炭炭复合材料制备工艺详解概论
- 格式:ppt
- 大小:17.50 MB
- 文档页数:78
炭/ 炭复合材料的制备及研究进展摘要:综合国内外各种文献资料,总结了炭炭复合材料的用途、制备工艺,简要介绍了几种主要的致密化方法,并对炭炭复合材料的抗氧化研究、石墨化研究做了初步的介绍,最后提出了炭炭复合材料今后发展的方向.关键词:炭炭复合材料,致密化,化学气相沉积,抗氧化,石墨化.1 引言炭/ 炭复合材料是具有优异耐高温性能的结构与功能一体化工程材料。
它和其它高性能复合材料相同, 是由纤维增强相和基体相组成的一种复合结构, 不同之处是增强相和基体相均由具有特殊性能的纯碳组成[1-2]。
炭/ 炭复合材料具有低密度、高强度、低烧蚀率、高抗热震性、低热膨胀系数、零湿膨胀、不放气、在2 000 C 以内强度和模量随温度升高而增加、良好的抗疲劳性能、优异的摩擦磨损性能和生物相容性(组织成分及力学性能上均相容)、对宇宙辐射不敏感及在核辐射下强度增加等性能[1-3], 使炭/ 炭复合材料在众多领域有着广泛用途。
在发达国家,炭/ 炭复合材料已被成功用于航天飞机的机翼前缘、鼻锥、货舱门,高推动比战机发动机的涡轮,高性能火箭发动机喷管、喉衬、燃烧室等,新一代先进飞机、坦克、赛车、高速列车等的刹车材料,以及火箭、飞机的密封圈等构件[4],同时,炭/ 炭复合材料作为生物医学材料,人造心脏瓣膜、人工骨、牙种植体及作为植入材料用于矫形是近年来的研究重点[5-7]; 作为智能材料,由于其受拉力后电阻增加,是很好的拉伸传感器,具有广阔的发展前景[8]。
炭/炭复合材料由碳纤维增强碳基体复合而成。
碳基体以热解炭的形式存在,由碳源先驱体经热解碳化而成。
炭/炭复合材料的制备工艺包括: 碳纤维及其结构的选择; 基体碳先驱物的选择; 炭/炭复合材料坯体的成型工艺; 坯体的致密化工艺以及工序间和最终产品的加工等[9]。
其中,关键技术在于坯体的致密化。
2 炭/炭复合材料的致密化工艺传统的炭/炭复合材料致密化工艺主要有化学气相沉积(CVD、化学气相渗透(CVI)和浸渍法。
炭炭复合材料热导率测定概述及解释说明1. 引言1.1 概述:炭炭复合材料是一种具有特殊结构和性能的材料,在热导率方面具有重要应用价值。
热导率是指材料传导热量的能力,它在许多领域中起着关键作用,例如电子器件散热、节能建筑等。
因此,了解炭炭复合材料的热导率及其测定方法对于进一步探索其性能和应用具有重要意义。
1.2 文章结构:本文将从几个方面对炭炭复合材料的热导率进行概述和解释说明。
首先,我们将介绍炭炭复合材料的定义和特点,包括其组成成分、微观结构及物理性质等方面。
其次,我们将详细探讨制备方法,包括碳化工艺、压制工艺等,并对各种方法进行比较和分析。
接着, 将介绍该材料在不同领域的应用情况,并阐述其优势和潜在问题。
然后,我们将给出关于测定方法的概述,包括测量原理、实验装置以及数据处理方法等内容。
1.3 目的:本文的目的是全面概述和解释炭炭复合材料的热导率及其测定方法,以促进人们对该特殊材料性能的深入了解。
通过本文的阐述,读者可以更好地理解炭炭复合材料的制备工艺、特性以及应用领域,并掌握相关测定方法。
此外,我们也希望能够为未来在该领域的进一步研究提供一些有益的启示和展望。
以上便是文章“1. 引言”部分内容撰写完毕。
2. 炭炭复合材料2.1 定义和特点炭炭复合材料是由炭素和石墨颗粒等碳质材料组成的复合材料。
它具有优异的导电性、高温稳定性、耐腐蚀性和机械强度,在多个领域都有广泛的应用。
2.2 制备方法炭炭复合材料的制备方法主要包括浸渍法、化学气相沉积法和压力过滤法等。
其中,浸渍法是最常用的方法之一。
该方法首先制备出具有良好孔隙结构的碳棉基体,然后通过浸渍方式将聚合物树脂或沥青渗透到碳棉中,最后经过高温热解处理得到了炭炭复合材料。
2.3 应用领域由于其导电性能好且能耐受高温环境,在航空航天、电子器件、汽车工业以及能源领域等都有广泛应用。
在航空航天领域,炭炭复合材料被广泛应用于导电件和隔热部件;在电子器件中,它可以用作散热材料,提高器件的散热效果;在汽车工业中,炭炭复合材料被应用于制动系统和发动机零部件等高温高压环境下的部件;而在能源领域,炭炭复合材料可用于核电站中的导热管道和隔热元件。
碳碳复合材料概述第一篇:碳碳复合材料概述碳/碳复合材料碳/碳复合材料概述摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。
关键词碳碳复合材料制备工艺性能应用1前言C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。
碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。
此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。
故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。
因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。
2碳碳复合材料的发展碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段:60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表;90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。
由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。
当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。
从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。
C/C复合材料的制备及方法地点:山西大同大学炭研究所时间:5.31——6.3学习内容:一、C/C复合材料简述C/C复合材料是以碳纤维及其织物为增强材料,以碳为基体,通过加工处理和碳化处理制成的全碳质复合材料。
优点:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
缺点:非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差,制造加工周期长,设计方法复杂。
二、C/C复合材料的成型技术化学气相沉积法气相沉积法(CVD法):将碳氢化合物,如甲烷、丙烷、液化天然气等通入预制体,并使其分解,析出的碳沉积在预制体中。
技术关键:热分解的碳均匀沉积到预制体中。
影响因素:预制体的性质、气源和载气、温度和压力都将影响过程的效率、沉积碳基体的性能及均匀性。
工艺方法:温度梯度法温度梯度法工艺方法:将感应线圈和感应器的几何形状做得与预制体相同。
接近感应器的预制体外表面是温度最高的区域,碳的沉积由此开始,向径向发展。
温度梯度法的设备如下图:三、预制体的制备碳纤维预制体是根据结构工况和形状要求,编织而成的具有大量空隙的织物。
二维编织物:面内各向性能好,但层间和垂直面方向性能差;如制备的氧化石墨烯和石墨烯三维编织物:改善层间和垂直面方向性能;如热解炭四、C/C的基体的获得C/C的基体材料主要有热解碳和浸渍碳两种。
热解碳的前驱体:主要有甲烷、乙烷、丙烷、丙烯和乙烯以及低分子芳烃等;大同大学炭研究所使用的是液化天燃气。
浸渍碳的前驱体:主要有沥青和树脂五、预制体和碳基体的复合碳纤维编织预制体是空虚的,需向内渗碳使其致密化,以实现预制体和碳基体的复合。
渗碳方法:化学气相沉积法。
基本要求:基体的先驱体与预制体的特性相一致,以确保得到高致密和高强度的C/C复合材料。
化学气相沉积法制备工艺流程:碳纤维预制体→通入C、H化合物气体→加热分解、沉积→C/C复合材料。
碳碳的制造工艺简介碳碳(Carbon-Carbon,简称C/C)是一种由碳纤维和碳基质组成的复合材料,具有高强度、耐高温、耐腐蚀等优点,在航空航天、能源、汽车等领域有广泛的应用。
本文将介绍碳碳的制造工艺以及相关技术。
碳纤维的制备碳纤维是制造碳碳的关键材料,其制备过程主要包括聚合纤维、氧化、碳化等步骤。
首先,在聚合纤维阶段,聚丙烯或聚丙烯酸甲酯等聚合物通过纺丝成纤维,在高温、低氧环境下进行干燥和热处理,形成初步成型的聚合纤维。
然后,在氧化阶段,将聚合纤维在氧气或空气中进行热处理,使其氧化生成聚丙烯酸纤维。
最后,在碳化阶段,将聚丙烯酸纤维在高温下进行碳化处理,使其转变为碳纤维。
碳纤维具有高强度、高模量、低密度等优点,是制造碳碳材料的重要基础。
碳基质的制备碳基质是碳碳的主要组成部分,其作用是提供机械支撑和保护碳纤维。
碳基质的制备通常采用炭化树脂、炭化油等方法。
炭化树脂是一种含有碳元素较高的树脂,通常通过模压成型,在高温下进行炭化处理,形成高碳化度的碳基质。
炭化油是一种含有碳元素较高的石油产品,通过涂覆在碳纤维上,再进行热处理,也能制备碳基质。
碳基质的炭化度越高,其机械性能和耐高温性能也越好。
碳碳的制造工艺碳碳的制造工艺主要包括堆叠、热压、碳化、再热压等步骤。
堆叠堆叠是将碳纤维与碳基质按照一定的顺序和方式进行层叠组合,形成一个整体结构。
堆叠的方式有平行堆叠、绕线堆叠等。
