[学习]丰田凯美瑞发动机维修资料
- 格式:pptx
- 大小:3.49 MB
- 文档页数:22
目录一、凯美瑞 2AZ-FE 型发动机的组成与原理错误!未定义书签。
(一)凯美瑞 2AZ-FE 型发动机的组成 . 错误!未定义书签。
(二)凯美瑞 2AZ-FE 型发动机的工作原理............... 8二、常用工具设备的功能与使用 ........................ 11 (一)专用工具的功能与使用 ........................ 11 (二)常用检测设备功能与使用 ...................... 14三、凯美瑞 2AZ-FE 型发动机的检测与诊断 ............... 16 (一)常见故障及产生原因 .......................... 16 (二)典型故障的诊断维修流程 ...................... 17 (三)故障诊断方法探讨 ............................ 18 (四)典型故障诊断维修实例 ........................ 20结束语 .............................................. 28 参考文献 ............................................ 291凯美瑞 2AZ-FE 型发动机结构及故障检修摘要:本篇论文以丰田凯美瑞轿车发动机的结构及常见故障为主题,阐述了该款 汽车发动机的具体结构与组成,以及其工作原理。
介绍了拆装该发动机的专用工 具和常用检测工具。
最后列举了凯美瑞 2AZ-FE 型发动机的具体故障,并进行了 理论分析及诊断。
关键词:凯美瑞; 2AZ-FE 型发动机; 结构; 原理; 专用工具; 故障检修一、凯美瑞 2AZ-FE 型发动机的组成与原理(一)凯美瑞 2AZ-FE 型发动机的组成 1、发动机概要 凯美瑞 2AZ-FE 型发动机的规格,见表 1。
广汽丰田凯美瑞混合动力发动机管理系统维修手册3AZ-FXE 发动机控制系统SFI 系统ES–79DTC P0112 进气温度电路低输入DTC P0113 进气温度电路高输入描述1kΩ ES302010532105030201-20 0 20 40 60 80 100 °C -4 32 68 104 140 176 212 °F A190753E07进气温度传感器安装在质量空气流量计分总成内监视进气温度进气温度传感器中内置有热敏电阻其电阻值随着进气温度的变化而变化进气温度变低时热敏电阻的电阻值增大温度变高时热敏电阻的电阻值减小电阻值的这些变化被作为电压的变化传送给混合动力车辆控制ECU 参见图 1混合动力车辆控制 ECU 端子 THA 经混合动力车辆控制 ECU 内的电阻器 R 将 5 V 电源施加到进气温度传感器上电阻器 R 和进气温度传感器是串联的当进气温度传感器的电阻值随进气温度的变化而变化时端子 THA上的电压也随之变化发动机冷机时混合动力车辆控制 ECU 根据此信号增加燃油喷射量以提高操纵性能提示设定 DTC P0112 和 P0113 之一时混合动力车辆控制 ECU 进入失效保护模式失效保护模式下混合动力车辆控制 ECU 估算进气温度为 20°C 68°F 失效保护模式持续运行直到检测到通过条件为止DTC 编号DTC 检测条件故障部位进气温度传感器电路短路进气温度传感器电路短路持续 05 秒P0112 进气温度传感器内置于质量空气流量计分总成单程检测逻辑混合动力车辆控制 ECUES–80 3AZ-FXE 发动机控制系统 SFI 系统DTC 编号DTC 检测条件故障部位进气温度传感器电路断路进气温度传感器电路断路持续 05 秒P0113 进气温度传感器内置于质量空气流量计分总成单程检测逻辑混合动力车辆控制 ECU提示设定以上任一DTC 时进入以下菜单检查进气温度PowertrainEngine and ECT Data ListIntake Air显示的温度故障-40° C -40° F 断路140°C 284°F短路ES电路图5 V59RTHA 1 THAC6445E2 2 ETHAC64C2ECUA219316E03检查程序提示使用智能检测仪读取定格数据存储 DTC 时混合动力车辆控制 ECU 将车辆和驾驶条件信息记录为定格数据进行故障排除时定格数据以及故障出现时所记录的其他数据有助于确定车辆是运行还是停止发动机是暖机还是未暖机空燃比是稀还是浓1 使用智能检测仪读取值进气温度a 将智能检测仪连接到DLC3b 将电源开关置于 ON IG 位置c 打开检测仪d 进入以下菜单Powertrain Engine and ECT Data ListIntake Aire 读取显示在检测仪上的值3AZ-FXE 发动机控制系统SFI 系统ES–81正常与实际进气温度相同结果结果转至-40°C -40°F A140°C 284°F B与实际进气温度相同C提示如果存在断路智能检测仪显示 -40°C -40°F如果存在短路智能检测仪显示 140°C 284°FB 转至步骤 4 ESC 检查是否存在间歇性故障参见 ES-12 页A2 使用智能检测仪读取值检查线束是否断路a 断开质量空气流量计分总成连接器1 b 连接质量空气流量计分总成线束侧连接器的端子 THA 和2 E2c 将智能检测仪连接到 DLC3d 将电源开关置于 ON IG 位置THA THA e 打开检测仪f 进入以下菜单Powertrain Engine and ECT Data ListE2 ETHA Intake Airg 读取显示在检测仪上的值3 插图文字1 质量空气流量计分总成2 混合动力车辆控制 ECU线束连接器前视图3至质量空气流量计分总成C2 标准值140°C 284°Fh 重新连接质量空气流量计分总成连接器THA E2 异常转至步骤3A203173E07正常更换质量空气流量计分总成参见 ES-258 页ES–82 3AZ-FXE 发动机控制系统 SFI 系统3 检查线束和连接器质量空气流量计 - 混合动力车辆控制 ECUa 断开质量空气流量计分总成连接器b 断开混合动力车辆控制ECU 连接器c 根据下表中的值测量电阻标准电阻断路检查检测仪连接条件规定状态C2-1 THA - C64-59 THA 始终小于 1 ΩC2-2 E2 - C64-45 ETHA 始终小于 1 ΩES d 重新连接质量空气流量计分总成连接器e 重新连接混合动力车辆控制 ECU 连接器异常维修或更换线束或连接器质量空气流量计 -混合动力车辆控制 ECU正常更换混合动力车辆控制 ECU 参见 HV-636 页4 使用智能检测仪读取值检查线束是否短路a 断开质量空气流量计分总成连接器b 将智能检测仪连接到 DLC31 c 将电源开关置于 ON IG 位置d 打开检测仪2 e 进入以下菜单Powertrain Engine and ECT Data ListIntake Airf 读取显示在检测仪上的值THA 插图文字1 质量空气流量计分总成ETHA 2 混合动力车辆控制 ECU标准值-40°C -40°Fg 重新连接质量空气流量计分总成连接器A188268E06异常转至步骤 5正常更换质量空气流量计分总成参见 ES-258 页3AZ-FXE 发动机控制系统SFI 系统ES–835 检查线束和连接器质量空气流量计 - 混合动力车辆控制 ECUa 断开质量空气流量计分总成连接器b 断开混合动力车辆控制 ECU 连接器c 根据下表中的值测量电阻标准电阻短路检查检测仪连接条件规定状态C2-1 THA 或C64-59 THA - 车身搭铁始终10 kΩ或更大d 重新连接质量空气流量计分总成连接器e 重新连接混合动力车辆控制 ECU 连接器 ES异常维修或更换线束或连接器质量空气流量计 -混合动力车辆控制 ECU正常更换混合动力车辆控制 ECU 参见 HV-636 页ES–84 3AZ-FXE 发动机控制系统 SFI 系统DTC P0115 发动机冷却液温度电路故障DTC P0117 发动机冷却液温度电路低输入DTC P0118 