立直线3010x y x y +-=⎧⎨-+=⎩得A (1,2),故max 145z =+=故答案为:5【点睛】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值,是基础题三、解答题21.(1)1628(0)1y x x x =--+≥+;(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【解析】 【分析】(1)由不搞促销活动,则该产品的年销售量只能是1万件,可求k 的值,再求出每件产品销售价格的代数式,则利润y (万元)表示为年促销费用x (万元)的函数可求. (2)由(1)得16281y x x =--++,再根据均值不等式可解.注意取等号. 【详解】(1)由题意知,当0x =时,1,m = 所以213,2,31k k m x =-==-+, 每件产品的销售价格为8161.5mm+⨯元. 所以2020年的利润816161.581628(0)1m y m m x x x m x +=⨯---=--+≥+; (2)由(1)知,161628(1)292111y x x x x =--+=--++≤++, 当且仅当16(1)1x x =++,即3x =时取等号, 该厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元. 【点睛】考查均值不等式的应用以及给定值求函数的参数及解析式.题目较易,考查的均值不等式,要注意取等号. 22.(1) 23B π=;(2) 3a c +=. 【解析】试题分析:(1)正弦定理得sin sin cos 2sin 0B A A B A --=,sin 16B π⎛⎫-= ⎪⎝⎭,所以23B π=;(2)根据面积公式和余弦定理,得()27a c ac =+-,所以3a c +=. 试题解析:sin sin cos 2sin 0B A A B A --=,因为sin 0A ≠cos 20B B --=,即sin 1,6B π⎛⎫-= ⎪⎝⎭ 又()50,,,666B B ππππ⎛⎫∈∴-∈- ⎪⎝⎭, 62B ππ∴-=,所以23B π=.(Ⅱ)由已知11sin 222ABC S ac B ac ac ∆===∴=, 由余弦定理得 2222cos b a c ac B =+-,即()217222a c ac ac ⎛⎫=+--⋅- ⎪⎝⎭, 即()27a c ac =+-,又0,0a c >>所以3a c +=.23.(1)13nn a ⎛⎫= ⎪⎝⎭; (2)13(21)34n n n T ++-⋅=【解析】 【分析】(1)由等差中项可得21343a a a =+,设数列{}n a 的公比为()1q q ≠,则211143a q a a q ⋅=+⋅,可解得q ,即可求得通项公式;(2)由(1)可得3n nnn a =⋅,再利用错位相减法求解即可. 【详解】解:(1)设数列{}n a 的公比为()1q q ≠,且1a ,22a ,33a 成等差数列,所以21343a a a =+,即211143a q a a q ⋅=+⋅,解得13q =, 因为113a =,所以13nn a ⎛⎫= ⎪⎝⎭(2)由(1)知,13nn a ⎛⎫= ⎪⎝⎭,所以3n nn n a =⋅, 所以1231323333nn T n =⨯+⨯+⨯++⋅L ,则234131323333n n T n +=⨯+⨯+⨯++⋅L ,作差可得,1231233333n n n T n +-=++++-⋅L则()+13312331n n nT n --=-⋅-,即1132322n n T n +⎛⎫-=-⋅- ⎪⎝⎭,所以()132134n n n T ++-⋅=【点睛】本题考查等差中项的应用,考查等比数列的通项公式,考查错位相减法求数列的和.24.:(1)1cos 3A =(2)3{2b c ==或23b c =⎧⎨=⎩【解析】:(1)由3cos()16cos cos B C B C --=得3(cos cos sin sin )1B C B C -=- 即1cos()3B C +=-从而cos A 1cos()3B C =-+=(2)由于0,A π<<1cos 3A =,所以sin A =又ABC S =V 1sin 2bc A =6bc =由余弦定理2222cos a b c bc A =+-,得2213b c += 解方程组2213{6b c bc +==,得3{2b c ==或23b c =⎧⎨=⎩25.(1)14n n a -=(2)322499n n n T +=⨯- 【解析】 【分析】(1)利用公式1n n n a S S -=-代入计算得到答案. (2)先计算得到()114n n n a b n -=+⨯,再利用错位相减法计算得到答案.【详解】 (1)因为4133n n S a =-,所以()1141233n n S a n --=-≥, 所以当2n ≥时,14433n n n a a a -=-,即14n n a a -=, 当1n =时,114133S a =-,所以11a =,所以14n n a -=.(2)()114n n n a b n -=+⨯,于是()01221243444414n n nT n n --=⨯+⨯+⨯++⨯++⨯L ,①()12314243444414n n n T n n -=⨯+⨯+⨯++⨯++⨯L ,②由①-②,得()121223244414433n n n n T n n -⎛⎫-=++++-+⨯=-+⨯ ⎪⎝⎭L , 所以322499n n n T +=⨯-. 【点睛】本题考查了数列的通项公式,利用错位相减法计算数列的前n 项和,意在考查学生对于数列公式方法的灵活运用. 26.(Ⅰ)[]1,1-; (Ⅱ)92. 【解析】 【分析】(Ⅰ)分段去绝对值求解不等式即可;(Ⅱ)由绝对值三角不等式可得2m =,再由()122a b a b a b ⎛⎫+=++⎪⎝⎭,展开利用基本不等式求解即可. 【详解】(Ⅰ)Q ()2121121x x f x x x x -≤-⎧⎪=-<≤⎨⎪>⎩,,, ∴ 122x x ≤-⎧⎨-≤⎩ 或 1122x -<≤⎧⎨≤⎩ 或 122x x >⎧⎨≤⎩∴ 11x -≤≤,∴不等式解集为[]1,1-.(Ⅱ) Q ()()11112x x x x -++≥--+=,∴ 2m =,又142a b+=,0,0a b >>, ∴1212a b +=,∴ ()125259222222a b a b a b a b b a ⎛⎫+=++=++≥+=⎪⎝⎭, 当且仅当1422a b b a ⎧+=⎪⎨⎪=⎩即323a b ⎧=⎪⎨⎪=⎩时取等号,所以()min 92a b +=.【点睛】绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。