复数 复习小结
- 格式:doc
- 大小:239.50 KB
- 文档页数:5
复数的知识点总结一、复数概述复数是数学中的一个重要概念,它由实数和虚数部分组成。
虚数单位i定义为i² = -1,其中i是一个虚数。
复数可表示为a + bi的形式,其中a是实数部分,bi 是虚数部分。
二、复数运算1. 复数加法和减法复数的加法和减法按照实部和虚部分别进行运算,即将实部相加或相减,并将虚部相加或相减。
例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的和可以表示为z₁ + z₂ = (a₁ + a₂) + (b₁ + b₂)i,差可以表示为z₁ - z₂ = (a₁ - a₂) + (b₁ - b₂)i。
2. 复数乘法复数乘法采用分配律和虚数单位的平方等于-1的性质进行计算。
例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的乘积可以表示为z₁ * z₂ = (a₁ * a₂ - b₁ * b₂) + (a₁ * b₂ + a₂ * b₁)i。
3. 复数除法复数除法是将分子和分母同乘以分母的共轭,并利用虚数单位的平方等于-1的性质进行计算。
例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的除法可以表示为z₁ / z₂ = ((a₁ * a₂ + b₁ * b₂) / (a₂² + b₂²)) + ((a₂ * b₁ - a₁ * b₂) / (a₂² + b₂²))i。
三、复数的共轭和模1. 复数的共轭复数的共轭是保持实部相同而虚部变号的操作。
复数a + bi的共轭可以表示为a - bi,其中a是实部,b是虚部。
2. 复数的模复数的模是复数到原点的距离,可以用勾股定理计算。
复数a + bi的模可以表示为√(a² + b²)。
四、复数的指数形式和三角形式1. 复数的指数形式复数可以用指数形式表示为re^(iθ),其中r是模,θ是辐角。
2. 复数的三角形式复数的三角形式是指使用三角函数表示复数。
高一复数知识点归纳总结一、复数的基本规则复数形式通常是在名词后面加上"s",例如:books、cats。
但是,也有一些特殊情况需要注意。
1. 以s、x、ch、sh或o结尾的名词,在复数形式中需要加上"es"。
例如:boxes、watches、buses、potatoes。
2. 以辅音字母加"y"结尾的名词,在复数形式中将"y"变为"i",再加上"es"。
例如:babies、flies、parties。
3. 以"o"结尾的名词,复数形式通常加上"s",但也有例外。
例如:autos、pianos,但是也有例外如: tomatoes、potatoes。
4. 以"f"或"fe"结尾的名词,复数形式通常将"f"或"fe"改为"ves"。
例如:leaves、knives、wolves。
二、不规则复数形式有一些名词的复数形式是不规则的,需要特别记住。
以下是一些常见的例子:1. 单复数同形:例如:sheep、fish、deer、means等。
2. 以"man"或"woman"结尾的名词,复数形式通常将"man"或"woman"改为"men"或"women"。
例如:men、women。
3. 以"tooth"结尾的名词,复数形式为"teeth"。
4. 以"child"结尾的名词,复数形式为"children"。
三、复数形式的用法除了表示多个或复数数量的用法之外,复数形式还有其他几种情况的用法。
复数的知识点总结一、名词的复数规则1. 在名词后加-s大多数名词的复数形式是在单数形式的基础上加上-s,例如:book-books, pen-pens, cat-cats。
2. 在以-s, -ss, -sh, -ch, -x, -z结尾的名词后加-es当名词以-s, -ss, -sh, -ch, -x, -z结尾时,其复数形式要在单数形式的基础上加上-es,例如:bus-buses, class-classes, box-boxes。
3. 在以辅音字母+y结尾的名词变y为i再加-es当名词以辅音字母+y结尾时,要先将y变为i再加-es,例如:city-cities, baby-babies。
4. 以-f或-fe结尾的名词变-f或-fe为-v再加-es当名词以-f或-fe结尾时,要先将f或fe变为v再加-es,例如:knife-knives, leaf-leaves。
5. 不规则名词的复数形式有一些名词的复数形式是由单数形式完全不同的单词构成的,这些名词的复数形式通常需要进行记忆和学习,例如:man-men, woman-women, child-children。
二、名词的复数用法1. 表示复数数量复数形式的名词用来表示多个物体、人或概念,例如:These apples are delicious.(这些苹果很好吃。
)2. 表示复数单位一些计量单位在表示多个时使用复数形式的名词,例如:five liters(五升)、ten dollars (十美元)。
3. 表示某一类人或事物复数形式的名词还可以用来表示某一类人或事物,例如:Cats are cute animals.(猫是可爱的动物。