平行堆叠是将碳纤维和碳基质平行地堆积起来,形成多层叠压结构。
绕线堆叠是将碳纤维绕在轴上,再进行层叠组合。
堆叠时需要注意碳纤维的方向和排列的均匀性,以保证碳碳的性能和质量。
热压热压是将堆叠好的碳碳放入高温高压的环境中,通过热压力将碳纤维和碳基质结合在一起。
热压时需要控制压力、温度和时间等参数,以确保材料的密实度和结合强度。
热压能够使碳碳材料形成致密的结构,提高其机械性能和耐高温性能。
碳化碳化是将热压得到的碳碳材料在高温下进行碳化处理,使其形成高度碳化的结构。
1 C/C复合材料概述炭/炭复合材料(C/C)是由炭纤维及其制品(炭毡或炭布)增强的炭纤维复合材料。
C/C的组成元素只有一个,即碳元素,因而C/C具有许多炭和石墨材料的优3)和优异的热性能,即高的导热性、低(石墨的理论密度为2.2 g/cm点,如密度低热膨胀系数以及对热冲击不敏感等特性。
作为新型结构材料,C/C还具有优异的力学性能,如高温下的高强度和模量,尤其是其随温度的升高,强度不但不降低,反而升高的特性以及高断裂韧性、低蠕变等性能。
这些特性,使C/C复合材料成为目前唯一可用于高温达2800 ℃的高温复合材料。
C/C复合材料自上世纪60年代问世以来,在航空航天、核能、军事以及许多民用工业领域受到极大关注,并得到迅速发展和广泛应用。
1.1 C/C复合材料的性能特点(1) 物理性能C/C复合材料在高温热处理后的化学成分,碳元素高于99%,像石墨一样,具有耐酸、碱和盐的化学稳定性。
其比热容大,热导率随石墨化程度的提高而增大,线膨胀系数随石墨化程度的提高而降低等。
(2) 力学性能C/C复合材料的力学性能主要取决于炭纤维的种类、取向、含量和制备工艺等。
单向增强的C/C复合材料,沿炭纤维长度方向的力学性能比垂直方向高出几十倍。
C/C复合材料的高强高模特性来自炭纤维,随着温度的升高,C/C复合材料的强度不仅不会降低,而且比室温下的强度还要高。
一般的C/C复合材料的拉伸强度大于270 MPa,单向高强度C/C复合材料可达700 MPa以上。
在1000 ℃以上,强度最低的C/C复合材料的比强度也较耐热合金和陶瓷材料的高。
C/C复合材料的断裂韧性与传统的炭材料相比,有极大的提高,其破坏方式是逐渐破坏,而不是突然破坏,因为基体炭的断裂应力和断裂应变低于炭纤维。
经表面处理的炭纤维与基体炭之间的化学键与机械键结合强度强,拉伸应力引起基体中的裂纹扩展越过纤维/基体界面,使纤维断裂,形成脆性断裂。
而未经表面处理的炭纤维与基体炭之间结合强度低,C/C复合材料受载一旦超过基体断裂裂纹尖端的能量消耗在炭纤维的基体裂纹在界面会引起基体与纤维脱粘,应变,周围区域,炭纤维仍能继续承受载荷,从而呈现非脆性断裂方式。
碳陶复合材料生产工艺流程碳陶复合材料生产工艺流程引言碳陶复合材料是一种结合了碳纤维和陶瓷颗粒的新型复合材料,具有较高的强度、硬度和耐磨性。
本文将详细介绍碳陶复合材料的生产工艺流程。
工艺流程概述碳陶复合材料的生产工艺流程主要包括原料准备、预浸料制备、模具制作、热压烧结、后处理等多个环节。
下面将逐一介绍这些流程的具体步骤。
原料准备1.碳纤维选择:根据需求选择合适的碳纤维,通常采用高强度和高模量的碳纤维。
2.陶瓷颗粒选择:根据需求选择合适的陶瓷颗粒,常见的有氧化铝、碳化硅等。
3.粘结剂选择:根据生产要求选择适合的粘结剂,常用的有树脂、粉末冶金粘结剂等。
预浸料制备1.碳纤维表面处理:对选用的碳纤维进行表面处理,以提高其与粘结剂的粘结性能。
2.粘结剂配方调制:按照一定比例将粘结剂与陶瓷颗粒混合,形成预浸料。
3.预浸料浸渍:将碳纤维浸渍到预浸料中,使其充分浸润。
模具制作1.模具设计:根据产品的形状和尺寸,设计合适的模具结构。
2.模具制作:根据设计图纸,用适当的材料制作模具。
3.模具调试:对制作好的模具进行调试,确保其尺寸和结构的准确性。
热压烧结1.碳陶复合坯体成型:将浸渍好的碳纤维布层叠放在模具中,用预设的温度和压力进行热压成型。
2.烧结工艺:将成型好的碳陶复合坯体进行高温烧结处理,以实现颗粒的烧结和结构的固化。
3.冷却处理:经过烧结后的产品进行自然冷却,以避免产生内部应力。
后处理1.加工修整:对烧结后的产品进行表面的加工处理,如修整和抛光等。
2.检测质量:对加工后的产品进行严格的质量检测,以确保其符合客户要求。
3.包装出厂:将符合质量要求的产品进行包装,并做好出厂记录。
结论通过上述的工艺流程,碳陶复合材料的生产过程得以完成。
每个流程都有自己的重要性,只有环环相扣、步步严谨,才能制造出高质量的碳陶复合材料产品。
综述碳陶复合材料生产工艺流程是一个复杂而严谨的过程,需要注意每一个细节,以保证最终产品的质量和性能。
