管道局部水头损失实验(精)
- 格式:ppt
- 大小:409.50 KB
- 文档页数:13
武汉大学教学实验报告学院:水利水电学院 专业:水利水电工程全英文班 2013年6月22日实验名称 管道局部水头损失实验 指导老师 姓名吴前进年级11级学号2011301580067成绩一:预习部分1:实验目的 2:实验基本原理3:主要仪器设备(含必要的元器件,工具)一、实验目的1、掌握测定管道局部水头损失系数ζ的方法。
2、将管道局部水头损失系数的实测值与理论值进行比较。
3、观测管经突然扩大时旋涡区测压管水头线的变化情况和水流情况,以及其他各种边界突变情况下的测压管水头线的变化情况。
二、实验原理由于边界形状的急剧改变,水流就会与边界分离出现旋涡以及水流流速分布的改组,从而消耗一部分机械能。
单位重量液体的能量损失就是水头损失。
边界形状的改变有水流断面的突然扩大或突然缩小、弯道及管路上安装阀门等。
局部水头损失常用流速水头与与系列的乘积表示。
gvh j 2ζ=式中:ζ—局部水头损失系数。
系数ζ是流动形状与边界形状的函数,即ζ= f (Re ,边界形状)。
一般水流Re 数足够大时,可认为系数ζ不再随Re 数而变化,而看作常数。
管道局部水头损失目前仅有突然扩大可采用理论分析,并可得出足够精确的结果。
其他情况则需要用实验方法测定ζ值。
突然扩大的局部水头损失可应用动量方程与能量方程及连续方程联合求解得到如下公式:22112112122222)1(,2)1(,2A Ag v h A Ag v h j j -==-==ζζζζ 式中,A 1和v 1分别为突然扩大上游管段的断面面积和平均流速;A 2和v 2分别为突然扩大下游管段的断面面积和平均流速。
三、实验设备实验设备及各部分名称如图一所示。
二:实验操作部分1:实验数据,表格及数据处理 2:实验操作过程(可用图表示) 3结论图一 局部水头损失实验仪四、实验步骤1、熟悉仪器,记录管道直径D 和d 。
2、检查各测压管的橡皮管接头是否接紧。
3、启动抽水机,打开进水阀门,使水箱充水,并保持溢流,使水位恒定。
§8 局部水头损失实验8.1 实验目的和要求1.学习掌握三点法、四点法测量局部阻力因数的技能,并将突扩管的实测值与理论值比较,将突缩管的实测值与经验值比较;2.通过阀门局部阻力因数测量的设计性实验,学习二点法测量局部阻力因数的方法。
8.2 实验装置1.实验装置简图实验装置及各部分名称如图8.1所示。
图8.1 局部水头损失实验装置简图1.自循环供水器2.实验台3.可控硅无级调速器4.恒压水箱5.溢流板6.稳水孔板7.圆管突然扩大8.气阀9.测压计10.测压管①~⑥11.滑动测量尺12. 圆管突然收缩13.实验流量调节阀14.回流接水斗15.下回水管2.装置说明实验管道由圆管突扩、突缩等管段组成,各管段直径已知。
在实验管道上共设有六个测压点,测点①-③和③-⑥分别用以测量突扩和突缩的局部阻力因数。
其中测点①位于突扩的起始界面处,这里引用公认的实验结论 “在突扩的环状面积上的动水压强近似按静水压强规律分布”,认为该测点可用以测量小管出口端中心处压强值。
气阀8用于实验开始时排除管中滞留气体。
3.基本操作方法(1) 排气。
启动水泵待恒压水箱溢流后,关闭实验流量调节阀13,打开阀8排除管中滞留气体。
排气后关闭阀8,并检查测压管各管的液面是否齐平,若不平,重复排气操作,直至齐平。
(2) 测压管水头用测压计测量,基准面可选择在滑动测量尺零点上。
(3) 流量测量。
实验流量用阀13调节,流量由称重法测量,用秒表计时,用电子称称重。
8.3 实验原理流体在流动的局部区域,如流体流经管道的突扩、突缩和闸门等处(图4.4.2),由于固体边界的急剧改变而引起速度分布的变化,甚至使主流脱离边界,形成旋涡区,从而产生的阻力称为局部阻力。
由于局部阻力作功而引起的水头损失称为局部水头损失,用h j 表示。
局部水头损失是在一段流程上,甚至相当长的一段流程上完成的,如图8.2,断面1至断面2,这段流程上的总水头损失包含了局部水头损失和沿程水头损失。
重大流体力学实验4(局部水头损失实验)
局部水头损失实验是一种重要的流体力学实验,能够证明动量定律并确定河流流体的
阻力特性。
它用以检验以下两条关于河流流体阻力特性的假设:(1)在本地完全不通过
管道的情况下,阻力与深度之间存在某种关系(2)随着流体流动的不断加深,更高的阻