)4. 表示各种各样的事物在表示各种各样的事物时,也可以使用复数形式的名词,例如:There are many books in the library.(图书馆里有很多书。
)三、注意事项1. 单数形式以s, -ss, -sh, -ch, -x, -z结尾时,复数形式不再添加s,例如:class-classes, box-boxes。
高三复数的知识点归纳总结一、复数的概念复数是指由一个实数和一个虚数共同构成的数,通常表示为a+bi的形式,其中a和b为实数,i是虚数单位,满足i^2=-1。
在复数中,实部为a,虚部为b。
二、复数的表示方法1. 代数形式:a+bi2. 幅角形式:z=r(cosθ + i sinθ),其中r为复数的模,θ为复数的辐角3. 指数形式:z=re^(iθ),其中r为复数的模,e为自然对数的底三、复数的加减乘除1. 加减法:复数相加或相减,实部和虚部分别相加或相减2. 乘法:使用分配律相乘,然后利用i^2=-1进行计算3. 除法:将分母有理化后,再进行乘法的逆运算四、复数的几何意义1. 复数在平面直角坐标系中的表示2. 复数在极坐标系中的表示3. 复平面上的旋转五、共轭复数1. 共轭复数的定义2. 共轭复数的性质3. 共轭复数的几何意义六、模与辐角1. 复数的模的定义2. 复数的模的性质3. 复数的辐角的定义4. 复数的辐角的性质七、欧拉公式1. 欧拉公式的表达式2. 欧拉公式的几何意义3. 欧拉公式的重要性八、复数的方程1. 一元一次复数方程2. 一元二次复数方程3. 复数方程的解法及应用九、复数的应用1. 复数在电学中的应用2. 复数在力学中的应用3. 复数在信号处理中的应用十、复数的常见问题解析1. 关于共轭复数的应用问题2. 关于复数模和辐角的应用问题3. 复数方程的解法与应用十一、复数的图示通过在复数平面上显示几何图形,如复数的绝对值和幅角,显示虚数、复数和实数,这将有助于进一步理解这一主题。
十二、复数的补充知识点1. 复数的讨论2. 复数的等价3. 虚数单位i的应用和推理十三、复数的实际应用举例通过真实问题的应用案例,加深对复数知识点的理解和理论的实际应用。
在高三的数学学习中,复数是一个非常重要的内容。
它不仅是数学知识的一个重要部分,也是物理、工程和其他领域的基础。
掌握复数的知识对于学生继续深入学习数学和其他相关科学领域都有着非常重要的意义。
复数的知识点总结一、基本概念复数是指由实数和虚数构成的数,形式为 a + bi,其中a 和b 都是实数,i 是虚数单位,满足 i² = -1。
实数是指具有有限位小数的数或无理数,而虚数是不能用实数表示的数。
二、复数的表示法复数有一般式、三角式和指数式三种表示法。
1. 一般式:a + bi其中 a 表示实部,b 表示虚部。
2. 三角式:r(cosθ + i sinθ)其中 r 表示复数的模,θ 表示复数的辐角或幅角。
3. 指数式:re^(iθ)其中 r 表示复数的模,e 是自然对数的底数,θ 表示复数的幅角。
三、基本运算1. 加法(a + bi) + (c + di) = (a + c) + (b + d)i即实部相加,虚部相加。
2. 减法(a + bi) - (c + di) = (a - c) + (b - d)i即实部相减,虚部相减。
3. 乘法(a + bi) × (c + di) = (ac - bd) + (ad + bc)i即实数部分按照常规乘法规则计算,虚数部分交叉相乘。
4. 除法(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)/(c² + d²)i即分子分母同除以 c + di,然后将分子分母分别展开并化简。
5. 共轭复数(a + bi) 的共轭复数为 (a - bi),共轭复数满足以下性质:a. 它们的实部相等。
b. 它们的虚部相等,但符号相反。
c. 一个复数与它的共轭复数的积等于这个复数的模的平方。
d. 两个复数的积的共轭等于它们的共轭的积。
四、复数的模和幅角1. 复数模|r|复数的模是指复数与原点之间的距离,可以用勾股定理求出。
|r| = √(a² + b²)2. 复数的幅角θ复数的幅角是指复数与正实轴正方向的夹角,可以用反正切函数求出。
复数内容归纳总结复数形式作为英语的一种语法现象,是在名词、动词等部分加上特定的词尾或调整词形来表示数量上的变化。
复数形式在英语中具有广泛的应用,本文将对复数内容进行归纳总结。
一、名词复数1. 一般名词复数形式的构成大部分一般名词的复数形式是在词尾加上-s或-es。
例如:book-books,box-boxes。
2. 不规则名词复数形式的构成不少名词的复数形式是不规则的,需要记忆。
例如:child-children,man-men。
3. 没有变化的名词复数形式部分名词的复数形式与单数形式相同,没有变化。
例如:sheep-sheep,fish-fish。
二、动词复数1. 动词的第三人称单数形式在英语中,动词的第三人称单数形式在一般现在时态中通常以-s或-es结尾。
例如:he/she/it works。
2. 动词复数形式的构成动词复数形式与第三人称单数形式相同,都是以-s或-es结尾。
例如:we/you/they work。
三、代词复数1. 主格代词复数形式主格代词的复数形式与单数形式不同,需记忆。
例如:I-we,he-they。