发动机冷却液温度电路高输入描述热敏电阻内置于发动机冷却液温度传感器其电阻值随着发动机冷却液温度的变化而变化传感器的结构及其与混合动力车辆控制 ECU 的连接方式和进气温度传感器相同提示ES 设定 DTC P0115 P0117 和 P0118 之一时混合动力车辆控制 ECU 进入失效保护模式失效保护模式下混合动力车辆控制 ECU 估算发动机冷却液温度为 80°C 176°F 失效保护模式持续运行直到检测到通过条件为止DTC 编号DTC 检测条件故障部位发动机冷却液温度传感器电路断路或短路发动机冷却液温度传感器电路断路或短路持续 05 秒P0115 发动机冷却液温度传感器单程检测逻辑混合动力车辆控制 ECU发动机冷却液温度传感器电路短路发动机冷却液温度传感器电路短路持续 05 秒P0117 发动机冷却液温度传感器单程检测逻辑混合动力车辆控制 ECU发动机冷却液温度传感器电路断路发动机冷却液温度传感器电路断路持续 05 秒P0118 发动机冷却液温度传感器单程检测逻辑混合动力车辆控制 ECU提示设定以上任一DTC 时进入以下菜单检查发动机冷却液温度Powertrain Engine and ECT Data ListCoolant Temp显示的温度故障-40° C -40° F 断路140° C 284° F 短路3AZ-FXE 发动机控制系统SFI 系统ES–85电路图5 V60RTHWC64246 ETHW ESC641C4ECUA219316E02检查程序提示使用智能检测仪读取定格数据存储 DTC 时混合动力车辆控制 ECU 将车辆和驾驶条件信息记录为定格数据进行故障排除时定格数据以及故障出现时所记录的其他数据有助于确定车辆是运行还是停止发动机是暖机还是未暖机空燃比是稀还是浓1 使用智能检测仪读取值发动机冷却液温度a 将智能检测仪连接到 DLC3b 将电源开关置于 ON IG 位置c 打开检测仪d 进入以下菜单Powertrain Engine and ECT Data ListCoolant Tempe 读取显示在检测仪上的值标准值发动机暖机时在 80°C 和100°C 176°F 和 212°F之间结果结果转至-40°C -40°FA140°C 284°F B在80°C 和100°C 176°F 和212°F之间C提示如果存在断路智能检测仪显示 -40°C -40°FES–86 3AZ-FXE 发动机控制系统 SFI 系统如果存在短路智能检测仪显示 140°C 284°FB 转至步骤 4C 检查是否存在间歇性故障参见 ES-12 页A2 使用智能检测仪读取值检查线束是否断路a 断开发动机冷却液温度传感器连接器1 b 连接发动机冷却液温度传感器线束侧连接器的端子 1 和 2ES 2 c 将智能检测仪连接到 DLC3d 将电源开关置于 ON IG 位置e 打开检测仪2f 进入以下菜单Powertrain Engine and ECT Data ListTHW1 Coolant TempETHW g 读取显示在检测仪上的值插图文字1 发动机冷却液温度传感器2 混合动力车辆控制 ECU3 3 线束连接器前视图至发动机冷却液温度传感器标准值140°C 284°FC4 h 重新连接发动机冷却液温度传感器连接器异常转至步骤 3A206246E05正常更换发动机冷却液温度传感器参见 ES-267 页3 检查线束和连接器发动机冷却液温度传感器 - HV 控制 ECUa 断开发动机冷却液温度传感器连接器b 断开混合动力车辆控制ECU 连接器c 根据下表中的值测量电阻标准电阻断路检查检测仪连接条件规定状态C4-2 - C64-60 THW 始终小于 1 ΩC4-1 - C64-46 ETHW 始终小于 1 Ω3AZ-FXE 发动机控制系统SFI 系统ES–87d 重新连接发动机冷却液温度传感器连接器e 重新连接混合动力车辆控制 ECU 连接器异常维修或更换线束或连接器发动机冷却液温度传感器 - HV 控制ECU正常更换混合动力车辆控制 ECU 参见 HV-636 页4 使用智能检测仪读取值检查线束是否短路ESa 