高二数学参数方程
- 格式:pdf
- 大小:987.41 KB
- 文档页数:8
年 级 高二 学科数学内容标题 参数方程 编稿老师胡居化一、教学目标1. 理解参数方程的含义,掌握直线的参数方程、圆的参数方程、圆锥曲线的参数方程及其简单的应用.2. 体会等价转化的数学思想、数形结合的数学思想、方程的数学思想的应用.二、知识要点分析1. 参数方程的定义:在取定的坐标系中,若曲线上任意一点的坐标(x ,y )都是某个变量t 的函数,即⎩⎨⎧==)()(t g y t f x ――――(1)并且对于t 的每一个允许取值,方程(1)确定的点M (x ,y )都在这条曲线上,则方程组(1)叫做曲线的参数方程,联系x ,y 之间的变数叫参变数.相对于参数方程而言,直接给出的曲线上点的坐标关系的方程叫曲线的普通方程.注:在曲线的参数方程中,要注明参数的取值范围,这个范围确定了曲线的存在范围. 2. 参数方程与普通方程的互化(1)由参数方程化为普通方程→消参数.常用的方法:代入法、加减(乘除)消元法、三角代换法等.消参时注意参数的取值范围.(2)由普通方程化为参数方程→选参数,选参数这一方法的多样性会导致参数方程不唯一.3. 几种常见的曲线参数方程 (1)直线的参数方程的几种形式(i )两点式:已知点),(),,(2211y x B y x A 是直线AB 上的两点(B 点除外),则直线AB 的参数方程是)-为参数,且1(,112121≠⎪⎪⎩⎪⎪⎨⎧++=++=λλλλλλy y y x x x ,λ的几何意义是:点(x ,y )(ii )点斜式:参数方程为为参数)t bty y at x x (,00⎩⎨⎧+=+=,其中),(00y x 是直线上一定点.a b表示直线的斜率.当a ,b 表示点M (x ,y )在x 轴方向与y 轴方向上的分速度时,at 、bt 分别表示点M (x ,y )在x 轴方向、y 轴方向上相对于(x 0,y 0)的分位移,t 表示的物理意义是时间.(iii )标准式:过定点P 0(),00y x ,倾斜角为α的直线的参数方程为:⎩⎨⎧α+=α+=sin t y y cos t x x 00, (t 为参数)t 的几何意义:t 是直线上的定点P 0(),00y x 到动点P (x ,y )的有向线段P 0的数量,即P P 0=t|t| 表示定点P 0(),00y x 与动点P (x ,y )之间的距离,即|P 0|=|t| 当动点P (x ,y )在定点P 0(),00y x 的上方时,t>0 当动点P (x ,y )在定点P 0(),00y x 的下方时,t<0(2)圆的参数方程:对于圆222)()(r b y a x =-+-的参数方程是θθθ(,sin cos ⎩⎨⎧+=+=r b y r a x 为参数)(3)圆锥曲线的参数方程:(i )椭圆)0(,12222>>=+b a b y a x 的参数方程为:θθθ(,sin cos ⎩⎨⎧==b y a x 为参数)(ii )双曲线12222=-b y a x ,(a>0,b>0)的参数方程为:θθθ(,tan sec ⎩⎨⎧==b y a x 为参数)(iii )抛物线)0(,22>=p px y 的参数方程是:⎩⎨⎧==pty pt x 222,(t 为参数)【典型例题】知识点一:参数方程与普通方程的互化例1:已知曲线的参数方程是⎪⎩⎪⎨⎧=+=θθθsin 2cos2sin y x ,则曲线的普通方程是( )A . )2|x (|,y 1x 2≤-=B . )1|x (|,y 1x 2≤+=C . )2|x (|,y 1x 2≤+=D . y 1x 2+=【题意分析】本题考查参数方程化为普通方程的方法. 【思路分析】把x=2cos2sinθθ+两边平方消去参数θ,但要注意x 的取值范围.【解题过程】⎪⎩⎪⎨⎧---------=-----+=)2(sin )1(2cos 2sin θθθy x ,将(1)两边平方得:θsin 12+=x 再把(2)代入得:y x +=12. 由2||),42sin(22cos2sin≤⇒∈+=+=x R x θπθθθ,故曲线的普通方程是)2|(|,12≤+=x y x ,选(C ).【解题后的思考】把参数方程化为普通方程的过程中,要注意选择合理的消参方法.同时要注意因参数的取值范围而导致的变量x 或y 的取值范围.本题易错点:忽视x 的取值范围,误选(D ).例2:已知直线L 1的参数方程是:为参数)t t y t x (,232211⎪⎪⎩⎪⎪⎨⎧+=-=,求直线L 1与直线L 2: x+y+1=0的交点P 的坐标,及点P 与A (1,2)的距离.【题意分析】本题考查利用将直线的参数方程化为普通方程解决问题的方法.【思路分析】把直线L 1的参数方程:为参数)t t y t x (,232211⎪⎪⎩⎪⎪⎨⎧+=-=化为普通方程,然后解方程组求交点P 的坐标.【解题过程】为参数)t t y t x (,)2(232)1(211⎪⎪⎩⎪⎪⎨⎧---------+=-------------=,由(1)得:t=2-2x 代入(2)得:0323)1(32)22(232=--+⇒-+=⇒-+=y x x y x y 由⎩⎨⎧=++=--+010323y x y x 解得:P ()324,323--+,)13(4]2)324[(]1)323[(||22+=---+-+=PA另解:可把t y t x 232,211+=-=代入直线L 2的方程解得:()134t +-=.然后再求x ,y 从而得到点P 的坐标.【解题后的思考】对于含有参数的方程的问题可首先把参数方程化为普通方程,再解决有关问题.例3:对于曲线参数方程⎪⎪⎩⎪⎪⎨⎧-=+=--ααsin )(21cos )(21t t tt e e y e e x(1)若α为常数()20πα<<,t 为参数,说明曲线的形状;(2)若α为参数,t 为常数,说明方程表示什么曲线?【题意分析】本题考查参数方程化为普通方程的方法,根据普通方程判断曲线的形状. 【思路分析】第一步把曲线的参数方程化为普通方程.第二步判断方程表示的曲线.当α为参数时,要注意α的取值范围,【解题过程】⎪⎪⎩⎪⎪⎨⎧---------------α-=---------------α+=--②①sin )e e (21y cos )e e (21x t t t t (1)当t 为参数时,消去参数t由①得:,e e cos x2t t ③-----+=α- 由②得:④------=α-t t e e sin y21sin y cos x 4sin y 4cos x 4:2222222222=α-α⇒=α-α-④③―――――⑤ 由αααcos cos e e 221cos )e e (21x t t t t =⨯≥+=--,()0c o s >α知: ⑤表示双曲线的右支. (2)当t 为常数,α为参数时:(i )当t=0时,曲线的普通方程是:y=0,x=αcos ,即表示的曲线是)11(,0≤≤-=x y 的线段.