2. 宾格代词复数形式宾格代词的复数形式与单数形式相同,没有变化。
例如:them-them。
四、形容词复数形容词的复数形式与名词的复数形式一致。
例如:beautiful-beautiful。
五、副词复数大部分副词的复数形式与单数形式相同,没有变化。
例如:often-often。
六、冠词复数1. 不定冠词复数形式不定冠词的复数形式是“some”。
2. 定冠词复数形式定冠词的复数形式是“the”。
七、数词复数数词的复数形式与名词的复数形式一致。
例如:two books。
八、其他复数形式1. 复合名词的复数复合名词的复数形式是将其内部的名词或形容词词尾加上-s或-es。
例如:brother-in-law-brothers-in-law。
2. 缩写词的复数缩写词的复数形式通常是在其后加上一个-apostrophe-s('s)。
小学复数知识点总结一、名词的复数形式1.名词的复数形式通常是在词尾加“s”。
例如:book-books,girl-girls,car-cars等。
2.以s,sh,ch,x结尾的名词,加-es。
例如:bus-buses, brush-brushes, watch-watches, box-boxes等。
3.以辅音字母+y结尾的名词,变y为i再加-es。
例如:city-cities, baby-babies, family-families等。
4.以o结尾的名词,加-es。
例如:potato-potatoes, tomato-tomatoes, hero-heroes等。
5.以辅音字母+o结尾的名词,直接加-s。
例如:photo-photos, piano-pianos等。
6.以f或fe结尾的名词,变f或fe为v再加-es。
例如:leaf-leaves, knife-knives, loaf-loaves等。
7.不规则变化:man-men, woman-women, child-children, tooth-teeth, foot-feet等。
以上就是名词的复数形式的一些常见规则,学生在学习复数形式时可以通过记忆这些规则来加强复数形式的掌握。
二、名词的复数形式的用法1.表示多个事物名词的复数形式主要用来表示多个事物。
例如:There are three cats in the garden.(花园里有三只猫。
)2.表示一般真理名词的复数形式有时也用来表示一般真理。
例如:Birds build nests.(鸟儿筑巢。
)3.表示数量当名词的数量是不确定的时候,复数形式可以用来表示数量。
例如:I have many friends.(我有很多朋友。
)三、名词的复数形式的扩展运用1.句子中的主谓一致在句子中,主语与谓语应该保持一致。
当主语是复数形式的名词时,谓语动词需要用复数形式。
例如:The girls are playing in the park.(女孩们在公园里玩。
1/ 9复数的知识点总结与题型归纳一、知识要点1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式.2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模.的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有,有交换律 z 1·z 2=z 2·z 1 结合律 (z 1·z 2)·z 3=z 1·(z 2·z 3) 分配律z 1(z 2+z 3)=z 1z 2+z 1z 311.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷i)÷((c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例典例]] 实数x 分别取什么值时,复数z=x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数. (2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例典例] ] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例典例]] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:满足下列条件:(1)在复平面的第二象限内.在复平面的第二象限内.(2)在复平面内的x 轴上方.轴上方.[解] (1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例典例]] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2iB .-1-2iC .±1±1±2i 2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例典例]] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例典例]] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例典例]] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:求:(1) AO ――→表示的复数;表示的复数; (2)对角线CA ――→表示的复数;表示的复数; (3)对角线OB ――→表示的复数.