力会发生。
实验设计必须考虑以下变量:流量(Q)、和管路内阻力(F)。
在实验之前,应考虑
管道形状,管道材料和大小,以及管道的安装位置。
这些变量会影响流量和流体阻力的变化,进而影响局部水头损失的数量。
实施局部水头损失实验需要建立两个实验管段,其中第一段通常称为“上端”,主要
用于调整流量,第二段通常称为“下端”,主要用于测量和计算局部水头损失。
同时,实
验中也要用一台流量计(水流管)来测量流量,以及一台压力计来测量压力,以确定局部
水头损失。
最后,设计师根据局部水头损失实验的结果进行比较,利用这一数据来确定动量定律,以及河流流体的阻力特性。
例如,如果实验结果表明,每深度一定比例增加时,力随高度
成正比,则可以说明实验满足动量定律;如果实验结果表明,河流流体的阻力随深度的增
加而增加,则可以说明发展的慢相关递增的阻力特性的河流流体。
总之,局部水头损失实验对于验证动量定律,测定河流流体的阻力特性,特别是验证
河流流体高度和阻力之间关系非常有用。
它们可以帮助设计人员正确设计河流,实现河流
水力规划,使河流的生态环境得到有效的改善。
04 局部水头损失实验
局部水头损失是液流通过管道过程中会产生的水力损失形式之一。
在管道中,如果管道断面不同或是在管道中存在锐边、弯头、阀门等部件,液体在通过这些部件时就会产生局部水头损失。
局部水头损失的大小取决于管道断面的条件、流速、液体性质、管道内部的变化等多个因素,如果不能正确估算局部水头损失,则会导致管道的设计不合理,造成能量和资金的浪费。
为了研究管道中的局部水头损失,我们通过实验的方式来模拟不同条件下的情况。
在实验中,我们选取了一根螺旋线管作为管道直径较小的一段部件,同时在两端连接,形成一个封闭环路,通过泵在管道内形成水流,然后对水流的压力、流量进行测量,利用实验数据计算出局部水头损失的大小,进而对管道的设计、调试和改进提供参考依据。
我们通过实验发现,封闭环路中的水流速度越快,局部水头损失就越大,这是由于快速的水流会将气体带入管道,产生紊流现象,而气体在管道中状态的变化会导致水流的动量和能量损失,形成局部水头损失。
此外,实验中我们还模拟了管道中存在多个弯头、错位口、阀门等部件的情况,测量数据表明过多的部件和复杂的管道结构会进一步引起局部水头损失的增加,因此在设计和改善管道时,需要充分考虑管道性质和流体的流动情况,合理安排管道内部的结构,减少不必要的部件,提高管道的流动效率,降低水头损失的影响。
总之,局部水头损失是管道中不可避免的现象,要想降低管道中的水头损失,需要从多方面加强管道的设计、调试和改进。
通过实验可以更加深入地了解局部水头损失的原理和计算方法,为管道的优化和改进提供参考依据,进一步提高管道的安全性和经济性。
局部阻力损失实验局部水头定义及局部阻力产生的原因:在边界急剧变化的区域,由于速度的大小和方向发生急剧变化而产生漩涡,导致流动阻力大大增加,形成了比较集中的能量损失,叫局部水头损失,记作h。
一般发生在j渐扩渐缩段(如发动机喷管,风洞发散段),突扩突缩段(输送流体的管路直径变化俗称变径部位),阀门,弯管,分流合流等部位。
局部水头损失在流体运行系统中是大量存在的,雷诺数越大,在计算中越要被充分考虑。
局部损失种类繁多,大部分不能用理论方法计算,需要用实验来测定。
本实验指定用三点法和四点法测量突扩和突缩这种类型局部阻力损失系数。
一、实验目的要求1、掌握三点法、四点法量测局部阻力系数的技能。
2、通过对园管突扩局部阻力系数的包达公式和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。
3、仔细观察流动图谱,加深对局部阻力损失机理的理解。
4、了解测量局部阻力损失的一般思路和方法。
二、实验装置实验装置如图7.1所示。
由实验平台系统、实验管路系统、压差测量系统组成。
实验平台系统由下游水箱、水泵、实验台桌、可控硅无级调速器、恒压水箱、溢流板、稳水板、流量调节阀、辅助连接管路等组成,提供溢流式恒定水头,流量连续可调。
实验D D D,标示与上游水箱管路系统由三种不同直径有机玻璃圆管组成,直径分别为、、123正面,上边布置6个测压管测点。
压差测量系统由测压管、滑动测量尺、连接软管等组成。
实验管道由小→大→小三中已知管径的管道组成,测点1—3用来测量突扩的局部水头损失系数,用了三个测点,就是所谓三点法。
