基于线阵InGaAs光电二极管阵列的光纤光栅传感解调
- 格式:pdf
- 大小:503.93 KB
- 文档页数:4
InGaAs(P)/InP近红外单光子探测器暗计数特性研究基于InGaAs(P)/InP 雪崩光电二极管(Single Photon Avalanche Diodes,SPADs)的近红外单光子探测器具有功耗低、不需超低温制冷、可靠性高、使用简单、易集成、近红外探测效率高等优点,在光通讯波段(1310 nm、1550 nm)量子密钥分发(QKD)、激光测距(1064nm、1550nm)等前沿领域有着迫切的应用需求,但其暗计数特性对应用有诸多限制。
InGaAs(P)/InPSPAD基近红外单光子探测器主要包括InGaAs(P)/InP SPAD及其驱动电路,二者的性能均可影响探测器性能。
本论文主要针对InGaAs(P)/InP SPAD基近红外单光子探测器的暗计数特性及其影响因素、InGaAs(P)/InPSPAD暗电流特性及其影响因素进行深入研究,探索二者关联特性,为SPAD器件及单光子探测器的性能优化提供指导。
搭建SPAD 器件变温测试平台对SPAD暗电流特性进行了研究;搭建激光束诱导电流(LBIC)测试系统对SPAD器件的响应均匀性及其边缘击穿特性进行了研究;研制SPAD器件单光子探测性能测试装置对不同SPAD器件对应单光子探测器的暗计数特性进行了研究。
对SPAD器件暗电流特性及其对应单光子探测器的暗计数关联性进行探索,研究发现SPAD雪崩击穿偏压处的暗电流斜率与相应单光子探测器的暗计数相关,斜率较小时相应的暗计数较小;暗电流与暗计数存在抖动情况,此抖动均与温度呈负相关,与过偏压无关。
目前对暗计数特性的研究主要集中于影响机制,并未发现对上述结果的报导。
基于光纤光栅传感的输电杆塔在线监测系统研究目录1. 内容概览 (3)1.1 研究背景 (4)1.2 研究意义 (5)1.3 国内外研究现状 (6)2. 光纤光栅传感器技术简介 (7)2.1 光纤光栅传感器工作原理 (9)2.2 光纤光栅传感器的优势 (10)2.3 光纤光栅传感器应用案例 (11)3. 输电杆塔结构与健康状况 (12)3.1 输电杆塔结构 (13)3.2 输电杆塔健康状况监测 (15)3.3 杆塔常见问题及风险 (17)4. 光纤光栅传感在输电杆塔监测中的应用 (18)4.1 光纤光栅传感器安装方法 (19)4.2 光纤光栅传感器数据采集方法 (21)4.3 光纤光栅传感器信号处理方法 (22)5. 在线监测系统设计 (23)5.1 系统总体架构设计 (24)5.2 硬件系统设计 (26)5.3 软件系统设计 (28)5.4 系统稳定性与可靠性分析 (28)6. 监测系统性能评估 (30)6.1 监测精度的评估 (31)6.2 监测范围与分辨率的评估 (33)6.3 系统响应速度评估 (34)6.4 系统耐久性与抗环境干扰能力评估 (35)7. 实景区域研究 (36)7.1 监测区域选择与环境因素分析 (37)7.2 现场安装与调试过程 (38)7.3 监测数据收集与分析 (40)8. 系统优化与案例研究 (41)8.1 系统性能优化方法 (42)8.2 典型案例分析 (43)8.3 研究成果总结 (45)9. 结论与展望 (46)9.1 研究成果总结 (47)9.2 存在问题与不足 (48)9.3 未来研究方向 (49)1. 内容概览本研究旨在探讨基于光纤光栅(Fiber Bragg Grating, FBGs)的先进传感技术在输电杆塔在线监测系统中的应用。
我们将首先介绍输电杆塔结构及其重要性,以及传统的监测方法和它们的局限性。
我们将详细讨论光纤光栅的基本原理、特性和传感能力,并分析其在桥梁、建筑和电力传输系统监测中的应用。
铟镓砷光电二极管铟镓砷光电二极管(Indium gallium arsenide photodiode)是一种基于铟镓砷(InGaAs)材料的光电器件。
它具有高灵敏度、高速度和宽波长响应范围等优点,被广泛应用于通信、光谱分析、红外成像等领域。
铟镓砷光电二极管的基本原理是光电效应。
