武汉大学分析化学分子光谱
- 格式:ppt
- 大小:543.50 KB
- 文档页数:39
仪器分析部分作业题参考答案第一章绪论1-21、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进行组分测量的手段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。
因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。
第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。
各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。
各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;2-7因为对于一级光谱(n=1)而言,光栅的分辨率为:36005720=×=×===光栅的刻痕密度光栅宽度N nN R 又因为:λλd R =所以,中心波长(即平均波长)在1000cm -1的两条谱线要被该光栅分开,它们相隔的最大距离为:cm -128.036001000===R d λλ2-10原子光谱是由原子外层电子在不同电子能级之间跃迁产生的,而不同电子能级之间的能量差较大,因此在不同电子能级之间跃迁产生的光谱的波长差异较大,能够被仪器分辨,所以显现线光谱;分子光谱的产生既包括分子中价电子在不同电子能级之间跃迁,也包括分子中振动能级和转动能级的跃迁,而振动能级和转动能级之间的能量差较小,在这些能级之间跃迁产生的光谱的波长非常接近,不能被仪器所分辨,所以显现为带光谱。
光谱分析导论习题解答1、解:(1)72101067.6101050.111⨯=⨯⨯==-λσ(2)14981047.4107.670/100.3/⨯=⨯⨯==-λνc(3)303010103300/1192=⨯⨯==-σλ(4)80.1)10602.1(1095.6889100.310626.6/1910834=⨯÷⨯⨯⨯⨯===---λνhc h E2、解:由计算公式λν/hc h E ==以及各能级跃迁所处的波长范围可得能量范围分别如下:跃迁类型 波长范围 能量范围/eV 原子内层电子跃迁 10-3nm ~10nm 1.26⨯106~1.2⨯102原子外层电子跃迁 200nm ~750nm 6~1.7 分子的电子跃迁 200nm ~750nm 6~1.7 分子振动能级的跃迁 2.5μm ~50μm 0.5~0.02 分子转动能级的跃迁50μm ~100cm2⨯10-2~4⨯10-7由上表可以看出分子电子能级跃迁1~20eV 分子振动能级跃迁0.05~1eV 分子转动能级跃迁<0.05eV ,其电子光谱,振动光谱以及转动光谱所对应的波长范围分别在紫外-可见区,红外区和远红外微波区。
3、解:棱镜的分光原理是光折射。
由于不同波长的光有其不同的折射率,据此能把不同波长的光分开。
光栅的分光原理是光的衍射与干涉的总效果。
不同波长的光通过光栅作用各有相应的衍射角,据此把不同波长的光分开。
光栅光谱棱镜光谱Sin φ与波长成正比,所以光栅光谱是一个均匀排列的光谱色散率与波长有关,为非均匀排列的光谱 光的波长越短则衍射角越小,因此其谱线从紫到红排列波长越短,其偏向角越大,因此其谱线从红到紫排列复合光通过光栅后,中央条纹(或零级条纹)为白色条纹,在中央条纹两边,对称排列着一级、二级等光谱,由于谱线间距离随光谱级数的增加而增加,出现谱级重叠现象没有谱级重叠现象光栅适用的波长范围比棱镜宽4、解:v cn r i ==θθsin sin ,式中n 为折射率,i θ为入射角,r θ为折射角,c 为光速,v 为玻璃介质中的传播速度。
《仪器分析》作业参考答案第2章 光谱分析法导论2-1 光谱仪一般由几部分组成?它们的作用分别是什么? 参考答案:(1)稳定的光源系统—提供足够的能量使试样蒸发、原子化、激发,产生光谱; (2)试样引入系统(3)波长选择系统(单色器、滤光片)—将复合光分解成单色光或有一定宽度的谱带; (4)检测系统—是将光辐射信号转换为可量化输出的信号; (5)信号处理或读出系统—在显示器上显示转化信号。
