重庆理工大学材料科学基础双语翻译第5章modified翻译
- 格式:ppt
- 大小:539.00 KB
- 文档页数:25
Text 1 电脑黑客如何进入电脑这好像是一个直接的问题,但是内涵很复杂,答案绝不简单,如果随便地回答,那么黑客通过利用弱点进入目标电脑系统。
但是为了提供更多细节,我们还是从头说起。
“hacker”这个词在意义和解释上都很有争议。
有些人说ha ckers(开路人) 是好人,他们只是推动了知识的边界,并没造成什么伤害(至少不是故意的),而crack er s (打砸者)是真正的坏蛋。
这种争论没有什么效果,如果是为了这种讨论的目的,术语“未授权的使用者”(UU)就足够用了。
这个术语包含了所有不同类型的人,从那些参与有组织犯罪行为的人到那些内部人士,他们突破了在系统中被授予的权限。
接下来我们探讨一下“进入”电脑意味着什么。
这可以指获得电脑系统储存的内容,获得系统的处理能力,或者捕获系统之间交流的信息。
每种攻击都需要不同的技巧,以不同的弱点为目标。
那么“未授权的使用者”利用的是什么?弱点存在于每个系统中,并且有两种弱点:已知的和未知的。
已知的弱点通常因为需要某些能力而存在。
比如,为了某个商业过程,你需要不同的人使用一个系统,你就有一个已知的弱点:使用者。
另一个已知弱点的例子是通过互联网交流的能力,为了具备这个能力,你要给未知和不被信任的实体开通一条路径。
未知的弱点是系统的拥有者或操作者所不了解的,可能是劣质工程的结果,或者是某些被需要的能力产生的非故意的结果。
按照定义,弱点可能被利用。
这些弱点可以是低级的密码保护,也可以是让电脑开着,让办公室的访客可以利用。
只要坐在接待员的桌前,用他的电脑获得需要的信息,就有超过一种技术被利用。
低级的密码(比如,用户名“Joe Smith”, 密码也是“Joe Smith”)也是接近电脑的丰富的来源:密码破译程序可以很容易在几分钟内确认字典中的单词、姓名,甚至常见短语。
Fundamentals of Materials Science and Engineering材料科学与工程基础知识点复习第一章绪论一、学习目的:材料科学家或工程技术人员经常遇到的问题是设计问题,而设计问题主要涉及机械、民用、化学和电。
而这些领域都要涉及到选择材料问题。
如何选择材料是非常重要的,选材包含两方面一个是满足性能要求,另一方面是成本低,即所谓“合理选材”。
材料的性能与其成分和内部的组织结构密切相关,材料的组织结构与加工过程有关。
本课程的目的就在于掌握加工过程和材料的组织结构以及性能之间的关系。
为今后进行材料设计和合理选材打下理论基础。
二、本章主要内容1、简介材料的发展史2、材料科学与工程的含义和内容3、材料的分类4、先进材料5、现代材料的需求三、重要术语和概念metal: 金属ceramic: 陶瓷polymer: 聚合物Composites: 复合材料Semiconductors: 半导体Biomaterials: 生物材料Processing: 加工过程Structure: 组织结构Properties: 性质Performance: 使用性能Mechanical properties: 力学性能Electrical properties: 电性能Thermal behavior: 热性能Magnetic properties: 磁性能Optical properties: 光性能Deteriorative characteristics: 老化特性第二章原子结构与化学键一、学习目的我们在自然界中观察到各种现象,归根结底是物质的不同表现形式,也就是说物质构成了世界。
自然界中所有物体均由化学元素及其化合物所组成,同样,各种固体材料也都是由一种或多种元素的原子结合而成的。
学习物质的原子结构和化学键合,是认识和研究各类材料在结构与性能方面所表现出来的个性和共性的基础,也是正确认识和理解材料的性能的重要依据。
重庆理工大学2022年硕士研究生招生考试试题学院名称:材料科学与工程学院学科、专业名称:材料科学与工程、材料与化工(材料工程)考试科目(代码):材料科学基础805(A卷)(试题共3页)注意:1.所有试题的答案均写在专用的答题纸上,写在试题纸上一律无效。
2.试题与答卷一并随原信封交回。
一、名词解释(共6小题,选做5题,多做不得分,每题4分,共20分)1.晶体与非晶体2.晶界与相界3.丝织构与板织构4.滑移与孪生5.组元与组织6.热缺陷与杂质缺陷二、简答题(共7小题,选做5题,多做不得分,每题10分,共50分)1.纯金属晶体中常见的点缺陷有哪些?它们可能产生的途径有哪些?对金属的性能有什么影响?2.从结合键的角度分析工程材料的分类和特点。
3.影响固溶体溶解度的因素有哪些?固溶体的性能如何?C、Mn元素溶入Fe 中分别形成什么类型的固溶体?(C的原子半径0.077nm,Mn的原子半径0.132nm,Fe的原子半径0.127nm)4.什么是均匀形核与非均匀形核?为什么实际金属结晶的方式通常为非均匀形核?5.室温下子弹分别击穿铜板和铅板,试分析铜板和铅板弹孔周围组织的变化,并解释。
(Cu的熔点为1083℃,铅的熔点为327.5℃)6.原料中加入少量外加剂(添加剂)会明显改变陶瓷的烧结速度,请简述外加剂是如何影响陶瓷烧结过程的?7.假定碳在α-Fe(体心立方)和γ-Fe(面心立方)中的扩散系数分别为:Dα=0.0079exp−c2/Dγ=0.21exp−c2/计算800℃时各自的扩散系数,并解释其差别。