当光线照射到铟镓砷材料时,光子的能量被吸收,使得材料中的电子激发并跃迁到导带。
这些激发的电子会在外电场的作用下被加速,产生电流。
通过测量这个电流的大小,可以间接地测量光线的强度。
铟镓砷光电二极管的灵敏度非常高,可以探测到宽波长范围内的光线。
铟镓砷材料的能带结构使其具有较小的能隙,因此可以感受到红外光的能量。
这使得铟镓砷光电二极管在红外成像和光谱分析等领域有着重要的应用。
铟镓砷光电二极管的工作速度也非常快,可以实现高频率的信号检测和传输。
这使得它在通信领域中被广泛应用于光纤通信和无线通信系统中。
在光纤通信系统中,铟镓砷光电二极管用于接收光信号并将其转换为电信号,以实现光信号的传输和解调。
在无线通信系统中,铟镓砷光电二极管用于接收红外光信号并将其转换为电信号,以实现无线信号的接收和解码。
除了通信领域,铟镓砷光电二极管还在其他领域有着广泛的应用。
在光谱分析中,铟镓砷光电二极管可以用于检测和测量不同波长的光线,从而分析样品的光谱特性。
在红外成像中,铟镓砷光电二极管可以用于接收红外辐射并将其转换为电信号,从而实现红外图像的获取和显示。
尽管铟镓砷光电二极管具有许多优点,但也存在一些限制。
由于铟镓砷材料的制备和加工工艺复杂,导致铟镓砷光电二极管的成本较高。
此外,铟镓砷材料对温度敏感,工作温度范围较窄,需要在特定的温度条件下工作以保证性能。
铟镓砷光电二极管是一种具有高灵敏度、高速度和宽波长响应范围的光电器件。
它在通信、光谱分析、红外成像等领域有着重要的应用。
虽然存在一些限制,但随着材料和制造工艺的进步,铟镓砷光电二极管有望在更多领域发挥重要作用。
光纤光栅的应力和温度传感特性研究 (1)一光纤光栅传感器理论基础 (1)1 光纤光栅应力测量 (1)2 光纤光栅温度测量 (2)3 光纤光栅压力测量 (3)二光纤光栅传感器增敏与封装 (4)1 光纤光栅的应力增敏 (4)2 光纤光栅的温度增敏 (5)3 光纤光栅的温度减敏 (5)4 嵌入式敏化与封装 (6)5 粘敷式敏化与封装 (7)三光纤光栅传感器交叉敏感问题及其解决方法 (9)1 参考光纤光栅法 (10)2 双光栅矩阵运算法 (10)3 FBG与LPFG混合法 (11)4 不同包层直径熔接法 (12)5 啁啾光栅法 (12)光纤光栅的应力和温度传感特性研究一光纤光栅传感器理论基础1 光纤光栅应力测量由耦合模理论可知,光纤布拉格光栅(FBG)的中心反射波长为:2B eff n λ=Λ (1)式中:eff n 为导模的有效折射率,Λ为光栅的固有周期。
当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。
由公式(1)可知,光纤光栅的中心反射波长B λ随eff n 和Λ的改变而改变。
FBG 对于应力和温度都是很敏感的,应力通过弹光效应和光纤光栅周期Λ的变化来影响B λ,温度则是通过热光效应和热胀效应来影响B λ。
当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长B λ移动,因此有:eff BB effn n λλ∆∆∆Λ=+Λ (2) 式中:eff n ∆为折射率的变化,∆Λ为光栅周期的变化。
光栅产生应力时的折射率变化:()21211112effeff e effn n P P P n μμεε∆=---=-⎡⎤⎣⎦ (3) 式中: ()21211112e eff P n P P μμ=--⎡⎤⎣⎦ (4) ε是轴向应力,μ是纤芯材料的泊松比,11P 、12P 是弹光系数,e P 是有效弹光系数。
假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。