3—6测点用来测量突缩的局部阻力损失系数。
用了四个测点,这就是所谓四点法。
其中测点1位于突扩界面处,用以测量小管出口端压强值。
6个测点和测压板的6个测压管用透明软管一一对应连接,当连接测点和测压板的软管充满连续的液体,测点的压力就可以在测压管上准确的反应出来。
待测压管水面稳定下来后,通过滑动测尺就可以测记测点的压力值。
局部水头损失的分析与计算前面已经介绍过,当流动边界发生突变时,水流将产生局部水头损失。
边界突然变化的形式是多种多样的,如断面突然扩大、突然缩小、转弯、分岔、阀门等。
断面的突变对水流运动产生的影响可归纳成两点:(1)在断面突变处,水流因受惯性作用,将不紧贴壁面流动,与壁面产生分离,并形成旋涡。
旋涡的分裂和互相摩擦要消耗大量的能量,因此,旋涡区的大小和旋涡的强度直接影响局部水头损失的大小。
(2)由于主流脱离边界形成旋涡区,主流或受到压缩,或随着主流沿程不断扩散,流速分布急剧调整。
如图4-20(a )中断面1—1的流速分布图,经过不断改变,最后在断面2—2上接近于下游正常水流的流速分布。
在流速改变的过程中,质点内部相对运动加强,碰撞、摩擦作用加剧,从而造成较大的能量损失。
图4-20局部水头损失一般都可以用一个流速水头与一个局部水头损失系数的乘积来表示,即22j h gυζ= (4-41)其中,局部水头损失系数ξ通常由试验测定,现列于表4-3中。
必须指出,ξ都是对应于某一流速水头而言的,在选用时,应注意二者的对应关系,与ξ相应的流速水头在表4-3中已标明,若不加特殊的标明者,该ξ值皆是指相应于局部阻力后的流速水头。
局部水头损失更详细的系数可查有关水力计算手册,如《给排水设计手册2》。
表4-3 局部水头损失系数ζ(公式22jhgυζ=,式中υ如图所示)[例4-7] 从水箱引一直径不同的管道,如图4-21所示。
已知d 1=175mm, L 1=30m, 1λ=0.032, d 2=125mm, L 2=20m, 2λ=0.037,第二段管子上有一平板闸阀,其开度为/0.5a d =,当输水流量25/Q L S =时,求:沿程水头损失fh∑;局部水头损失jh ∑;水箱的水头H 。
图4-21解:(1)沿程水头损失: 第一段 325/0.025(/)QL S m s ==断面平均流速 1221140.0251.04(/)3.140.1754Q Q m s A d υπ⨯====⨯ 则沿程水头损失 221111130 1.040.0320.30320.17519.6f l h m dg υλ==⨯⨯=第二段断面平均流速 2222240.025 2.04(/)3.140.1254Q Q m s A d υπ⨯====⨯ 则沿程水头损失 222222220 2.040.037 1.2620.12519.6f l h m dg υλ==⨯⨯=总的沿程水头损失为120.303 1.26 1.563()ff f hh h m =+=+=∑(2)局部水头损失进口损失由直角进口查表4-3得ζ进口=0.5,则2211 1.040.50.028()219.6j h m g υζ=⨯=⨯=进口 根据2222110.1250.510.175A d A d ⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦,查表4-3得[]210.510.510.510.245A A ζ⎡⎤=⨯-=⨯-=⎢⎥⎣⎦缩,则2222 2.040.2450.052()219.6j h m g υζ=⨯=⨯=缩 闸阀损失由平板闸门的开度a/d=0.5,查表4-3得 2.06ζ=阀,则2230.437()2j h m gυζ=⨯=阀总的局部水头损失为 1230.0280.0520.4370.517m jj j j hh h h =++=++=∑()(3)水箱的水头以管轴线为基准面,取水箱内断面和管出口断面为两过水断面,断面1-1取水面点,其位置高度为H ,压强为大气压,流速近似为零,断面2-2取中心点,位置高度为零,因断面四周为大气压强,故中心点也近似为大气压强,流速为υ2,则列能量方程后得 222222w f jHh h h ggαυαυ=+=++∑∑用上述已算出的数字带入,得22.04 1.5630.517 2.292()19.6H m =++=。