三、作图分析题(共2小题,共22分)1.在面心立方晶体中分别画出101、101111、[110],指出哪些是滑移面、滑移方向。
并就图中情况分析它们能否构成滑移系。
(12分)2.画出一个圆形位错环,并在位错平面上任意画出位错的柏氏矢量和位错线方向(假设),据此指出位错环上各点位错的性质。
(10分)四、相图分析及计算题(共2小题,共28分)1.Pb(熔点为327.5℃)和Sn(熔点为232℃)的共晶成分为61.9%Sn。
P2Material science is the investigation of the relationship among processing, structure, properties, and performance of materials.材料科学是研究材料的加工,组织性能和功能之间关系的学科(材料与工程之间的关系可以用图一的四面体来表示)P2The discipline of materials science involves investigating the relationships that exist between the structures and properties of materials.材料科学是研究材料的结构和性能之间的关系的学科In contrast, materials engineering is, on the basis of these structure-property correlations, designing or engineering the structure of a material to produce a predetermined set of properties. 而材料加工是在材料组织和性能关系的基础上,对材料的组织进行设计,以获得一系列预定的性能P5 Semiconductors have electrical properties that are intermediate between the electrical conductors and insulators. Furthermore, the electrical characteristics of these materials are extremely sensitive to the presence of minute concentrations of impurity atoms, which concentrations may be controlled over very small spatial regions. The semiconductors have made possible the advent of integrated circuitry that has totally revolutionized the electronics and computer industries.半导体有介于电导体和绝缘体之间的性能。
重庆理工大学 2013 年攻读硕士学位研究生入学考试试题学院名称:材料科学与工程学院学科、专业名称:材料科学与工程一、名词解释(每个4分,共32分)点阵常数,晶粒度,退火孪晶,光滑界面,枝晶生长,致密度,晶体缺陷,过冷度二、简答题(每小题6分,选作8题,共48分)1、20钢分别去应力退火和再结晶退火,得到的组织、性能有什么不同。
2、对比均匀形核与非均匀形核的阻力、临界晶核半径、形核功、过冷度的大小。
3、指出纯金属的界面特征及其长大机制特点、晶体形态。
4、金属塑性变形后的残余应力分为哪几类,各有什么作用。
5、写出α-Fe、纯Al、纯Mg的晶体结构、致密度、配位数、最大晶体间隙类型。
6、金属塑性变形时滑移和孪生对晶体结构、位向和表面形貌的作用规律。
7、指出公式τk=σs m各项的含义。
m值发生变化时,τk、σs如何发生变化。
8、对比一次再结晶、动态再结晶、二次再结晶过程的驱动力及其组织特征。
9、何为同素异构转变,简述硅石的同素异构转变过程。
10、指出固体中扩散的热力学条件,描述典型的扩散机制。
三、作图、计算题(共45分)1.画出立方晶系中下列晶面和晶向(坐标系如下图所示)。
(本题12分)(201—),(1—21),(11—1),[121],[112—],[2—10]第 1 页2.根据铁碳合金相图(本题16分)(1)写出水平反应式,指出其反应的类型及反应产物的性能特点。
(6分)(2)指出相图中的典型脱溶过程及其产物。
(4分)(3)某碳钢的平衡组织如右图所示,确定碳钢的类型并标注其显微组织(2分)。
图中白色区域占60%,确定其含碳量。
(4分)3.现有纯Ag 、Ti 、Pb 、Fe 四种金属在室温下(25℃)轧制。
(本题17分)(1)计算再结晶温度,确定加工类型。
(6分)(2)解释并说明室温下轧制的难易顺序,指出室温变形的组织特征。
(8分)(3)若有不能连续轧制的金属,应采取何种措施使之轧成薄板。
(3分)(Ag 的熔点962℃,面心立方;Ti 的熔点1668℃,大于883℃为面心立方,低于883℃为密排六方;Pb 的熔点327℃,面心立方;铁的熔点1538℃)四、论述题(25分)根据位错理论及晶体缺陷知识,阐述应变强化、固溶强化、弥散强化、沉淀强化、细晶强化的机制及其规律。