(ii )若t 不等于零时,消去参数,α由①得:14)(4)(sin 2,cos 22222=-++=-=+----t t t t t t t t e e y e e x e e y e e x ,两式平方相加得:αα, 22)()(t t t t e e e e ---≠+ 恒成立.故曲线表示椭圆.【解题后的思考】对于给出曲线的参数方程要求判断曲线形状的题目,可把参数方程化为普通方程.要注意参数的取值范围.本题的易错点是第二问中忽视对t 的讨论.【小结】在参数方程与普通方程互化的知识点中,主要是掌握参普互化的方法.要根据参数方程的形式采用合理的消参方法.知识点二:参数方程的简单应用例4:已知圆1)1(22=-+y x 上任意一点P (x ,y ),都使0≥++m y x 恒成立,则m的取值范围是____【题意分析】本题考查圆的参数方程的应用. 【思路分析】圆1)1(22=-+y x 的参数方程是⎩⎨⎧+==θθsin 1cos y x ,则P ()sin 1,cos θθ+,根据0≥++m y x 恒成立得到:)4sin(21m π+θ+≤-对任意的R ∈θ都成立.从而确定m 的取值范围.【解题过程】∵圆1)1y (x 22=-+的参数方程是⎩⎨⎧θ+=θ=sin 1y cos x ,故P ()sin 1,cos θθ+.m y x -≥++=++=+∴)4sin(21cos sin 1πθθθ对任意的R ∈θ都成立故1221)]4sin(21[min -≥⇒-=++≤-m m πθ.【解题后的思考】利用圆的参数方程解决问题,关键是要能求出圆的参数方程.例5:已知点M 是椭圆)0(,12222>>=+b a by a x 上的动点,点M 与短轴端点的连线分别与x 轴交于P ,Q 两点.求||||OQ OP ⋅的值.【题意分析】本题考查椭圆的参数方程的应用【思路分析】椭圆)0b a (,1b y a x 2222>>=+的参数方程是,sin b y cos a x ⎩⎨⎧θ=θ=则)sin b ,cos a (M θθ,分别写出点M 与两短轴连线的直线方程,然后求两直线MA ,MB 在x 轴上的截距即可. 【解题过程】设椭圆上的动点M ()sin ,cos θθb a ,A (0,-b )B (0,b ),MA 的直线方程是:b x a b b y -+=θθcos sin ,则Q ()0,)sin 1(b cos ab θ+θ,即|)s i n 1(c o s |||θθ+=b ab OQ ,MB 的直线方程是:b x a b b y +-=θθcos sin ,则P ()0,)sin 1(cos θθ-b ab ,即|)s i n 1(b c o s ab ||OP |θ-θ=,222222a |)sin 1(b cos b a ||)sin 1(b cos ab ||)sin 1(b cos ab ||OQ ||OP |=θ-θ=θ+θ⋅θ-θ=⋅∴. 【解题后的思考】本题利用了椭圆的参数方程表示M 点的坐标,为解题带来了很大的方便.例6:设M ,N 是抛物线y 2=2px (p>0)的对称轴上的两点,且它们关于顶点O 对称,过M ,N 作两条平行线, 分别交抛物线于P 1,P 2,Q 1,Q 2,求证:|MP 1|·|MP 2|=|NQ 1|·|NQ 2|.【题意分析】本题考查直线的参数方程的应用.【思路分析】可设M (a ,0), N (-a , 0)(a>0),分别写出两条平行直线的参数方程,根据参数的几何意义证明. 【解题过程】由已知可设M (a ,0),N (-a ,0)(a>0),则直线MP 1,NQ 1的参数方程为:⎩⎨⎧=+=ααsin cos t y t a x ―――(1),)2(s i n co s -----⎩⎨⎧=+-=ααt y t a x 其中t 是参数,α是倾斜角.把(1)代入0pa 2t cos p 2t sin )cos t a (p 2sin t px 2y 22222=-⋅α-⋅α⇒α+=α=得:α221sin 2pa t t -=∴,由|t|的几何意义知:α=⋅221sin ap2|MP ||MP | 同理可得:|NQ 1|·|NQ 2|=α2sin 2ap,∴|MP 1|·|MP 2|=|NQ 1|·|NQ 2| 【解题后的思考】本题中应用了直线的标准参数方程中t 的几何意义,即|t 1|,|t 2|为相应点到定点M 的距离,据此证明了关于线段的等式问题. 有关直线与圆锥曲线相交的弦长问题常采用直线的参数方程,这时要理解t 的几何意义.【小结】在应用曲线的参数方程这一知识点中,利用参数方程解决问题很简便,要充分理解消去参数、应用参数的意义,特别是直线与圆的参数方程的应用是考试的重点.【本讲涉及的数学思想、方法】本讲主要讲述参数方程的概念及其应用,在参数方程化为普通方程的过程中充分体现了代入法、加减消元法、三角代换法等数学方法的应用.在参数的应用过程中,体现了方程的数学思想、转化的数学思想的应用.【模拟试题】(答题时间:60分钟 满分60分)一、选择题(每题5分,满分20分)1. 直线的参数方程⎩⎨⎧︒-=︒+-=60sin 3,30cos 2t y t x (t 为参数)的倾斜角α等于( )A . 30°B . 60°C . -45°D . 135°2. 下列可以作为直线2x -y +1=0的参数方程的是 ( ) A . ⎩⎨⎧+=+=t y t x 3,1(t 为参数)B . ⎩⎨⎧-=+=t y t x 25,2(t 为参数)⎩⎨⎧-=-=t y t x 23,1⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 555,55223. 由方程x 2+y 2-4tx -2ty +5t 2-4=0(t 为参数)所表示的一组圆的圆心轨迹是( ) A . 一个定点B . 一个椭圆C . 一条抛物线D . 一条直线4. 已知某条曲线的参数方程为⎪⎪⎩⎪⎪⎨⎧-=+=)1(21),1(21a a y aa x (其中a >0),则该曲线是 ( )A . 线段B . 圆C . 双曲线的一部分D . 圆的一部分二、填空题(每题5分,共15分)5. 曲线⎩⎨⎧θ=θ+=sin 2y cos 1x 经过点(23,a ),则a =______.6. 一个圆的参数方程为⎩⎨⎧==θθsin 2,cos 2y x (θ为参数),一条直线的方程为3x -4y -9=0,那么这条直线与圆的位置关系是______.7. 若x 2+y 2=4,则x -y 的最大值是_____.三、计算题(本题共2小题,共25分)8. 已知某条曲线C 的参数方程为⎩⎨⎧=+=2,21aty t x (其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.(10分) 9. 已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与点P 的距离|PQ|;(2)求直线l 和圆22y x +=16的两个交点A ,B 与点P 的距离之积.