数学分析PPT课件第四版华东师大研制 第13章 函数列与函数项级数
- 格式:ppt
- 大小:2.54 MB
- 文档页数:74
目 录第12章 数项级数12.1 复习笔记12.2 课后习题详解12.3 名校考研真题详解第13章 函数列与函数项级数13.1 复习笔记13.2 课后习题详解13.3 名校考研真题详解第14章 幂级数14.1 复习笔记14.2 课后习题详解14.3 名校考研真题详解第15章 傅里叶级数15.1 复习笔记15.2 课后习题详解15.3 名校考研真题详解第16章 多元函数的极限与连续16.1 复习笔记16.2 课后习题详解16.3 名校考研真题详解第17章 多元函数微分学17.1 复习笔记17.2 课后习题详解17.3 名校考研真题详解第18章 隐函数定理及其应用18.1 复习笔记18.2 课后习题详解18.3 名校考研真题详解第19章 含参量积分19.1 复习笔记19.2 课后习题详解19.3 名校考研真题详解第20章 曲线积分20.1 复习笔记20.2 课后习题详解20.3 名校考研真题详解第21章 重积分21.1 复习笔记21.2 课后习题详解21.3 名校考研真题详解第22章 曲面积分22.1 复习笔记22.2 课后习题详解22.3 名校考研真题详解第23章 向量函数微分学23.1 复习笔记23.2 课后习题详解23.3 名校考研真题详解第12章 数项级数12.1 复习笔记一、级数的收敛性1.相关定义(1)给定一个数列{u n},对它的各项依次用“+”号连接起来的表达式u1+u2+…u n+… (12-1)称为常数项无穷级数或数项级数(也常简称级数),其中u n称为数项级数(12-1)的通项或一般项.数项级数(12-1)也常写作或简单写作∑u n.(2)数项级数(12-1)的前n项之和,记为 (12-2)称它为数项级数(12-1)的第n个部分和,也简称部分和.(3)若数项级数(12-1)的部分和数列{S}收敛于S(即),则称数项级数(12-1)收敛,称S为数项级数(12-1)的和,记作或S=∑u n.若{S n}是发散数列,则称数项级数(12-1)发散.2.重要定理。
§131级数的收敛性数学分析课件(华师大四版)高教社ppt华东师大教材配套课件-图文数学分析第十三章函数列与函数项级数§13.1级数的收敛性一、函数列及其一致收敛性二、函数项级数及其一致收敛性三、函数项级数的一致收敛判别法某点击以上标题可直接前往对应内容对于一般项是函数的无穷级数,其收敛性要比数项级数复杂得多,特别是有关一致收敛的内容就更为丰富,它在理论和应用上有着重要的地位.§1级数的收敛性函数列及其一致收敛性函数列及其一致收敛性设f1,f2,,fn,函数项级数及其一致收敛性函数项级数的一致收敛性判别法(1)是一列定义在同一数集E上的函数,称为定义在E上的函数列.(1)也可记为{fn}或fn,n1,2,.以某0E代入(1),可得数列f1(某0),f2(某0),,fn(某0),.后退前进(2)目录退出数学分析第十三章函数列与函数项级数高等教育出版社§1级数的收敛性函数列及其一致收敛性函数项级数及其一致收敛性函数项级数的一致收敛性判别法如果数列(2)收敛,则称函数列(1)在点某0收敛,某0称为函数列(1)的收敛点.如果数列(2)发散,则称函数列(1)在点某0发散当函数列(1)在数集DE上每一.点都收敛时,就称(1)在数集D上收敛.这时D上每一点某都有数列{fn(某)}的一个极限值与之相对应,根据这个对应法则所确定的D上的函数,称为函数列(1)的极限函数.若将此极限函数记作f,则有或limfn(某)f(某),n某Dfn(某)f(某)(n),某D.数学分析第十三章函数列与函数项级数高等教育出版社§1级数的收敛性函数列及其一致收敛性函数项级数及其一致收敛性函数项级数的一致收敛性判别法函数列极限的N定义对每一固定的某D,任给正数,总存在正数N,(注意:一般说来N值与和某的值都有关,所以有时也用N(,某)表示三者之间的依赖关系)使当nN时,总有|fn(某)f(某)|.使函数列{fn}收敛的全体收敛点集合,称为函数列{fn}的收敛域.数学分析第十三章函数列与函数项级数高等教育出版社§1级数的收敛性函数列及其一致收敛性函数项级数及其一致收敛性函数项级数的一致收敛性判别法例1设fn(某)某,n1,2,为定义在(-,)上的函数列,证明它的收敛域是(1,1],且有极限函数0,|某|1,f(某)1,某1.证任给0(不妨设1),当0|某|1时,由于n|fn(某)f(某)||某|,ln只要取N(,某),当nN(,某)时,就有ln|某|n|fn(某)f(某)||某||某|.数学分析第十三章函数列与函数项级数高等教育出版社nN。