断开发动机冷却液温度传感器连接器b 将智能检测仪连接到 DLC31 c 将电源开关置于 ON IG 位置d 打开检测仪2e 进入以下菜单Powertrain Engine and ECT Data ListCoolant Tempf 读取显示在检测仪上的值THW 插图文字1 发动机冷却液温度传感器ETHW 2 混合动力车辆控制 ECU标准值-40°C -40°Fg 重新连接发动机冷却液温度传感器连接器A188268E07异常转至步骤 5正常更换发动机冷却液温度传感器参见 ES-267 页5 检查线束和连接器发动机冷却液温度传感器 - HV 控制 ECUa 断开发动机冷却液温度传感器连接器b 断开混合动力车辆控制 ECU 连接器c 根据下表中的值测量电阻标准电阻短路检查检测仪连接条件规定状态C4-2 或C64-60 THW - 车身搭铁始终10 kΩ或更大d 重新连接发动机冷却液温度传感器连接器ES–88 3AZ-FXE 发动机控制系统 SFI 系统e 重新连接混合动力车辆控制ECU 连接器异常维修或更换线束或连接器发动机冷却液温度传感器- HV 控制 ECU正常更换混合动力车辆控制 ECU 参见 HV-636 页ES3AZ-FXE 发动机控制系统SFI 系统ES–89DTC P0116 发动机冷却液温度电路范围性能故障描述请参考 DTC P0115 参见 ES-84 页DTC 编号DTC 检测条件故障部位发动机起动且满足条件 a 和 b 双程检测逻辑时发动机冷却液温度在-40°C 和 60°C -40°F 和140°F之间节温器P0116a 车辆变速行驶加速和减速发动机冷却液温度传感器b 发动机冷却液温度保持在发动机冷却液初始温度的3°C 54°F 范围内ES检查程序提示如果 DTC P0115 P0117 或 P0118 中的任一个与 DTC P0116 同时设定发动机冷却液温度传感器可能断路或短路首先对这些 DTC 进行故障排除使用智能检测仪读取定格数据存储 DTC 时混合动力车辆控制 ECU 将车辆和驾驶条件信息记录为定格数据进行故障排除时定格数据以及故障出现时所记录的其他数据有助于确定车辆是运行还是停止发动机是暖机还是未暖机空燃比是稀还是浓1 检查是否输出其他 DTC 除 DTC P0116 外a 将智能检测仪连接到 DLC3b 将电源开关置于 ON IG 位置c 打开检测仪d 进入以下菜单PowertrainEngine and ECT DTCe 读取 DTC结果结果转至输出DTC P0116 A输出DTC P0116 和其他DTCB提示如果除 P0116 外还输出了其他DTC 应首先对其他 DTC进行故障排除B 转至DTC 表参见ES-39 页A2 检查节温器a 拆下节温器参见 CO-24 页b 测量节温器阀门开启温度标准值80°C 至84°C 176°F 至183°FES–90 3AZ-FXE 发动机控制系统 SFI 系统提示除以上检查外确认阀门在温度低于标准时完全关闭c 重新安装节温器参见 CO-25 页异常更换节温器参见CO-24 页正常更换发动机冷却液温度传感器参见 ES-267 页ES3AZ-FXE 发动机控制系统SFI 系统ES–91DTC P0120 节气门踏板位置传感器开关A 电路故障节气门踏板位置传感器开关A 电路范围DTC P0121性能故障DTC P0122 节气门踏板位置传感器开关A 电路低输入DTC P0123 节气门踏板位置传感器开关A 电路高输入DTC P0220 节气门踏板位置传感器开关B电路ESDTC P0222 节气门踏板位置传感器开关B电路低输入DTC P0223 节气门踏板位置传感器开关B电路高输入节气门踏板位置传感器开关 A BDTC P2135电压相关性描述提示这些 DTC 与节气门位置传感器有关节气门位置传感器安装在节气门体总成上检测节气门开度此传感器为非接触型传感器它使用霍尔效应元件以便在极端的驾驶条件下如高速以及超低速时也能生成精确的信号节气门位置传感器有两个传感器电路 VTA1 和 VTA2 