四象限InGaAs APD探测器的研究王致远;李发明;刘方楠【摘要】文章中设计的四象限InGaAs雪崩光电二极管(Avalanche Photo Diode,APD)的管芯结构采用正入光式平面型结构,而材料结构采用吸收区、倍增区渐变分离的APD结构,在对响应时间、暗电流和响应度等参数进行计算与分析的基础上,优化了器件结构参数.试验结果表明,其响应时间≤1.5 ns,响应度≥9.5 A/W,暗电流≤40 nA,可靠性设计时使PN结和倍增层均在器件表面以下,可有效抑制器件表面漏电流,提高器件的可靠性.【期刊名称】《光通信研究》【年(卷),期】2007(000)006【总页数】4页(P43-46)【关键词】InGaAs雪崩光电二极管;吸收区倍增区渐变分离-雪崩光电二极管;光谱响应范围;响应度;暗电流【作者】王致远;李发明;刘方楠【作者单位】重庆邮电大学,光电工程学院,重庆,400065;重庆邮电大学,光电工程学院,重庆,400065;重庆邮电大学,光电工程学院,重庆,400065【正文语种】中文【中图分类】TN3InGaAs材料制作的探测器具有直接禁带、室温工作和高纯度的优点,由它制作的光电探测器具有极低的暗电流和噪声。
在过去的十多年中,在光纤通信需求的推动下,InGaAs材料和器件有了很大的发展,现在已经能制备出性能非常优良的探测器。
激光导引头、激光经纬仪等光电跟踪、定位和准直仪器中常用四象限探测器作为光电传感器。
激光制导武器的核心器件便是激光导引头,位于导引头最前端的象限光电探测器是捕获目标、判断目标位置、分析目标状态的第一信息的关键部分[1]。
开发In-GaAs四象限探测器已成为激光制导、激光瞄准、探索和跟踪等装备的迫切需求,也是民用大气检测、土壤水分和碳化物等监控所需象限探测器的发展趋势[2]。
1 工作原理及器件参数设计1.1 工作原理四象限探测器的基本工作原理如图1所示。
器件的4 个象限同时工作在反向偏压下,当光照射时,在每个象限耗尽区内,光激发产生的载流子分别向两极运动,电子在运动过程中经过具有高电场的电荷层加速,在倍增层内碰撞产生大量的空穴电子对(雪崩效应),在外电路形成比光激发电流大得多的雪崩电流,实现器件的增益,同时,也将光信号转换成了4 路电流信号,如图1(a)所示。
光纤光栅解调综述一、引言光纤布拉格光栅(FBG)是一种重要的光学器件,具有高灵敏度、抗电磁干扰、体积小及易复用等特性,广泛应用于恶劣环境的温度、应变及振动等物理量检测。
基于在线光纤拉丝塔的大规模光栅阵列光纤制备方法的实现,突破了传统光纤光栅分布式传感技术受限于机械强度和制备工艺复杂的限制,大大拓展了其在分布式传感领域的应用。
本文将对光纤光栅解调技术进行综述。
二、光纤光栅解调技术准静态波长解调技术准静态波长解调技术是一种常用的光纤光栅解调方法。
它通过测量FBG中心波长的变化来解调传感信号。
准静态波长解调技术具有解调速度快、空间分辨率高等优点,但需要精确控制光源的波长和带宽,对光源的稳定性要求较高。
高速波长解调技术高速波长解调技术是一种基于光谱分析的解调方法。
它通过测量FBG光谱的变化来解调传感信号。
高速波长解调技术具有解调速度快、空间分辨率高等优点,但需要高分辨率的光谱分析仪,对硬件设备的要求较高。
增强型动态相位解调技术增强型动态相位解调技术是一种基于干涉仪的解调方法。
它通过测量FBG中心波长的变化来解调传感信号。
增强型动态相位解调技术具有解调速度快、空间分辨率高等优点,但需要精确控制光源的波长和带宽,对光源的稳定性要求较高。
三、光纤光栅应用领域基于大规模光栅阵列光纤的应用包括温度、应变分布式的准静态应用领域,以及振动分布式的相位动态应用领域等,包括大型建筑、机械、航空航天、石油化工等诸多领域的安全监测、故障诊断等工程应用方面。
四、结论光纤布拉格光栅传感技术因其具有高灵敏度、抗电磁干扰、体积小及易复用等特性而广泛应用于恶劣环境的温度、应变及振动等物理量检测。
基于在线光纤拉丝塔的大规模光栅阵列光纤制备方法的实现,突破了传统光纤光栅分布式传感技术受限于机械强度和制备工艺复杂的限制,大大拓展了其在分布式传感领域的应用。
本文系统地介绍了大规模光栅阵列光纤的制备、分布式解调方法与应用进展,从大规模光栅阵列光纤的在线制备技术,以及基于该阵列光纤的分布式传感解调技术,包括准静态波长解调技术、高速波长解调技术以及增强型动态相位解调技术等,特别关注解调速度、空间分辨率、复用容量等关键技术及传感性能。