(15分)【试题答案】一、选择题1. D 解析:由已知:130cos t 60sin t 2x 3y tan -=︒︒-=+-=α. 2. C 解析:⎩⎨⎧-=-=t y t x 23,1消去参数t 后得:2x -y +1=0. 3. D 解析:设圆心C (),00y x ,则⎩⎨⎧==ty tx 002,消去t 得:002x y =.4. C 解析:⎪⎪⎩⎪⎪⎨⎧------=-----+=)2()a 1a (21y ),1()a 1a (21x 1y x )2()1(2222=--得, 1x 1a1a 221)a 1a (21x ≥⇒=⋅⋅≥+=,曲线的普通方程是)1(,122≥=-x y x . 二、填空题5. 3± 解析:⎩⎨⎧=+=θθsin 2,cos 1y x 消去θ得:14)1(22=+-y x ,故 314)123(22±=⇒=+-a a . 6. 相交 解析:圆的普通方程是422=+y x ,圆心(0,0)到直线3x -4y -9=0的距离d<2故相交. 7.22 解析:圆x 2+y 2=4的参数方程是⎩⎨⎧==θθs i n 2,c o s2y x 故)4sin(22θπ-=-y x 22≤.三、计算题8. 解:(1)由题意有⎩⎨⎧==+,45212at t ,故⎩⎨⎧==.1,2a t 所以a =1.(2)由(1)可得,曲线C 的参数方程为⎩⎨⎧=+=.,21t y t x 由第一个方程得1-=x t ,代入第二个方程得2)21x (y -=⇒(x -1)2=4y 即为曲线C 的普通方程. 9. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3π,∴直线l 的标准参数方程为⎪⎩⎪⎨⎧+-=+=3sin333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 2333211(t 为参数)代入直线l ': 32-=x y 得032)2333()211(=-+--+t t ,整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几何意义可知:|t|=| PQ|,∴| PQ|=4+23.(2)把直线l 的标准参数方程⎪⎪⎩⎪⎪⎨⎧+-=+=t2333y t 211x (t 为参数)代入圆的普通方程 22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0, Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点 A ,B 所对应的参数值,则|t 1|=|PA|,|t 2|=|PB|, 所以| PA|·| PB|=|t 1t 2|=12.。
【高中数学】高中数学知识点:参数方程的概念参数方程的概念:通常,在给定的平面直角坐标系中,如果曲线上任意点的坐标x和y是某个变量t的函数且对于t的每一个允许值,由这个方程组所确定的点m(x,y)都在这条曲线上,那么这个方程组称为这条曲线的参数方程,联系x、y之间关系的变数t称为参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.参数方程和一般方程之间的相互作用:在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.否则,互化就是不等价的。
(1)将参数方程转化为一般方程的过程是一个参数消除过程。
有三种常见的方法:①代入法:利用解方程的技巧求出参数t,然后代入消去参数;② 三角法:利用三角恒等式消除参数;③整体消元法:根据参数方程本身的结构特征,从整体上消去.(2)将一般方程转换为参数方程需要引入参数如:①直线的普通方程是2x-y+2=0,可以化为参数方程② 在一般方程xy=1中,让可以化为参数方程关于参数的说明:(1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数.(2)当同一条曲线的参数不同时,曲线参数方程的形式也不同(3)在实际问题中要确定参数的取值范围.参数方程的几种常用方法:方法1参数方程与普通方程的互化:将曲线的参数方程化为普通方程的方法应视题目的特点而定,要选择恰当的方法消参,并要注意由于消参后引起的范围限制消失而造成的增解问题.常用的消参技巧有加减消参,代人消参,平方消参等.方法2求曲线的参数方程:求曲线的参数方程或应用曲线的参数方程。
记住曲线参数方程的形式和参数的重要性方法3参数方程问题的解决方法:解决参数方程的一个基本思路是将其转化为普通方程,然后利用在直角坐标系下解决问题的方式进行解题.方法4用圆的渐开线参数方程解点:用参数方程解点时,可将参数代入方程中求得。
方法5求圆的摆线的参数方程:根据圆的摆线的参数方程的表达式可以看出,只需要R,即摆线的参数方程由圆的半径唯一确定。
高中参数方程公式总结在高中数学中,参数方程是一个重要的概念,它是一种用参数表示的函数形式,可以用来描述一些特殊的曲线。
在本文中,我们将总结高中参数方程的公式及其应用。
一、参数方程的定义参数方程是一种用参数表示的函数形式,它可以用来描述一些特殊的曲线。
一般来说,参数方程由两个函数组成,分别表示曲线上的点的横坐标和纵坐标。
例如,一个曲线的参数方程可以表示为:x = f(t)y = g(t)其中,t是参数,x和y分别表示曲线上的点的横坐标和纵坐标,f(t)和g(t)是两个函数。
二、参数方程的应用参数方程在数学中有着广泛的应用,特别是在几何学和物理学中。
以下是一些常见的应用:1. 曲线的绘制通过给定的参数方程,可以绘制出曲线的图像。
例如,给定参数方程:x = cos(t)y = sin(t)可以绘制出一个单位圆的图像。
2. 曲线的长度通过参数方程,可以计算曲线的长度。
例如,给定参数方程:x = ty = t^2可以计算出曲线从t=0到t=1的长度为:L = ∫[0,1]√(1+4t^2)dt3. 曲线的曲率通过参数方程,可以计算曲线在某一点的曲率。
例如,给定参数方程:x = ty = t^2可以计算出曲线在点(1,1)处的曲率为:k = |y''| / (1+y'^2)^(3/2)三、参数方程的公式在高中数学中,我们需要掌握一些常见的参数方程公式,以下是一些常见的公式:1. 圆的参数方程x = r cos(t)y = r sin(t)其中,r是圆的半径,t是参数。
2. 椭圆的参数方程x = a cos(t)y = b sin(t)其中,a和b分别是椭圆的长轴和短轴,t是参数。
3. 抛物线的参数方程x = ty = at^2其中,a是抛物线的参数。
4. 双曲线的参数方程x = a sec(t)y = b tan(t)其中,a和b分别是双曲线的参数,t是参数。
参数方程是高中数学中一个重要的概念,它可以用来描述一些特殊的曲线,并且在几何学和物理学中有着广泛的应用。