UNIT 1一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。
历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。
二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。
随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。
这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。
此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。
在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。
因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维。
三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。
对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科(subdiscipline)是非常有用的,严格的来说,材料科学是研究材料的性能以及结构的关系,与此相反,材料工程则是基于材料结构和性能的关系,来设计和生产具有预定性能的材料,基于预期的性能。
专业英语单词奥氏体奥氏体化奥氏体的重新奥氏体化马氏体铁素体珠光体贝氏体渗碳体碳化物淬火淬水正火回火热处理石墨化石墨再结晶退火完全退火凝固均质化均质处理加工硬化淬透性淬透性带、硬锻带球化处理表面硬化淬透局部淬火火焰淬火局部硬化感应加热加工硬化加工硬化、应变强化冷加工热加工带材、板材棒材棒材拉拔钢带线材钢号轧制锻造刮擦磨光磨损拉拔裂纹缺陷连铸铸造辊缝张力断裂应变应力正应力主应力主平面主方向剪应力剪切强度拉应力压应力残余应力屈服弹性状态塑性的脆性、脆度疲劳易延展的延展性脆的韧性强度强度极限疲劳强度疲劳极限弯曲应力蠕变试验位错滑移结晶的孪晶偏析枝晶间的间隙固溶体力学性能过冷液体相稳定相非晶的晶体、晶粒晶粒模具道次合金铸铁三相点大型材、大型型钢锭铁、钢锭焊缝硬度缺口、凹痕小变形定径道次密排六方晶体体心立方晶体面心立方晶格晶胞空位各种性能轴承钢硬化钢低碳钢不锈钢冶金的austenite austeniting austenitic reausteniting martensiteferritepearlitebainite cementite carbidequench hardening normalizing temperingheat treatment graphitization graphiteanneal annealingfull annealing solidification homogenize hardenability hardenability band spheroidize spheroidisation spheroidizing surface hardening through hardening localized hardening flame hardening spot hardening induction heating work-hardeningstrain-hardeningcold-working hotworkingflatbarrod drawingstripwiregrade of steelrollingforgingscratchabradeweardrawingcrackingdefectflawcontinuous castingcastroll bitetensilecrackfracturestrainstressdirect stressprincipal/ principle stress principal plane principle direction shear stressshear strengthtensile stress compressive stress residual stressyieldelastic behaviorplasticbrittlenessfatigueductileductilitybrittletoughnessstrengthultimate strength fatigue strength endurance limit bending stresscreep testdislocationslipslip-line recrystallizationtwinssegregation interdendritic interstitial solid solutions mechanical property supercooled liquid phase stable phaseamorphouscrystalcoarse-graindiepassalloycast irontripleheavy sectioningotweldshardnessindentationa light sizing passClose-packed hexagonal crystal Body-centered cubic crystal Face-centered cubic lattice unite cellvoida wide spectrum of charateristics bearing steelhardened steelhardening steelmild steelstainless steelmetallurgical1-2 铁碳平衡相图铁碳相图是一个示意图,被用来绘制对于给定的热处理操作的合理顺序。