各传送一个信号VTA1用于检测节气门开度VTA2用于检测 VTA1 的故障传感器信号电压与节气门开度成比例在 0 V 和 5 V之间变化并且传输至混合动力车辆控制 ECU 的端子 VTA1节气门关闭时传感器输出电压降低节气门打开时传感器输出电压升高混合动力车辆控制 ECU 根据这些信号来计算节气门开度并响应驾驶员输入来控制节气门执行器这些信号同时也用来计算空燃比修正值功率提高修正值和燃油切断控制ES–92 3AZ-FXE 发动机控制系统 SFI 系统VTA2 x 08V50465VTA21 IC2575VCTA 225ES111 VVTA1 095 VTA069VTA265ETA84°2 ICECUVTA10 22VTA VTA2 x 08 111 V64 9619 65° VTA2 x 08 VTA 111 VA210557E41DTC 编号DTC 检测条件故障部位VTA 的输出电压快速波动并超出上下故障阈值持续 2 秒或节气门位置传感器内置于节气门体总成P0120 更长时间混合动力车辆控制 ECU单程检测逻辑节气门位置传感器内置于节气门体总成VTA 和 VTA2 之间的电压差低于 08 V 或高于 16 V 持续2 秒P0121 节气门位置传感器电路单程检测逻辑混合动力车辆控制 ECU节气门位置传感器内置于节气门体总成VTA 的输出电压为 02 V 或更低持续 2 秒或更长时间VTA 电路短路P0122单程检测逻辑 VCTA 电路断路混合动力车辆控制 ECU节气门位置传感器内置于节气门体总成VTA 电路断路VTA 的输出电压为 454 V 或更高持续 2 秒或更长时间P0123 ETA 电路断路单程检测逻辑VCTA 和VTA 电路之间短路混合动力车辆控制 ECU3AZ-FXE 发动机控制系统SFI 系统ES–93DTC 编号DTC 检测条件故障部位VTA2 的输出电压快速波动并超出上下故障阈值持续 2 秒或节气门位置传感器内置于节气门体总成P0220 更长时间混合动力车辆控制 ECU单程检测逻辑节气门位置传感器内置于节气门体总成VTA2 的输出电压为175 V 或更低持续 2 秒或更长时间VTA2 电路短路P0222单程检测逻辑 VCTA 电路断路混合动力车辆控制 ECU节气门位置传感器内置于节气门体总成VTA2 的输出电压为 48 V 或更高且 VTA1 的输出电压在 02 V VTA2 电路断路P0223 和 202 V 之间持续 2 秒或更长时间 ETA 电路断路单程检测逻辑 VCTA 和VTA2 电路之间短路混合动力车辆控制 ECU满足以下任一条件单程检测逻辑ESa VTA 和 VTA2 输出电压之间的差值为 002 V 或更低持续VTA 和 VTA2 电路之间短路P2135 05 秒或更长时间节气门位置传感器内置于节气门体总成b VTA 的输出电压为 02 V 或更低且 VTA2 的输出电压为混合动力车辆控制 ECU175 V 或更低持续 04 秒或更长时间失效保护存储这些 DTC 中的任何一个和与电子节气门控制系统故障有关的其他 DTC 时混合动力车辆控制 ECU进入失效保护模式在失效保护模式下混合动力车辆控制 ECU 切断流向节气门执行器的电流且节气。
目录一、凯美瑞2AZ-FE型发动机的组成与原理错误!未定义书签。
(一)凯美瑞2AZ-FE型发动机的组成.. 错误!未定义书签。
(二)凯美瑞2AZ-FE型发动机的工作原理 (8)二、常用工具设备的功能与使用 (11)(一)专用工具的功能与使用 (11)(二)常用检测设备功能与使用 (14)三、凯美瑞2AZ-FE型发动机的检测与诊断 (16)(一)常见故障及产生原因 (16)(二)典型故障的诊断维修流程 (17)(三)故障诊断方法探讨 (18)(四)典型故障诊断维修实例 (20)结束语 (28)参考文献 (29)凯美瑞2AZ-FE型发动机结构及故障检修摘要:本篇论文以丰田凯美瑞轿车发动机的结构及常见故障为主题,阐述了该款汽车发动机的具体结构与组成,以及其工作原理。
介绍了拆装该发动机的专用工具和常用检测工具。