4-4第二章 参数方程【知识点梳理】一、参数方程的概念:一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t )①,并且对于t 取的每一个允许值,由方程组①所确定的点P (x ,y )都在这条曲线上,那么方程组①就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称 参数 . 相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程.说明:(1)一般来说,参数的变化范围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
二、几种常见的参数方程1.直线的参数方程过定点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 0≤α<π.2.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数,0≤θ≤2π).(2)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =btan θ(θ为参数,0≤θ≤2π且2π3θ,2πθ≠≠).,则{,有sec 2θ-tan 2θ=1(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数).三、参数方程与普通方程的互化将参数方程化成普通方程的常用方法有: (1)代数法消去参数①代入法:从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.②代数运算法:通过乘、除、乘方等运算把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算,消去参数,得到曲线的普通方程. (2)利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,得到曲线的普通方程. (3)注意事项① 互化中必须使,x y 的取值范围保持一致. ② 同一个普通方程可以有不同形式的参数方程.几种常见的参数方程例1:(1)过点(0,0)且倾斜角为60°的直线的参数方程是________.【答案】 (1)⎩⎨⎧x =12t ,y =32t【解析】⎩⎪⎨⎪⎧x =t cos 60°,y =t sin 60°,即⎩⎨⎧x =12t ,y =32t(t 为参数).(2)过点P (-4,0),倾斜角为5π6的直线的参数方程为________.【答案】 ⎩⎨⎧x =-4-32t ,y =t2【解析】∵直线l 过点P (-4,0),倾斜角α=5π6,所以直线的参数方程为⎩⎨⎧x =-4+t cos 5π6,y =0+t sin 5π6,即(t 为参数)⎩⎨⎧x =-4-32t ,y =t2.(3)参数方程⎩⎪⎨⎪⎧x =1+t cos 20°,y =2+t sin 20°(t 为参数)表示的直线的倾斜角是________. 【解析】方程符合直线参数方程的标准形式,易知倾斜角为20°.(4)直线⎩⎪⎨⎪⎧x =-2+t cos 50°,y =3-t sin 40°(t 为参数)的倾斜角α等于( ) A.40° B.50° C.-45° D.135°【答案】 D 【解析】 根据tan α=-sin 40°cos 50°=-1,因此倾斜角为135°.例2:(1)圆的参数方程为:⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)【答案】 D 【解析】 由圆的参数方程知,圆心为(2,0). (2)圆心在点(-1,2),半径为5的圆的参数方程为( )A.⎩⎪⎨⎪⎧x =5-cos θ,y =5+2sin θ(0≤θ<2π) B.⎩⎪⎨⎪⎧x =2+5cos θ,y =-1+5sin θ(0≤θ<2π) C.⎩⎪⎨⎪⎧ x =-1+5cos θ,y =2+5sin θ(0≤θ<π) D.⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π) 【答案】 D 圆心在点C (a ,b ),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ∈[0,2π)).故圆心在点(-1,2),半径为5的圆的参数方程为⎩⎪⎨⎪⎧x =-1+5cos θ,y =2+5sin θ(0≤θ<2π).例3:(1)椭圆⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ的长轴长和短轴长分别为( )A.3 2B.6 2C.3 4D.6 4【答案】 D 【解析】 由方程可知a =3,b =2,∴2a =6,2b =4.(2)曲线C :⎩⎨⎧x =3cos φ,y =5sin φ(φ为参数)的离心率为________.【答案】 23 【解析】由曲线C 的参数方程可以看出a =3,b =5,得a 2=9,b 2=5,⇒c 2=4,所以e=c a =23. 例4:双曲线C :⎩⎪⎨⎪⎧x =3sec φ,y =4tan φ(φ为参数)的焦点坐标为________.【答案】 (-5,0),(5,0)【解析】 曲线C 的普通方程为x 29-y 216=1,得焦点坐标为F 1(-5,0),F 2(5,0)参数方程与普通方程的互化例1:(1)将参数方程⎩⎪⎨⎪⎧x =t ,y =2t(t 为参数)化为普通方程是________.【解析】 把t =x 代入②得y =2x 即普通方程为y =2x .(2)将参数方程⎩⎪⎨⎪⎧x =2t 2,y =t +1(t 为参数)化为普通方程是________.【解析】由②得t =y -1,代入①得x =2(y -1)2.(3)将参数方程⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)化为普通方程是________.【解析】由sin 2 θ+cos 2 θ=1得x 2+y 2=1.(4)将参数方程⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数)化为普通方程是________【解析】由y =-1+cos 2θ,可得y =-2sin 2θ, 把sin 2θ=x -2代入y =-2sin 2θ,可得y =-2(x -2), 即2x +y -4=0. 又∵2≤x =2+sin 2θ≤3,∴所求的方程是2x +y -4=0(2≤x ≤3),它表示的是一条线段. (5)将(x -2)2+y 2=1化为参数方程是 【解析】令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).【练一练】1.曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的一条对称轴的方程为( )A.y =0B.x +y =0C.x -y =0D.2x +y =0【答案】 D 【解析】 曲线⎩⎪⎨⎪⎧x =2cos θ-1,y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C的坐标为(-1,2),过圆心的直线都是圆的对称轴,故选D.2.