材料成型及控制工程专业英语翻译(部分)第一篇:材料成型及控制工程专业英语翻译(部分)第3章的原则塑料成型3。
1热加工物理冶金现在公认的热加工物理冶金的原则。
在变形过程本身,例如一个滚动的传递,加工硬化发生,但回收和再结晶过程的动态软化平衡。
这些过程,这是热激活,导致一个流动应力,应变率和温度,以及依赖于应变。
结构性变化的应变与位错密度增加放置在一个临界应变(εc)奥氏体钢,镍和铜合金材料的结果,直到达到储存的能量足够高时会导致动态再结晶。
随着进一步的压力,动态再结晶发生多次新的再结晶晶粒本身加工硬化储存能量的临界水平。
这些动态的结构变化离开金属处于不稳定的状态,并提供静态恢复和静态再结晶变形传递后的推动力。
可遵循静态再结晶晶粒的生长,如果温度足够高。
为了能够把这些原则运用到商业工作流程,我们需要回答两个主要问题:(一)多久再结晶后变形传递到位;及(b)什么晶粒尺寸再结晶和晶粒生长产生?这些问题的答案决定进入未来和后续传递物质的结构,从而影响材料的流动应力和所需的工作力量。
最后,他们确定的热作产品的结构和性质。
3。
1。
1动态的结构变化在变形奥氏体在热加工温度和恒应变速率,观察应力应变曲线的特点形式如图所示。
3。
1。
这些曲线是低合金钢,扭转测试,但类似的其它钢得到扭转,紧张,或压缩测试奥氏体条件。
经过初期快速加工硬化曲线通过动态再结晶的发生相关的一个最大。
在流动应力峰值出现一些低分数的再结晶后已经发生这样的峰值应变(εp)总是大于临界应变动态recystallization(εc)。
两个菌株之间的关系是复杂的,但它已建议thatεc=αεp(其中α是一个常数)是一个合理的近似变形热工权益的条件下。
然而,α的建议值不同,0.83,0.86,和0.67。
它从图3.1可以看出,εp增加系统与ZenerMn钢,但较低的值的270和286 kJ / mol的范围,也被观察到。
Asεc标志着亚颗粒有点不发达,加工硬化和动态恢复行动,其中也包含了再结晶核的变化,在微观结构,它也是一个静态后发生的结构性变化的临界应变变形。
UNIT 1一、材料根深蒂固于我们生活的程度可能远远的超过了我们的想象,交通、装修、制衣、通信、娱乐(recreation)和食品生产,事实上(virtually),我们生活中的方方面面或多或少受到了材料的影响。
历史上,社会的发展和进步和生产材料的能力以及操纵材料来实现他们的需求密切(intimately)相关,事实上,早期的文明就是通过材料发展的能力来命名的(石器时代、青铜时代、铁器时代)。
二、早期的人类仅仅使用(access)了非常有限数量的材料,比如自然的石头、木头、粘土(clay)、兽皮等等。
随着时间的发展,通过使用技术来生产获得的材料比自然的材料具有更加优秀的性能。
这些性材料包括了陶瓷(pottery)以及各种各样的金属,而且他们还发现通过添加其他物质和改变加热温度可以改变材料的性能。
此时,材料的应用(utilization)完全就是一个选择的过程,也就是说,在一系列有限的材料中,根据材料的优点来选择最合适的材料,直到最近的时间内,科学家才理解了材料的基本结构以及它们的性能的关系。
在过去的100年间对这些知识的获得,使对材料性质的研究变得非常时髦起来。
因此,为了满足我们现代而且复杂的社会,成千上万具有不同性质的材料被研发出来,包括了金属、塑料、玻璃和纤维。
三、由于很多新的技术的发展,使我们获得了合适的材料并且使得我们的存在变得更为舒适。
对一种材料性质的理解的进步往往是技术的发展的先兆,例如:如果没有合适并且没有不昂贵的钢材,或者没有其他可以替代(substitute)的东西,汽车就不可能被生产,在现代、复杂的(sophisticated)电子设备依赖于半导体(semiconducting)材料四、有时,将材料科学与工程划分为材料科学和材料工程这两个副学科(subdiscipline)是非常有用的,严格的来说,材料科学是研究材料的性能以及结构的关系,与此相反,材料工程则是基于材料结构和性能的关系,来设计和生产具有预定性能的材料,基于预期的性能。
材料科学基础_概念中英文材料科学基础重要概念(中英文)晶体学基础晶体学(crystallography)布喇菲点阵(Bravais lattice)晶体生成学(crystallogeny)体心化(body centering)晶体结构学(crytallogy)底心化(base centering)晶体化学(crystallochemistry)特殊心化(special centering)晶体结构(crystal structure)晶面(crystal plane)点阵平移矢量(lattice translation vector)晶(平)面指数(crystal – plane indice)初级单胞(primitive cell)晶带(zone)点阵常数(lattice parameter)倒易空间(reciprocal space)对称变换(symmetry translation)参考球(reference