最后列举了凯美瑞2AZ-FE型发动机的具体故障,并进行了理论分析及诊断。
关键词:凯美瑞; 2AZ-FE型发动机;结构;原理;专用工具;故障检修一、凯美瑞2AZ-FE型发动机的组成与原理(一)凯美瑞2AZ-FE型发动机的组成1、发动机概要凯美瑞2AZ-FE型发动机的规格,见表1。
表1 2AZ-FE型发动机规格(SLLC 保养时间表: 第一次 160000 km,然后每隔 80000 km。
)2、发动机特性(1)缸体缸体和缸盖由铝合金制造;整体的薄铸铁气缸盖垫;水套装置:改善了水温的均匀性,如图1。
图1 汽缸体与水套装置(2)塑性拧紧螺栓(如图2)缸盖螺栓: 70N·m + 90°;曲轴轴承盖螺栓: 40N·m + 90°连杆螺栓: 25N·m + 90°;平衡轴室螺栓: 22 N·m + 90°缸盖螺栓长度: 141.3 到144.2 mm;曲轴轴承盖螺栓直径R: 7.2 到 7.5 mm 连杆螺栓直径R: 7.0 到 7.3 mm;平衡轴室螺栓长度: 58.3 到 60.3 mm长度直径图2 塑型螺栓(3)活塞只有标准尺寸供应,如图3。
广西工业职业技术学院毕业论文课题名称:丰田凯美瑞发动机故障检测与维修分析专业:汽车检测与维修()原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的(),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用()的规定,即:按照学校要求提交()的印刷本和电子版本;学校有权保存()的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存;在不以赢利为目的前提下,学校可以公布的部分或全部内容。
作者签名:日期:学位原创性声明本人郑重声明:所呈交的是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位版权使用授权书本学位作者完全了解学校有关保留、使用学位的规定,同意学校保留并向国家有关部门或机构送交的复印件和电子版,允许被查阅和借阅。
本人授权大学可以将本学位的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位。
涉密按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日目录54.3故障3:摘要本文通过对汽车的了解去分析汽车。
利用个知识点对汽车的故障进行诊断,文中对汽车分析的比较全面,还对汽车的故障进行了一些举例。
提出了不同于传统化油器式发动机的故障诊断方法,主要新的故障诊断方法可以提高电喷发动机故障诊断的准确性。
浅谈丰田凯美瑞轿车点火系统的故障维修本文针对凯美瑞轿车发动机熄火后不能正常启动的故障现象,根据汽车发动机电脑控制点火系统的工作原理,利用汽车电子解码器或利用发动机自我诊断系统对该系统故障进行故障诊断,深入浅出丑,逐步分析阐述发动机不能正常启动对点火系统电路的检测,查明故障的真正原因。
标签:汽油发电机;点火系统;故障现象1 故障的现象有一台凯美瑞轿车采用1AZ-FE发动机,行驶里程约9万公里。
该车在行驶中会突然出现发动机熄火现象。
有时熄火后能重新起动,并且起动后发动机工作正常;有时熄火后不能起动。
该车曾维修过并更换过四个点火线圈,但故障仍存在。
2 故障的分析与诊断汽油发动机能够正常启动的要素为:正常的点火正时以及点火能量,合适的可燃混合气,足够的气缸压缩力,正常的配气正時,足够的起动转速。
如果其中一个要素工作失常将会引起发动机工作性能变差,甚至造成发动机不能正常起动。
根据发动机正常起动的要素以及该车故障综合分析:由于是行驶中突然出现发动机熄火,有时可以起动且起动后工作正常,所以排除发动机气缸压力以及配气正时不正常的现象引起的,故障应该出现在混合气不正常或点火系统不正常这两方面,根据修车经验,采取由简单到复杂的方法,决定先从点火系着手检查。
首先拔下该车的一缸火花塞对缸体进行跳火试验,起动发动机进行跳火试验,结果发动机的中央高压线无火花出现。