与普通方程x 2+y -1=0等价的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t ,y =cos 2t (t 为参数) B.⎩⎪⎨⎪⎧ x =cos t ,y =sin 2t (t 为参数) C.⎩⎨⎧x =1-t ,y =t(t 为参数) D.⎩⎪⎨⎪⎧x =tan t ,y =1-tan 2t (t 为参数) 【答案】 D【解析】 A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1]. C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1]. D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].参数方程的应用【例1】(1)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 【答案】 (1,1) 【解析】 C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,(x ≥0,y ≥0),x 2+y 2=2,得⎩⎪⎨⎪⎧x =1,y =1.∴C 1与C 2的交点坐标为(1,1).(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a ,(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.【答案】 3 【解析】 直线l :⎩⎪⎨⎪⎧x =t ,y =t -a 消去参数t 后得y =x -a .椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1.又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.【例2】已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R ),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.【解】 (1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1. (2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t 2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝⎛⎭⎫x -122,即(x -1)2=4y 为所求.【例3】已知直线l 的参数方程:⎩⎪⎨⎪⎧x =t ,y =1+2t (t 为参数)和圆C 的极坐标方程:ρ=22sin ⎝⎛⎭⎫θ+π4(θ为参数). (1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.解:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=22sin ⎝⎛⎭⎫θ+π4即ρ=2(sin θ+cos θ).两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ), 消去参数θ,得圆C 的直角坐标方程为:(x -1)2+(y -1)2=2. (2)圆心C 到直线l 的距离d =|2-1+1|22+12=255<2,所以直线l 和圆C 相交.【例4】在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 1:ρ2-4ρcos θ+3=0,θ∈[0,2π],曲线C 2:ρ=34sin ⎝⎛⎭⎫π6-θ,θ∈[0,2π].(1)求曲线C 1的一个参数方程;(2)若曲线C 1和曲线C 2相交于A ,B 两点,求|AB |的值. 解 (1)由ρ2-4ρcos θ+3=0,可得x 2+y 2-4x +3=0. ∴(x -2)2+y 2=1.令x -2=cos α,y =sin α,∴C 1的一个参数方程为⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数,α∈R ).(2)C 2:4ρ⎝⎛⎭⎫sin π6cos θ-cos π6sin θ=3, ∴4⎝⎛⎭⎫12x -32y =3,即2x -23y -3=0.∵直线2x -23y -3=0与圆(x -2)2+y 2=1相交于A ,B 两点,且圆心到直线的距离d =14,∴|AB |=2× 1-⎝⎛⎭⎫142=2×154=152.。
高中数学全参数方程知识点大全一、全参数方程的概念全参数方程是指带有n个参数的方程,分别为a1, a2, a3, …… an。
它可以表达成:ai xi + a2 x2 + a3 x3 + …… + an xn = 0其中xi(i=1,2,3…n)为未知数。
二、常见的全参数方程全参数方程可以分为几何全参数方程、数论全参数方程和分析函数全参数方程。
1.几何全参数方程几何全参数方程也被称为n次全参数方程,它以n次根式的形式表示,它具有如下形式:a1x1 + a2x2 + a3x3 + …… + anxn = 0其中a1,a2,a3……an为实数,x1,x2,x3……xn为未知数。
2.数论全参数方程数论全参数方程的定义与几何全参数方程相似,只是其中的系数a1,a2,a3……an不再只有实数,而是可以是任意位数的整数。
数论全参数方程的形式如下:a1x1 + a2x2 + a3x3 + …… + anxn = 0其中a1,a2,a3……an为任意位数的整数,x1,x2,x3……xn为未知数。
3.分析函数全参数方程分析函数全参数方程也是一种带有多个参数的方程,它的形式如下:a1f1(x,y,z…) + a2f2(x,y,z…) + a3f3(x,y,z…) +…… +anfn(x,y,z…) = 0其中a1,a2,a3……an是任意实数,f1,f2,f3……fn是函数,x,y,z…..是未知数。
三、全参数方程的解法1.待定系数法这种方法是将要求解的全参数方程中的系数和未知数中的其中一个参数留下来,然后将其化为低阶未知参数方程,再求解出其它参数的值。