sphere)主动操作(active operation)经线(longitude)国际符号(international notation)赤道平面(equator plane)点对称操作(point symmetry operation)极网(pole net)旋转操作(rotation operation)结构基元(motif)二次旋转轴(two - fold axe, diad)晶体几何学(geometrical crystallography)四次旋转轴(four –fold axe, tetrad)晶体物理学(crystallographysics)镜像(mirror image)等同点(equivalent point)对形关系(enantiomorphic relation)点阵(lattice)反演(inversion)初基矢量(primitive translation vector)晶系(crystal system)复式初基单胞(multiple – primitive cell)单斜晶系(monoclinic system)对称元素(symmetry element)四方晶系(正方晶系)(tetragonal system)对称群(symmetry group)六方晶系(hexagonal system)被动操作(passive operation)熊夫利斯符号(Schoenflies notation)点阵有心化(centering of lattice)恒等操作(单位操作)(identity)面心化(face centering)旋转轴(rotation axe)单面心化(one – face centering)三次旋转轴(three – fold axe, triad)晶向(crystal direction)六次旋转轴(six – fold axe, hexad)晶向(方向)指数(crystal – direction indice)镜面(mirror plane)晶面族(form of crystal - plane)同宇(congruent)倒易点阵(reciprocal lattice)旋转反演(rotation - inversion)极射赤面投影(stereographic projection)三斜晶系(triclinic system)参考网络(reference grid)正交晶系(斜方晶系)(orthogonal system)纬线(latitude)立方晶系(cubic system)吴氏网(Wulff net)菱方晶系(rhombohedral system)标准投影网(standard projection)晶体结构晶体结构(crystal structure)鲍林规则(Pauling’s rule)结构符号(structure symbol)氧化物结构(oxide structure)致密度(空间填充效率)(efficiency of space 岩盐结构(rock structure)filling)纤维锌矿结构(wurtzite structure)配位数(coordination number)闪锌矿结构(zinc blende structure)配位多面体(coordination polyhedra)尖晶石结构(spinel structure)拓扑密堆相(topologically close –packed α-Al2O3型结构(corundum structure)phase)金红石结构(rutile structure)金属晶体(metal crystal)萤石结构(fluorite structure)离子晶体(ionic crystal)钙钛矿结构(perovskite structure)共价晶体(covalent crystal)钛铁矿结构(ilmenite structure)分子晶体(molecular crystal)氯化铯结构(cesium chloride structure)原子半径和离子半径(atomic radius and ionic 硅酸盐(silicate)radius)链状硅酸盐(chain silicate)原子结构体积(volume of structure per atom)层状硅酸盐(phyllo silicate)体密度(volumetric density,ρV)岛状硅酸盐(island silicate)面密度(planar density, ρP)骨架结构(framework structure)线密度(linear density, ρL)镁橄榄石结构(forsterite structure)金刚石结构(diamond structure)辉石(picrite)纳米碳管(carbon nano tube)粘土矿(clay mineral)置换固溶体(substitutional solid solution)高岭石(kaolinite)填隙固溶体(interstitial solid solution)云母(mica)尺寸因素(size factor)石英(quartz)价电子浓度(valance electron concentration)鳞石英(tridymite)电子化合物(electron compound)方石英(cristobalite)间隙化合物(interstitial