表示的复数. [解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例典例]] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.B.112 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示,解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例典例]](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A.2 B.1 2C.-12D.-2(2)(江苏高考)复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是________.[解析](1)(1+a i)(2+i)=2-a+(1+2a)i,要使复数为纯虚数,所以有2-a=0,1+2a≠0,解得a=2.(2)(1+2i)(3-i)=3-i+6i-2i 2=5+5i,所以z的实部是5.题型十:复数代数形式的除法运算[典例典例]](1)若复数z满足z(2-i)=11+7i(i是虚数单位),则z为() A.3+5i B.3-5iC.-3+5i D.-3-5i(2)设i是虚数单位,复数1+a i2-i为纯虚数,则实数a为()A.2 B.-2C.-12 D.12[解析](1)∵z(2-i)=11+7i,∴z=11+7i2-i=(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a5+1+2a5i,由1+a i2-i是纯虚数,则2-a5=0,1+2a5≠0,所以a=2.[答案](1)A(2)A题型十一:i的乘方的周期性及应用[典例典例]](1)(湖北高考)i为虚数单位,i607的共轭复数为() A.i B.-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i 2 016)1-i =i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i 1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。
复数各章知识点总结一、复数的构成规则1.在大多数情况下,名词的复数形式是通过在词尾加上-s来构成的,如:book → books, table → tables, cat → cats。
2.以s, x, ch, sh结尾的名词,需要在词尾加上-es,如:bus → buses, box → boxes, church → churches, brush → brushes。
3.以辅音字母+y结尾的名词,需将y改为i,再加上-es,如:baby → babies, city → cities, party → parties。
4.以-o结尾的名词,通常加上-es构成复数,如:tomato → tomatoes, hero → heroes, potato → potatoes。
但也有一些例外,如photo → photos, piano → pianos。
5.以-f 或-fe结尾的名词,通常将f 或 fe改为ves构成复数,如:leaf → leaves, knife → knives, wife → wives。
6.有些名词的复数形式需要利用变位规则,如:man → men, woman → women, child → children, foot → feet。
7.一些名词的复数形式与它们的单数形式完全相同,如:sheep, deer, fish, aircraft。
二、特殊的不规则名词复数形式1.一些名词的复数形式完全不同于它们的单数形式,如:man → men, woman → women, child → children, foot → feet。
2.一些名词的复数形式是通过变位而成的,如:mouse → mice, tooth → teeth, louse → lice, goose → geese。
3.有些名词既没有单数形式,也没有复数形式,如:scissors, pants, trousers。
初中复数知识点总结一、名词复数形式的构成1. 一般情况下,名词变成复数形式是在词尾加上-s 或-es。
比如:cat-cats, dog-dogs, box-boxes。
2. 以s, x, ch, sh结尾的名词要在词尾加-es。
比如:bus-buses, brush-brushes。
3. 以辅音字母加y结尾的名词要把y变成i, 再加-es。
比如:city-cities, family-families。
4. 以f或fe结尾的名词变为复数时,通常要将f或fe变为v, 再加-es。
比如:wolf-wolves, life-lives。
5. 以o结尾的名词有一部分是加-s, 有一部分则是加-es。