高考复习之参数方程 一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点.二、知识结构 1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2+b 2=1,②即为标准式,此时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y a t x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3)线段P 1P 2的中点P 所对应的参数为t ,则 t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图)极坐标和直角坐标的互化 (1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 三、知识点、能力点提示(一)曲线的参数方程,参数方程与普通方程的互化例1 在圆x 2+y 2-4x-2y-20=0上求两点A 和B ,使它们到直线4x+3y+19=0的距离分别最短和最长.解: 将圆的方程化为参数方程:⎩⎨⎧+=+=θθsin 51cos 52y x (θ为参数) 则圆上点P 坐标为(2+5cos θ,1+5sin θ),它到所给直线之距离d=223430sin 15cos 120+++θθ故当cos(φ-θ)=1,即φ=θ时 ,d 最长,这时,点A 坐标为(6,4);当cos(φ-θ)=-1,即θ=φ-π时,d 最短,这时,点B 坐标为(-2,2).(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化说明 这部分内容自1986年以来每年都有一个小题,而且都以选择填空题出现.例2 极坐标方程ρ=θθcos sin 321++所确定的图形是( ) A.直线B.椭圆C.双曲D.抛物线解: ρ=)6sin(1211)]cos 2123(1[21πθθ++⋅=++(三)综合例题赏析 例3 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)解:化为普通方程得125)1(9)3(22=++-y x ∴a 2=25,b 2=9,得c 2=16,c=4.∴F(x-3,y+1)=F(0,±4)∴在xOy 坐标系中,两焦点坐标是(3,3)和(3,-5). 应选B.例4 参数方程表示)20()sin 1(212sin 2cos πθθθθ<<⎪⎪⎩⎪⎪⎨⎧+=+=y xA.双曲线的一支,这支过点(1,21) B.抛物线的一部分,这部分过(1,21) C.双曲线的一支,这支过(-1,21)D.抛物线的一部分,这部分过(-1,21)解:由参数式得x 2=1+sin θ=2y(x >0) 即y=21x 2(x >0). ∴应选B. 例5 在方程⎩⎨⎧==θθcos sin y x (θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)解:y=cos2θ=1-2sin2θ=1-2x 2 将x=21代入,得y=21 ∴应选C.例6 下列参数方程(t 为参数)与普通方程x 2-y=0表示同一曲线的方程是( )A.⎩⎨⎧==t y t xB.⎩⎨⎧==ty t x 2cos cos C.⎪⎩⎪⎨⎧-+==t t y tgtx 2cos 12cos 1D.⎪⎩⎪⎨⎧+-==t t y tgtx 2cos 12cos 1解:普通方程x 2-y 中的x ∈R ,y ≥0,A.中x=|t |≥0,B.中x=cost ∈〔-1,1〕,故排除A.和B.C.中y=t t 22sin 2cos 2=ctg 2t=2211xt tg ==,即x 2y=1,故排除C. ∴应选D.例7 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( ) A.x 2+(y+2)2=4 B.x 2+(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4解:将ρ=22y x +,sin θ=22y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2=4.∴应选B.例8 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆解:原极坐标方程化为ρ=21(cos θ+sin θ)⇒22ρ=ρcos θ+ρsin θ,∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.例9 在极坐标系中,与圆ρ=4sin θ相切的条直线的方程是( ) A.ρsin θ=2 B.ρcos θ=2C.ρcos θ=-2D.ρcos θ=-4例9图解:如图.⊙C 的极坐标方程为ρ=4sin θ,CO ⊥OX,OA 为直径,|OA |=4,l 和圆相切, l 交极轴于B(2,0)点P(ρ,θ)为l 上任意一点,则有 cos θ=ρ2=OPOB ,得ρcos θ=2,∴应选B.例10 4ρsin 22θ=5 表示的曲线是( )A.圆B.椭圆C.双曲线的一支D.抛物线解:4ρsin 22θ=5⇔4ρ·.5cos 2221cos -=⇔-θρρθ 把ρ=22y x + ρcos θ=x ,代入上式,得222y x +=2x-5.平方整理得y 2=-5x+.425.它表示抛物线. ∴应选D.例11 极坐标方程4sin 2θ=3表示曲线是( )A.两条射线B.两条相交直线C.圆D.抛物线解:由4sin 2θ=3,得4·222yx y +=3,即y 2=3 x 2,y=±x 3,它表示两相交直线. ∴应选B.四、能力训练 (一)选择题 1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线B.一条垂直于x 轴的直线C.一个圆D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心3.若(x ,y)与(ρ,θ)(ρ∈R)分别是点M 的直角坐标和极坐标,t 表示参数,则下列各组曲 线:①θ=6π和sin θ=21;②θ=6π和tg θ=33,③ρ2-9=0和ρ= 3;④ ⎩⎨⎧+=+=⎪⎪⎩⎪⎪⎨⎧+=+=t y t x ty t x 322213222和其中表示相同曲线的组数为( )A.1B.2C.3D.44.设M(ρ1,θ1),N(ρ2,θ2)两点的极坐标同时满足下列关系:ρ1+ρ2=0 ,θ1+θ2=0,则M ,N 两点位置关系是( )A.重合B.关于极点对称C.关于直线θ=2πD.关于极轴对称 5.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( )A.直线B.圆C.双曲线D.抛物线 6.经过点M(1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是( ) A .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 B.⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211C.⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211D.⎪⎪⎩⎪⎪⎨⎧+=+=t x t y 2152317.将参数方⎪⎪⎩⎪⎪⎨⎧+++⋅=+++⋅=2222222222m m m b y m m mm a x (m 是参数,ab ≠0)化为普通方程是( )A.)(12222a xb y a x ≠=+B.)(12222a x b y a x -≠=+ C.)