compound)钙长石(anorthite)尺寸因素化合物(size–factor compound)分子筛(molecule sift)Laves相(Laves phase) 同素异构性(allotropy)σ相(σphase)多形性(polymorphism)有序固溶体(超结构)[ordered solid solution 准晶(quasicrystal)(super lattice) ] 彭罗斯拼砌(Penrose tiling)长程有序参数(long-range order parameter)短程有序参数(shot-range order parameter)晶体缺陷不完整性(imperfection)向错(disclination)点缺陷(point imperfection)沃特拉过程(V olterra’s process)空位(vacancy)刃型位错(edge dislocation)自间隙原子(self-interstitial)螺型位错(screw dislocation)构型熵(configuration entropy)混合型位错(mixed dislocation)肖脱基缺陷(Schottky defect)柏氏回路(Burgers circuit)弗兰克缺陷(Frenkel defect)柏氏矢量(Burgers vector)内禀点缺陷(intrinsic point defect)位错环(dislocation loop)非禀点缺陷(extrinsic point defect)位错密度(dislocation density)线缺陷(line imperfection)位错的弹性能(elastic energy of dislocation)位错(dislocation)位错线张力(tension of dislocation)位错宽度(width of dislocation)层错矢量(fault vector)保守运动(conservative motion)外延层错(extrinsic fault)非保守运动(nonconservative motion)层错能(stacking fault energy)滑移(slip)肖克莱部分为错(Shockley partial dislocation)滑动(glissile)铃木气团(Suzuki atmosphere)攀移(climb)弗兰克位错(Frank partial dislocation)自力(self-force)扩展位错(extended dislocation)渗透力(osmotic force)压杆位错(stair-rod partial dislocation)映像力(image force)Lomer-Cottrell 位错(Lomer-Cottrell弯结(kink)dislocation)割阶(jog)L-C阻塞(L-C Lock)柯垂尔气体(Cottrell atmosphere)赫斯阻塞(Hirth lock)史诺克气体(Snoek atmosphere)分位错(fractional dislocation)弗兰克-瑞德位错源(Frank-Read source)超点阵(superlattice)B-H位错源(Bardeen-Herring source)反相畴(Antiphase domain)位错塞积群(dislocation pile-up group)反相畴界(Antiphase boundary, APB)全位错(perfect dislocation)超位错(super-dislocation)堆垛层错(stacking fault)弗兰克-纳巴罗回路(Frank-Nabarro circuit)部分为错或不全位错(partial dislocation)向错强度(disclination strength)内禀层错(intrinsic fault)条纹织构(schlieren texture)表面能(surface energy) 适配(matching)晶界(grain boundary) 共格晶界(coherent boundary)小角度晶界(low angle grain boundary)非共格晶界(incoherent boundary)大角度晶界(high angle grain boundary 晶界迁移率(grain boundary mobility)倾转晶界(tilt boundary)取向关系(orientation relationship)扭转晶界(twist boundary)气泡(gas babble)相界(phase boundary) 空洞(void)扩散不可逆过程(irreversible process)传质过程(mass transport)扩散(diffusion)扩散距离(diffusion distance)唯象系数(phenomenological coefficient)间隙机制(interstitial mechanism)挤列结构(crowdion configuration)哑铃结构(dumbbell split configuration)空位机制(vacancy mechanism)换位机制(exchange mechanism)扩散流量(flux)参考系(reference frame)实验参考系(laboratory reference