比如:tomato-tomatoes, potato-potatoes。
6. 以-us结尾的名词变为复数时,通常要将-us变为-i, 再加-es。
比如:bus-buses, focus-foci。
7. 一些名词的复数形式和单数形式一样。
比如:sheep-sheep, fish-fish, deer-deer。
二、不规则名词的复数形式1. 一些名词的复数形式与单数形式不同,需要记忆。
比如:man-men, woman-women, child-children。
2. 一些名词的复数形式是复数形式是在中间变音。
比如:tooth-teeth, foot-feet。
3. 一些名词的复数形式是复数形式是整个单词变化。
比如:mouse-mice, person-people。
三、名词复数形式的用法1. 用于表示数量多于一个的情况。
比如:There are three cats in the garden.2. 用于表示两个以上的不可数名词。
比如:This soup smells delicious.3. 用于表示类别。
比如:Dogs are loyal animals.二. 动词的复数形式1. 动词的复数形式在一般情况下,在单数形式后加-s或-es。
课 题:复数复习小结教学目的:1.理解复数的有关概念;掌握复数的代数表示及向量表示.2.会运用复数的分类求出相关的复数(实数、纯虚数、虚数等)对应的实参数值.3.能进行复数的代数形式的加法、减法、乘法、除法等运算.4.掌握复数代数形式的运算法则及加减法运算的几何意义 教学重点:复数的有关概念、运算法则的梳理和具体的应用.教学难点:复数的知识结构的梳理授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、知识要点: 1.虚数单位i :(1)它的平方等于-1,即 21i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =14.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示*3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫做复数的代数形式4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当b =0时,复数a +bi (a 、b ∈R )是实数a ;当b ≠0时,复数z =a +bi 叫做虚数;当a =0且b ≠0时,z =bi 叫做纯虚数;当且仅当a =b =0时,z 就是实数0.5.复数集与其它数集之间的关系:N Z Q R C .6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a ,b ,c ,d ∈R ,那么a +bi =c +di ⇔a =c ,b =d一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小7. 复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数8.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i .9. 复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i .10. 复数的加法运算满足交换律: z 1+z 2=z 2+z 1.11. 复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3)12.乘法运算规则:设z 1=a +bi ,z 2=c +di (a 、b 、c 、d ∈R )是任意两个复数,那么它们的积(a +bi )(c +di )=(ac -bd )+(bc +ad )i .其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.13.乘法运算律:(1)z 1(z 2z 3)=(z 1z 2)z 3 ; (2)z 1(z 2+z 3)=z 1z 2+z 1z 3; (3)z 1(z 2+z 3)=z 1z 2+z 1z 3.14.除法运算规则:①设复数a +bi (a ,b ∈R ),除以c +di (c ,d ∈R ),其商为x +yi (x ,y ∈R ), 即(a +bi )÷(c +di )=x +yi∵(x +yi )(c +di )=(cx -dy )+(dx +cy )i .∴(cx -dy )+(dx +cy )i =a +bi .由复数相等定义可知⎩⎨⎧=+=-.,b cy dx a dy cx ,解这个方程组,得⎪⎪⎩⎪⎪⎨⎧+-=++=.,2222d c ad bc y d c bd ac x 于是有:(a +bi )÷(c +di )=2222dc ad bc d c bd ac +-+++ i . ②利用(c +di )(c -di )=c 2+d 2.