(12222a x b y a x ≠=-D.)(12222a x by a x -≠=-8.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1, -3π),r=29.参数方程⎪⎩⎪⎨⎧-=+=21y t t x (t 为参数)所表示的曲线是( )A.一条射线B.两条射线C.一条直线D.两条直线10.双曲线⎩⎨⎧+=+-=θθsec 212y tg x (θ为参数)的渐近线方 程为( )A.y-1=)2(21+±x B.y=x 21±C.y-1=)2(2+±xD.y+1=)2(2-±x11.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A.3π B.32πC.3π或32π D. 3π或35π12.已知曲线⎩⎨⎧==pty pt x 222(t 为参数)上的点M ,N 对应的参数分别为t 1,t 2,且t 1+t 2=0,那么M ,N 间的距离为( )A.2p(t 1+t 2)B.2p(t 21+t 22) C.│2p(t 1-t 2)│ D.2p(t 1-t 2)213.若点P(x ,y)在单位圆上以角速度ω按逆时针方向运动,点M(-2xy ,y 2-x 2)也在单位圆上运动,其运动规律是( )A.角速度ω,顺时针方向B.角速度ω,逆时针方向C.角速度2ω,顺时针方向D.角速度2ω,逆时针方向14.抛物线y=x 2-10xcos θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值是( )A.5B.10C.23D.315.直线ρ=θθsin cos 23+与直线l 关于直线θ=4π(ρ∈R)对称,则l 的方程是( )A .θθρsin cos 23-=B .θθρcos cos 23-=C .θθρsin 2cos 3-=D .θθρsin 2cos 3+=(二)填空题16.若直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y t x 532543(t 为参数),则过点(4,-1)且与l 平行的直线在y 轴上的截距为.17.参数方程⎪⎪⎩⎪⎪⎨⎧+=+=θθθθcos 1sin cos 1cos y x (θ为参数)化成普通方程为 .18.极坐标方程ρ=tg θsec θ表示的曲线是 . 19.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .(三)解答题20.设椭圆⎩⎨⎧==θθsin 32cos 4y x (θ为参数) 上一点P ,若点P 在第一象限,且∠xOP=3π,求点P 的坐标.21.曲线C 的方程为⎩⎨⎧==pty pt x 222(p >0,t 为参数),当t ∈[-1,2]时 ,曲线C 的端点为A ,B ,设F 是曲线C 的焦点,且S △AFB =14,求P 的值.22.已知椭圆222y x +=1及点B(0,-2),过点B 作直线BD ,与椭圆的左 半部分交于C 、D 两点,又过椭圆的右焦点F 2作平行于BD 的直线,交椭圆于G ,H 两点.(1)试判断满足│BC │·│BD │=3│GF 2│·│F 2H │成立的直线BD 是否存在?并说明理由 . (2)若点M 为弦CD 的中点,S △BMF2=2,试求直线BD 的方程.23.如果椭圆的右焦点和右顶点的分别是双曲线⎩⎨⎧=+=θθtg y x 3sec 48(θ为参数)的左焦点和左顶点,且焦点到相应的准线的距离为49,求这椭圆上的点到双曲线渐近线的最短距离. 24.A ,B 为椭圆2222by a x +=1,(a >b >0) 上的两点,且OA ⊥OB ,求△AOB 的面积的最大值和最小值.25.已知椭圆162422y x +=1,直线l ∶812y x +=1,P 是l 上一点,射线OP 交椭圆于点R ,又点Q 在OP 上且 满足│OQ │·│OP │=│OR │2,当点P 在l 上移动时,求点Q 的轨迹方程.并说明轨迹是什么曲线.参考答案(一)1.B 2.D 3.C 4.C 5.B 6.A 7.A 8.C 9.B 10.C 11.C 12.C 13.C 14.C 15.D(二)16.-4;17.y 2=-2(x-21),(x ≤21);18.抛 物线;19.135°,|32t|(三)20.(5154,558);21.;33222.(1)不存在,(2)x+y+2=0;23.51(27-341);24.Smax=2ab,s max=2222b a b a +;25.25)1(25)1(22-+-y x =1(x,y)不同时为零)。
高中数学参数方程一、前言在高中数学中,参数方程是一个非常重要的概念,也是数学与实际问题相结合的杰出体现。
掌握参数方程的基本概念和求解方法对于高中学生的数学学习和理解具有重大的帮助。
本文将从参数方程的基本概念、常用的图形、求解方法和应用等方面进行详细介绍,帮助学生全面掌握该概念。
二、参数方程的基本概念1. 参数方程的定义参数方程是一种通过给定的参数变量,用参数的函数表示一个曲线或者一个曲面的方法。
在参数方程中,通常用参数t表示自变量。
例如,设有一条曲线C,可以用如下的参数方程表示:x=f(t), y=g(t)上述的式子就是一条经过点(x,y)的曲线C的参数方程。
参数t常常被称为参数变量,它是曲线C上的自变量。
2. 参数方程的优点与直角坐标系下表示曲线的函数相比,参数方程的优点在于它可以更加灵活地表示一些曲线,如椭圆、双曲线、螺线等等。
同时,参数方程也可以用来表示高维度的曲面,如三维曲面、四维曲面等等。
此外,参数方程在图像处理、计算机动画、自动控制、机器人控制等领域中也有广泛的应用。
三、参数方程的常用图形1. 抛物线抛物线是参数方程中最常见的图形之一。
抛物线的参数方程通常为:x = t, y = t^2其中,t是参数变量。
2. 椭圆椭圆是平面直角坐标系下的二次曲线,也可以用参数方程表示。
椭圆的参数方程通常为:x = a*cos(t), y = b*sin(t)其中,a和b分别是椭圆的长轴和短轴长度。
3. 双曲线双曲线也是平面直角坐标系下的二次曲线,与椭圆不同的是,它有两个分离的实部,能够在极值点处取到无穷大值。
双曲线的参数方程通常为:x = a*cosh(t), y = b*sinh(t)其中,a和b分别是双曲线的横轴和纵轴长度。
4. 螺线螺线是一种等腰斜螺线(又称Archimedean螺线),由希腊数学家阿基米德研究而得名。
螺线的参数方程通常为:x = a*cos(t), y = a*sin(t) + bt其中,a和b分别是螺线的宽度和高度。