frame)点阵参考系(latticereference frame)菲克第一定律(Fick’s first law)菲克第二定律(Fick’s second law)扩散系数(diffusion coefficient)禀性扩散系数(intrinsic diffusion coefficient)互扩散系数(mutual diffusion coefficient)自扩散系数(self-diffusion coefficient)稳态扩散(steady state diffusion)Kirkendall 效应(Kirkendall effect)Matano 平面(Matano interface)热力学因子(thermodynamic factor)同位素(isotope)示踪物(tracer)扩散偶(diffusion couple)误差函数(error function)哑变量(dummy)数值方法(numerical method)有限差分(finite-difference)收敛性(convergence)截断误差(truncation error)舍入误差(round-off error)相关系数(correlation factor)高扩散率通道(high-diffusivity path)体扩散(volume diffusion)晶界扩散(grain boundary diffusion)位错扩散(dislocation diffusion)表面扩散(surface diffusion)迁移率(mobility)渗透率(permeability)凝固分配系数(partition coefficient)枝晶偏析(dendrite segregation)区域提纯(zone-refining)亚共晶合金(hypoeutectic alloy)胞晶的形成(cell formation)过共晶合金(hypereutectic alloy)胞状树枝晶(cellular dendrite)片状(lamellar)柱状树枝晶(columnar dendrite)棒状(rod-like)共晶凝固(eutectic solidification)共晶领域(eutectic colony)包晶凝固(peritectic solidification)伪共晶(pseudo-eutectic)偏析(segregation)离异共晶(divorced eutectic)熔焊(fusion welding)激冷区(chill zone)快速凝固(rapid solidification process)柱状晶区(columnar zone)连续铸造(continuous casting)等轴晶区(equiaxed zone)树枝状显微偏析(dendritic microsegregation)收缩晶区(shrinkage cavity)非平衡杠杆定律(non-equilibrium lever rule)疏松(porosity)组分过冷(constitutional supercooling)非金属夹杂物(non-metallic inclusion)胞状组织(cellular structure)熔池(weld pool)二次枝晶(secondary dendrite)混合区(composite region)一次支晶(primary dendrite)热影响区(heat-affected zone)。
材料科学与工程基础第1章、导言学习重点:仔细学过这一章后,你应当掌握以下内容:1.列出材料应用所涉及到的6种不同性质。
2.描述材料在设计、生产和应用中涉及的四要素,叙述它们之间的关系。
3.描述材料选择过程的三条重要标准。
4.(a)列出固体材料的三种主要分类,描述这三种材料各自的化学特征。
(b)记住另外三种形式的材料,以及每种的特征。
1.1 历史的回顾与展望超乎一般人的认识,材料可能是对人类文明影响最根深蒂固的一类物质。
交通运输,住房,穿衣,通讯,娱乐和食品生产,实质上、我们日常生活中的每一部分都在一定程度会受到这种或那种材料的影响。
历史上,社会的进步和发展都与人类生产和掌握某种材料满足自己的需要密切相关。
事实上,早先的文明曾按照人类开发某种材料的能力来划分时代(例如石器时代,青铜器时代等等)。
最早的人类所遇到的材料极为有限,通常是天然的土生土长的一些东西,如石头,木材,粘土,兽皮等等。
随着时代的发展,人类发现了生产材料的技术,这些人造的材料性能上优于天然材料,这类新材料包括陶瓷和各种金属。
后来人们发现通过热处理和加入其它物质可以改变这些材料的性能。
从某种意义上说,材料的应用总是伴随着一种筛选过程,也就是说,从有限的材料中筛选出其特性最适用于特定场合使用的材料。
直到近代,科学家们开始知道材料的结构组成与其性质之间的关系。
在过去60年里,人们所获得的各种知识从很大程度上已经改变了对许多材料的认识。
迄今为止,已有成千上万种具有不同特性的材料被开发出来以满足我们这个现代和复杂社会的需要,这些材料包括金属、塑料、玻璃和纤维。
技术的进步使人类的生活变得越来越舒适,而这一切又与我们所使用的材料密切相关。
人类对某一类材料认识程度的进步往往是这个时代技术革命的前奏。
例如,如果没有廉价的钢铁和其他相应材料,就不会有当今的汽车工业。
复杂电子设备的基本单元是由半导体材料构成的。
因此,我们目前的电子信息时代,它的材料基础是半导体材料。