2-2 单色器由几部分组成,它们的作用分别是什么? 参考答案:(1)入射狭缝—限制杂散光进入;(2)准直装置—使光束成平行光线传播,常采用透镜或反射镜; (3)色散装置—将复合光分解为单色光;(4)聚焦透镜或凹面反射镜—使单色光在单色器的出口曲面上成像; (5)出射狭缝—将额定波长范围的光射出单色器。
2-5 对下列单位进行换算:(1)150pm Z 射线的波数(cm -1) (2)Li 的670.7nm 谱线的频率(Hz )(3)3300 cm -1波数对应的波长(nm ) (4)Na 的588.995nm 谱线相应的能量(eV ) 参考答案:(1)171101067.61015011---⨯=⨯==cm cm λσ (2))(1047.4)(107.670100.314710Hz Hz c⨯=⨯⨯==-λν (3))(3030)(1003.3)(3300114nm cm cm =⨯===-νλ (4))(1.2)(10602.110995.588100.310625.6199834eV eV ch E =⨯⨯⨯⨯⨯⨯==---λ 2-6 下列种类型跃迁所涉及的能量(eV )范围各是多少?(1)原子内层电子跃迁; (4)分子振动能级跃迁; (2)原子外层电子跃迁; (5)分子转动能级跃迁; (3)分子的电子跃迁 参考答案跃迁类型 波长范围 能量范围/eV 原子内层电子跃迁 10-1 ~ 10nm 1.26×106 ~1.2×102原子外层电子跃迁 200 ~ 750nm 6~1.7 分子的电子跃迁 200 ~ 750nm 6~1.7 分子振动能级跃迁 0.75 ~ 50μm 1.7~0.02 分子转动能级跃迁50 ~ 1000μm2×10-2~4×10-7第10章 吸光光度法(上册)2、某试液用2cm 吸收池测量时,T=60%。
第2章 光谱分析法导论2-1 光谱仪一般由几部分组成?它们的作用分别是什么?答:(1)光谱仪的一般由稳定的光源系统、波长选择系统、试样引入系统、检测系统以及信号处理和读出系统组成。
(2)它们的作用分别是:①光源系统:提供足够的能量使试样蒸发、原子化、激发,产生光谱;②波长选择系统(单色器、滤光片):将复合光分解成单色光或有一定宽度的谱带;③试样引入系统:将样品以合适的方式引入光路中并充当样品容器;④检测系统:将光信号转化为可量化输出的信号;⑤信号处理和读出系统:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2 单色器由几部分组成,它们的作用分别是什么?答:(1)单色器的组成部分包括入射狭缝、准直装置、色散装置、聚焦透镜或凹面反射镜、出射狭缝。
(2)各部件的主要作用是:①入射狭缝:采集来自光源或样品池的复合光;②准直装置:将入射狭缝采集的复合光分解为平行光;③色散装置:将复合光色散为单色光(即将光按波长排列);④聚焦透镜或凹面反射镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;⑤出射狭缝:采集色散后具有特定波长的光入射样品或检测器。
2-3 简述光栅和棱镜分光的原理。
答:(1)光栅的分光原理是光的衍射与干涉的总效果,不同波长的光通过光栅作用各有相应的衍射角,据此把不同波长的光分开;(2)棱镜的分光原理是光折射,由于不同波长的光有其不同的折射率,据此能把不同波长的光分开。
2-4 简述光电倍增管的作用原理。
答:光电倍增管的作用原理为:当光照射到光阴极时,光阴极向真空中激发出光电子。
这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到倍增放大。
然后把放大后的电子用阳极收集作为信号输出。
2-5 对下列单位进行换算:(1)150pm X 射线的波数(cm -1);(2)Li 的670.7nm 谱线的频率(Hz );(3)3300cm -1波数对应的波长(nm );(4)Na 的588.995nm 谱线相应的能量(eV )。