参数方程知识集结知识元参数方程知识讲解1.参数方程的概念【知识点的认识】参数方程的定义在平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数,即,并且对于t的每一个允许值,由该方程组所确定的点M(x,y)都在这条曲线上,那么此方程组就叫做这条曲线的参数方程,联系变数x,y的变数t叫做参变数,简称参数.对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫做普通方程.2.参数方程化成普通方程【知识点的认识】参数方程和普通方程的互化由参数方程化为普通方程:消去参数,消参数的方法有代入法、加减(或乘除)消元法、三角代换法等.如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x,y的取值范围保持一致.3.直线的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.4.圆的参数方程【知识点的认识】直线、圆锥曲线的普通方程和参数方程轨迹普通方程参数方程直线y﹣y0=tan α(x﹣x0)(t为参数)圆(x﹣a)2+(y﹣b)2=r2(θ为参数)椭圆(θ为参数)+=1(a>b>0)双曲线(θ为参数)﹣=1抛物线y2=2px(p>0)(t为参数)【解题思路点拨】1.选取参数时的一般原则是:(1)x,y与参数的关系较明显,并列出关系式;(2)当参数取一值时,可唯一的确定x,y的值;(3)在研究与时间有关的运动物体时,常选时间作为参数;在研究旋转物体时,常选用旋转角作为参数;此外,也常用线段的长度、倾斜角、斜率、截距等作为参数.2.求曲线的参数方程常常分成以下几步:(1)建立直角坐标系,在曲线上设任意一点P(x,y);(2)选择适当的参数;(3)找出x,y与参数的关系,列出解析式;(4)证明(常常省略).3.根据直线的参数方程标准式中t的几何意义,有如下常用结论:(1)若M1,M2为l上任意两点,M1,M2对应t的值分别为t1,t2,则|M1M2|=|t1﹣t2|;(2)若M0为线段M1M2的中点,则有t1+t2=0;(3)若线段M1M2的中点为M,则M0M=t M=.一般地,若点P分线段M1M2所成的比为λ,则t P=.4.直线的参数方程的一般式(t为参数),是过点M0(x0,y0),斜率为的直线的参数方程.当且仅当a2+b2=1且b≥0时,才是标准方程,t才具有标准方程中的几何意义.将非标准方程化为标准方程是(t′∈R),式中“±”号,当a,b同号时取正;当a,b异号时取负.5.参数方程与普通方程互化时,要注意:(1)不是所有的参数方程都能化为普通方程;(2)在化参数方程为普通方程时变量的范围不能扩大或缩小;(3)把普通方程化为参数方程时,由于参数选择的不同而不同,参数的选择是由具体的问题来决定的.6.在已知圆、椭圆、双曲线和抛物线上取一点可考虑用其参数方程设定点的坐标,将问题转化为三角函数问题求解.7.在直线与圆和圆锥位置关系问题中,涉及距离问题探求可考虑应用直线参数方程中参数的几何意义求解.8.在求某些动点的轨迹方程时,直接寻找x,y的关系困难,甚至找不出时,可以通过引入参数,建立动点的参数方程后求解.例题精讲参数方程例1.直线l的参数方程为(t为参数).圆C的参数方程为(θ为参数),则直线l被圆C截得的弦长为___.例2.已知圆C的参数方程为(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsinθ+ρcosθ=1,则直线l截圆C所得的弦长是___.例3.在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=___.当堂练习填空题练习1.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).圆C的参数方程是=(θ为参数),直线l与圆C交于两个不同的点A、B,当点P在圆C上运动时,△PAB面积的最大值为___练习2.参数方程(θ∈R)所表示的曲线与x轴的交点坐标是_______练习3.设直线的参数方程为(t为参数),点P在直线上,且与点M0(-4,0)的距离为2,若该直线的参数方程改写成(t为参数),则在这个方程中P点对应的t值为____.练习4.设a∈R,直线ax-y+2=0和圆(θ为参数)相切,则a的值为___。
高二数学参数方程试题答案及解析1.方程(t为参数)表示的曲线是()。
A.一条直线B.两条射线C.一条线段D.抛物线的一部分【答案】B【解析】当时,;当时,,将参数方程化为普通方程为,或,表示两条射线,答案选B.【考点】参数方程与基本不等式2.经过点,倾斜角为的直线,与曲线:(为参数)相交于两点.(1)写出直线的参数方程,并求当时弦的长;(2)当恰为的中点时,求直线的方程;(3)当时,求直线的方程;(4)当变化时,求弦的中点的轨迹方程.【答案】(1);(2);(3)或(4)【解析】(1)将参数方程转化为直角坐标系下的普通方程;掌握常见的将参数方程转化为直角坐标系下的普通方程;(2)解决直线和曲线的综合问题:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与曲线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.(4)根据题意设点根据点到直线的距离公式.试题解析:解:(1)的参数方程(为参数). 1分曲线化为:,将直线参数方程的代入,得∵恒成立, 3分∴方程必有相异两实根,且,.∴∴当时,. 5分(2)由为中点,可知,∴,故直线的方程为. 7分(3)∵,得∴,∴或故直线的方程为或 9分(4)∵中点对应参数∴(参数),消去,得弦的中点的轨迹方程为;轨迹是以为圆心,为半径的圆. 10分【考点】(1)求弦长问题;(2)求直线方程;(3)中点弦的轨迹方程.3.将参数方程(t为参数)化成普通方程为_________.【答案】.【解析】将参数方程化为普通方程,就是将其中的参数消去,利用代入法化为普通方程为即为所求.【考点】参数方程化为普通方程.4.在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.(Ⅰ)求圆C的圆心到直线l的距离;(Ⅱ)设圆C与直线l交于点A、B.若点P的坐标为(3,),求|PA|+|PB|.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)将两个参数方程转化为普通方程,直线l的方程为,圆C的方程为,可以得出圆心坐标,利用点到直线的距离公式即可求出所要求的距离;(Ⅱ)将l的参数方程代入圆C的直角坐标方程,化简得,设t1、t2是上述方程的两个实根,得.试题解析:(Ⅰ)由,可得,即圆C的方程为.由可得直线l的方程为.所以,圆C的圆心到直线l的距离为.…(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得,即.由于△=.故可设t1、t2是上述方程的两个实根,所以,又直线l过点,故由上式及t的几何意义得.【考点】参数方程.5.曲线与坐标轴的交点是()A.B.C.D.【解析】令x=0,得,代入方程得,因此与y轴交点坐标为;令y=0,得,代入方程得,因此与y轴交点坐标为,所以答案选B.【考点】参数方程与交点坐标6.直线的斜率为______________________。