1 C/C复合材料概述炭/炭复合材料(C/C)是由炭纤维及其制品(炭毡或炭布)增强的炭纤维复合材料。
C/C的组成元素只有一个,即碳元素,因而C/C具有许多炭和石墨材料的优点,如密度低(石墨的理论密度为2.2 g/cm3)和优异的热性能,即高的导热性、低热膨胀系数以及对热冲击不敏感等特性。
作为新型结构材料,C/C还具有优异的力学性能,如高温下的高强度和模量,尤其是其随温度的升高,强度不但不降低,反而升高的特性以及高断裂韧性、低蠕变等性能。
这些特性,使C/C复合材料成为目前唯一可用于高温达2800 ℃的高温复合材料。
C/C复合材料自上世纪60年代问世以来,在航空航天、核能、军事以及许多民用工业领域受到极大关注,并得到迅速发展和广泛应用。
1.1 C/C复合材料的性能特点(1) 物理性能C/C复合材料在高温热处理后的化学成分,碳元素高于99%,像石墨一样,具有耐酸、碱和盐的化学稳定性。
其比热容大,热导率随石墨化程度的提高而增大,线膨胀系数随石墨化程度的提高而降低等。
(2) 力学性能C/C复合材料的力学性能主要取决于炭纤维的种类、取向、含量和制备工艺等。
单向增强的C/C复合材料,沿炭纤维长度方向的力学性能比垂直方向高出几十倍。
C/C复合材料的高强高模特性来自炭纤维,随着温度的升高,C/C复合材料的强度不仅不会降低,而且比室温下的强度还要高。
一般的C/C复合材料的拉伸强度大于270 MPa,单向高强度C/C复合材料可达700 MPa以上。
在1000 ℃以上,强度最低的C/C复合材料的比强度也较耐热合金和陶瓷材料的高。
C/C复合材料的断裂韧性与传统的炭材料相比,有极大的提高,其破坏方式是逐渐破坏,而不是突然破坏,因为基体炭的断裂应力和断裂应变低于炭纤维。
经表面处理的炭纤维与基体炭之间的化学键与机械键结合强度强,拉伸应力引起基体中的裂纹扩展越过纤维/基体界面,使纤维断裂,形成脆性断裂。
而未经表面处理的炭纤维与基体炭之间结合强度低,C/C复合材料受载一旦超过基体断裂应变,基体裂纹在界面会引起基体与纤维脱粘,裂纹尖端的能量消耗在炭纤维的周围区域,炭纤维仍能继续承受载荷,从而呈现非脆性断裂方式。
碳碳复合材料概述1概述碳/碳复合材料是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体的复合材料,是具有特殊性能的新型工程材料,也称为“碳纤维增强碳复合材料”。
碳/碳复合材料完全是由碳元素组成,能够承受极高的温度和极大的加热速率。
它具有高的烧蚀热和低的烧蚀率,抗热冲击和在超热环境下具有高强度,被认为是超热环境中高性能的烧蚀材料。
在机械加载时,碳/碳复合材料的变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。
它的主要优点是:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。
碳/碳复合材料的缺点是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。
1958年,科学工作者在偶然的实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员的普遍重视。
尽管碳/碳复合材料具有许多别的复合材料不具备的优异性能,但作为工程材料在最初的10年间的发展却比较缓慢,这主要是由于碳/碳的性能在很大程度上取决于碳纤维的性能和谈集体的致密化程度。
当时各种类型的高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好的解决。
在20世纪60年代中期到70年代末期,由于现代空间技术的发展,对空间运载火箭发动机喷管及喉衬材料的高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术的发展起到了有力的推功作用。
那时,高强和高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性的编织技术也得到了发展,更为主要的是碳/碳的制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。
这是碳/碳复合材料研究开发迅速发展的阶段,并且开始了工程应用。
由于20世纪70年代碳/碳复合材料研究开发工作的迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料的结构设计,以及力学性能、热性能和抗氧化性能等方面基础理论及方法的研究,进一步促进和扩大了碳/碳复合材料在航空航天、军事以及民用领域的推广应用。