第8章 分子发光分析法8-1 解释下列名词:(1)单重态;(2)三重态;(3)系间窜越;(4)振动弛豫;(5)荧光猝灭;(6)荧光量子产率;(7)重原子效应。
答:(1)单重态是指分子中的全部电子都自旋配对的分子能态,用符号S 表示,单重态分子具有抗磁性。
(2)三重态是指分子中存在两个自旋不配对的电子的分子能态,用符号T 表示,三重态分子具有顺磁性。
(3)系间窜越是指不同多重态的两个电子态间的非辐射跃迁的过程。
(4)振动弛豫是指分子将多余的振动能量传递给介质而衰变到同一电子能级的最低振动能级的过程。
(5)荧光猝灭是指荧光物质与溶剂分子间发生导致荧光强度下降的化学或物理过程。
(6)荧光量子产率是指荧光物质吸光后发射的荧光光子数与吸收的激发光光子数的比值。
(7)重原子效应是指磷光测定体系中存在原子序数较大的原子时,重原子的高核电荷引起或增强了溶质分子自旋轨道的耦合作用,从而增大了,体系间的窜11S T →01S T →跃概率,有利于磷光的产生的现象。
8-2 说明磷光与荧光在发射特性上的差别及其原因。
答:磷光与荧光在发射特性上的差别及其原因如下:(1)磷光是来自最低激发三重态的辐射跃迁过程所伴随的发光现象,发光过程速率常数小,激发态的寿命相对较长。
第一激发单重态的最低振动能级,通过系间窜越至第一激发三重态,再经振动弛豫,转至最低振动能级进而发射磷光,系间窜跃是自旋禁阻的,因此过程速率常数小。
(2)荧光是来自最低激发单重态的辐射跃迁过程所伴随的发光现象,发光过程速率常数大,激发态的寿命短。
8-3 简要说明荧光发射光谱的形状通常与激发波长无关的原因。
答:荧光发射光谱的形状通常与激发波长无关的原因为:荧光的产生是由第一电子激发态的最低振动能级开始,而与荧光分子被激发至哪一能级无关。
8-4 与分光光度法比较,荧光分析法有哪些优点?原因何在?答:(1)荧光分析法的优点相对分光光度法,荧光分析法具有更高的灵敏度。
(2)原因①荧光强度与激发光强度成正比,提高激发光强度可以使荧光强度增大,而分光光度法检测的是吸光度,增大入射光强度,透过光信号与入射光信号同比例增大,吸光度值不会发生变化,因此不能提高灵敏度;②荧光的测量是在与激发光垂直的方向上进行的,消除了杂散光和透射光对荧光测量的影响。
武汉大学《分析化学》第5版下册笔记和课后习题含考研真题详解第2章光谱分析法导论2.1复习笔记一、概述1.光分析法的基础(1)能量作用于待测物质后产生光辐射;(2)光辐射作用于待测物质后发生某种变化。
2.光分析法的三个主要过程(1)能源提供能量;(2)能量与被测物质相互作用;(3)产生被检测的信号。
二、电磁辐射的性质1.电磁辐射的波动性(1)电磁辐射的波动性的现实表现光的折射、衍射、偏振和干涉。
(2)电磁辐射的传播电磁辐射在真空中的传播速率等于光速c(c等于2.998×108m/s),即=c波长的单位常用纳米(nm)或微米(μm)表示;频率常用单位赫兹(Hz)表示;波长的倒数σ称为波数,常用单位cm-1。
2.电磁辐射的微粒性(1)电磁辐射能量与波长的关系=Eνσ=h=hc hc(2)电磁辐射动量与波长的关系νλp=h=h(3)电磁辐射的微粒性的现实表现包括:①光的吸收、发射;②光电效应。
3.电磁辐射与物质的相互作用(1)吸收当电磁波作用于固体、液体和气体物质时,若电磁波的能量正好等于物质某两个能级之间的能量差时,电磁辐射就可能被物质所吸收,此时电磁辐射能被转移到组成物质的原子或分子上,原子或分子从较低能态吸收电磁辐射而被激发到较高能态或激发态。
(2)发射当原子、分子和离子等处于较高能态时,可以以光子形式释放多余的能量而回到较低能态,同时产生电磁辐射,这一过程称为发射跃迁。
(3)散射当按一定方向传播的光子与其他粒子碰撞时,会改变其传播方向,而且方向的改变在宏观上具有不确定性,这种现象称为光的散射。
(4)折射和反射当光作用于两种物质的界面时,将发生折射和反射现象。
①光的折射是由于光在两种不同折射率的介质中传播速率不同而引起的。
②当光在两种物质分界面上改变传播方向又返回原来物质中的现象,称为光的反射。
(5)干涉和衍射①当频率相同、振动相同、相位相等或相差保持恒定的波源所发射的相干波互相叠加时,会产生波的干涉现象。