于是将dic bi a ++的分母有理化得: 原式=22()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+⋅-+-==++-+ 222222()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i dc ad bc d c bd ac 2222+-+++.15*.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数16. 复数加法的几何意义:如果复数z 1,z 2分别对应于向量1OP 、2OP ,那么,以OP 1、OP 2为两边作平行四边形OP 1SP 2,对角线OS 表示的向量OS 就是z 1+z 2的和所对应的向量17.复数减法的几何意义:两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.18.复数的模:||||||z a bi OZ =+==u u u r 19. 复数z a bi =+的辐角θ及辐角主值:以x 轴的非负半轴为始边、以OZ 所在射线为终边的角在[0,2)π内的辐角就叫做辐角主值,记为argz20. 复数的三角形式:(cos sin )z a bi r i θθ=+=+ 其中22b a r += ,r a =θcos , rb =θsin ; 复数的三角形式的特征:①模r ≥0;②同一个辐角θ的余弦与正弦;③θcos 与θsin i 之间用加号连结21. 复数的三角形式的乘法:若11112222(cos sin ),(cos sin )z r i z r i θθθθ=+=+,则12121212(cos()sin(z z r r i θθθθ=+++22. 复数的三角形式的乘方(棣美弗定理):若(cos sin )z a bi r i θθ=+=+,则(cos sin )n nz r n i n θθ=+ 23. 复数的三角形式的除法:若11112222(cos sin ),(cos sin )z r i z r i θθθθ=+=+,则11212122(cos()sin(r z z i r θθθθ÷=-+- 24. 复数代数形式开平方和三角形式开高次方的运算:①复数z a bi =+开平方,只要令其平方根为x yi +,由2()x yi a bi +=+222x y a xy b ⎧-=⇒⎨=⎩,解出,x y 有两组解②复数(cos sin )z r i θθ=+的n 方根为:22sin ),(0,1,,1)k k i k n n nπθπθ+++=-L 共有n 个值二、讲解范例:例1对于下列四个命题,正确的是 ( )①z 1,z 2,z 3∈C ,若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 3②设z ∈C ,则z +z1∈R 的充要条件是|z |=1 ③复数不能比较大小④z 是虚数的充要条件是z +z ∈RA.0个B.1个C.2个D.3个答案:A例2.当n ∈N *,计算i n ,下列四个结论正确的是( )A.i n =(i 4)4n =14n=1 B.i n =(i 2)n n)1(2-=其值不定C.i n =(i 3)33)(n n i -=其值不定D.i n 值可能是±i ,也可能是±1答案:D 例3 非零复数a 、b 满足a 2+ab +b 2=0,则19991999)()(ba b b a a +++的值是( ) A.-1B.1C.-2D.2 答案:B 例4已知复数z =1-2i ,求适合不等式log 0.5211||≤+-a i az 的实数a 的取值范围. 解:原不等式化为21)21(1||≥+-a i az ,即⎪⎩⎪⎨⎧>++⋅≥--,01,122|)21(|a a i i a 即⎪⎩⎪⎨⎧->+⋅≥++,1,122)12(22a a a a 即⎪⎩⎪⎨⎧->-≤-≥1,2151a a a 或 ∴a ≥-51或-1<a ≤-21. 点评:本题是对数不等式和复数模的概念的综合应用三、课堂练习:1.设集合I =C ={复数}, R ={实数},M ={纯虚数},那么A.R ∪M =CB.R ∩M ={0}C.R ∪R =CD.C ∩R =M2.a =0是复数a +bi (a ,b ∈R )为纯虚数的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件3.若(m 2-m )+(m 2-3m +2)i 是纯虚数,则实数m 的值为A.1B.1或2C.0D.-1,1,24.若实数x ,y 满足(1+i )x +(1-i )y =2,则xy 的值是A.1B.2C.-2D.-35.已知复数z 1=a 2-3+(a +5)i ,z 2=a -1+(a 2+2a -1)i (a ∈R )分别对应向量1OZ 、2OZ (O 为原点),若向量21Z Z 对应的复数为纯虚数,求a 的值答案:1.C 2.B 3.C 4.A5.解:21Z Z 对应的复数为z 2-z 1,则z 2-z 1=a -1+(a 2+2a -1)i -[a 2-3+(a +5)i ]=(a -a 2+2)+(a 2+a -6)i∵z 2-z 1是纯虚数,∴⎪⎩⎪⎨⎧≠-+=+-060222a a a a 解得a =-1 四、小结 :通过系统复习复数的知识,及例题的训练,进一步体会数学转化的思想、方程的思想、数形结合思想的运用五、课后作业:六、板书设计(略) 七、课后记:。