(注:1、检查时确保将火花塞接地。
2、为防止在进行跳火试验时有太多的燃油从喷油器喷出,试验的时间不应过长,或在试验时断开喷油器的工作电源。
)经初步检查发现该发动机的点火系统存在故障。
2.1 丰田凯美瑞发动机点火系统简介丰田凯美瑞轿车1AZ-FE发动机点火系统采用ECU提前控制系统,该点火系统主要是由发动机ECU、点火线圈、火花塞以及曲轴位置传感器和凸轮轴位置传感器和爆震传感器等组成。
1AZ-FE发动机点火系统电路原理如图1所示。
其中点火工作原理如下:当发动机转动时,凸轮轴位置传感器产生的判缸信号G检测第一缸压缩上止点位置,曲轴位置传感器生产的脉冲信号Ne用于检测发动机转速和曲轴转角基准位置。
目录第1.1节发动机的发展史 (2)第1.2节典型发动机 (3)第1.3节发动机工作原理 (5)第1.4节发动机工作原理与构造 (6)第1.5节凯美瑞240G发动机结构及特点 (11)第二章发动机典型故障诊断与排除 (12)第2.1节发动机自动熄火故障的诊断与排除 (12)第2.2节发动机加速不良故障的诊断与排除 (13)第三章故障实例分析 (19)第3.1节凯美瑞发动机故障实例一发动机加速无力 (19)第3.2节凯美瑞发动机故障实例二EPC灯点亮 (20)第3.3节凯美瑞发动机故障实例三冷车正常,热车怠速高 (21)总结 (22)参考文献 (23)致谢 (24)第一章发动机概述第1.1节发动机的发展史汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。
如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM 汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解一百多年来汽车技术所发生的巨大变革。
汽油机之前的摸索阶段18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。
法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。
1770年,居纽制作了一辆三轮蒸汽机车。
这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。
1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。
1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。
发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。
这种发动机有气缸、活塞、连杆、飞轮等。
图1M20C发动机
从而引燃可燃混合气体。
火花塞常见故障有电极烧损、电极熔断、积碳、积油、绝缘磁体破裂等故障,会造成发动机出现异常状况,这时就得对火花塞进行更换。
使用专业工具拆下火花塞,查看火花塞还能否正常工其绝缘阻值大致在10MΩ以上,可用欧姆表来检测。
若是欧姆表数值出现低于10MΩ的,即便该火花塞无任何故
若无法判断火花塞的电极间隙正常,使用圆
——————
4结语
随着国内人们的消费能力不断提高,汽车也将进入千家万户,成为人们不可或缺的交通工具。
但随之而来将会
带来一些问题,比如说交通拥挤、
事故以及很多汽车故障,本文主要讲述了如何对丰田凯美瑞M20C 发动机常见故图2发动机功率不足分析思维导图
汽油机功率不足
少数缸工作
不良点火时刻过迟
触点工作不良
现象:
高、中、低速时发动机工作不均匀并且有节奏的振动,排气冒黑烟或放炮
现象:加速时
发闷,行驶无力,发动机温度过高
现象:加速时
发闷,
转速不均匀、
部分气缸有断火现象、排气管冒
黑烟
检查:高压线
是否脱落、
漏电。
火花塞是否工作不良
检查:点火正时是否失准、触点间隙是否
过小、
分电器壳是否松动检查:断电器触点是否烧蚀、分电器及高压线是否漏电。