§123一般项级数数学分析课件(华师大四版)高教社ppt华东数学分析第十二章数项级数§12.3一般项级数一、交错级数二、绝对收敛级数及其性质由于非正项级数(一般项级数)的收敛性问题要比正项级数复杂得多,所以本节只对某些特殊类型级数的收敛性问题进行讨论.三、阿贝尔判别法和狄利克雷判别法某点击以上标题可直接前往对应内容§3一般项级数交错级数绝对收敛级数及其性质交错级数(un0,n1,2,),阿贝尔判别法和狄利克雷判别法若级数的各项符号正负相间,即n1u1u2u3u4(1)un则称为交错级数.定理12.11(莱布尼茨判别法)若交错级数(1)满足:(ii)limun0,n后退前进(1)(i)数列{un}单调递减;则级数(1)收敛.数学分析第十二章数项级数高等教育出版社目录退出§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法证考察交错级数(1)的部分和数列{Sn},它的奇数项和偶数项分别为S2m1u1(u2u3)(u2m2u2m1),S2m(u1u2)(u3u4)(u2m1u2m).由条件(i),上述两式中各个括号内的数都是非负的,而数列S2m是递增的.S2m1是递减的,从而数列又由条件(ii)知道0S2m1S2mu2m0(m),从而{[S2m,S2m-1]}是一个区间套.由区间套定理,存在惟一的实数S,使得数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法mlimS2m1limS2mS.m所以数列{Sn}收敛,即级数(1)收敛.推论若级数(1)满足莱布尼茨判别法的条件,则收敛级数(1)的余项估计式为Rnun1.对于下列交错级数,应用莱布尼茨判别法,容易检验它们都是收敛的:数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法111n11(1);23n1(2)1111n11(1);(3)3!5!7!(2n1)!1234n1n234(1).(4) n1010101010数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法定理12.13设级数(5)绝对收敛,且其和等于S,则任意重排后所得到的级数(7)绝对收敛且和也为S.某证只要对正项级数证明了定理的结论,对绝对收敛级数就容易证明定理是成立的.第一步设级数(5)是正项级数,用Sn表示它的第n个部分和.用mv1v2vm表示级数(7)的第m个部分和.因为级数(7)为级数(5)的重排,所以每一vk(1km)应等于某一uik(1km).记nma某{i1,i2,im},数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法则对于任何m,都存在n,使mSn.由于limSnS,所以对任何正整数m,都有mS,n即级数(7)收敛,且其和S.由于级数(5)也可看作级数(7)的重排,所以也有S,从而得到S.这就证明了对正项级数定理成立.第二步证明(7)绝对收敛.设级数(5)是一般项级数且绝对收敛,则由级数(6)收敛第一步结论,可得vn收敛,即级数(7)是绝对收敛的.数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法第三步证明绝对收敛级数(7)的和也等于S.根据第一步的证明,收敛的正项级数重排后和不变,所以先要把一般项级数(5)分解成正项级数的和.为此令unununun.(8)pn,qn22当un0时,pnun0,qn0;当un0时,pn0,qnunun0.从而0pnun,0qnun,(9)pnqnun,pnqnun.(10)数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法由级数(5)绝对收敛,及(9)式,知pn,qn都是收敛的正项级数.因此Sunpnqn.对于级数(5)重排后所得到的级数(7),也可按(8)式的办法,把它表示为两个收敛的正项级数之差qn,vnpn,qn分别是正项级数pn,qn的重排,显然pn其和不变,从而有vpqpqnnnnnS.数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法注定理12.13只对绝对收敛级数成立.条件收敛级数重排后得到的新级数不一定收敛,即使收敛,也不一定收敛于原来的和.更进一步,条件收敛级数适当重排后,既可以得到发散级数,也可以收敛于n11条件收敛,任何事先指定的数.例如级数1nn1设其和为A,即11111111(1)n12345678A.1乘以常数后,有2n1数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法11111An11(1).2n24682将上述两个级数相加,得到的是(2)的重排:1111131A.325742我们也可以重排(2)使其发散(可参考数学分析学习指导书下册).2.级数的乘积由定理12.2知道,若un为收敛级数,a为常数,则aunaun,数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质由此可以立刻推广到收敛级数un与有限项和的乘n1阿贝尔判别法和狄利克雷判别法积,即(a1a2am)unakun,n1n1k1m那么无穷级数之间的乘积是否也有上述性质设有收敛级数unu1u2unA,v1v2vnB.(11)(12)vn将级数(11)与(12)中每一项所有可能的乘积列成下表:数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法u1v1u2v1u3v1unv1u1v2u2v2u3v2unv2u1v3u1vnu2v3u2vnu3v3u3vnunv3 unvn(13)这些乘积uivj可以按各种方法排成不同的级数,常用的有按正方形顺序或按对角线顺序.依次相加后,有u1v1u1v2u2v2u2v1u1v3u2v3u3v3u3v2u3v1(14)数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法u1v1u2v1u3v1unv1u1v2u2v2u3v2unv2u1v3u2v3u3v3unv3u1vnu2vnu3vn unvn数学分析第十二章数项级数高等教育出版社正方形顺序§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法u1v1u2v1u1v2u2v2u1v3u2v3u3v2u3v3对角线顺序u1v1u1v2u2v1u1v3u2v2u3v1.数学分析第十二章数项级数高等教育出版社u3v1(15)§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法推论(阿贝尔引理)若(i)1,2,,n是单调数组,记ma某{k};k(ii)对任一正整数k(1kn)有kA,则有vk1nnkk3A.(19)证由(i)知12,23,,n1n都是同号的.于是由分部求和公式及条件(ii)推得k1kkv(12)1(23)2(n1n)n1nnA(12)(23)(n1n)AnA1nAnA(12n)3A.数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法现在讨论形如anbna1b1a2b2anbn级数的收敛性的判别法.定理12.15(阿贝尔判别法)(20)若{an}为单调有界数列,且级数bn收敛,则级数(20)收敛.证由于数列{an}单调有界,故存在M0,使anM.数,存在又由于bn收敛,依柯西准则,对任意正正数N,使当n>N时,对任一正整数p,都有npknb数学分析第十二章数项级数高等教育出版社k.§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法(阿贝尔引理条件(ii)).应用(19)式得到npknab这就说明级数(20)收敛.kk3M.定理12.16(狄利克雷判别法)且liman0,又级数bn若数列{an}单调递减,n的部分和数列有界,则级数(20)收敛.证由于bn部分和数列Vnbn有界,故存在正k1n数M,使|Vn|M,因此当n,p为任何正整数时,数学分析第十二章数项级数高等教育出版社§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法|bn1bn2bnp||VnpVn|2M.又由于数列{an}单调递减,且liman0,对0,n19)式得到N,当nN时,有an.于是根据(|an1bn1anpbnp|2M(|an1|2|anp|)6M.有了阿贝尔判别法就知道:若级数un收敛,则un级数p(p0),n数学分析第十二章数项级数高等教育出版社un都收敛.n1§3一般项级数交错级数绝对收敛级数及其性质阿贝尔判别法和狄利克雷判别法例3若数列{an}具有性质:a1a2an,liman0,n则级数aninn某和ancon某对任何某(0,2)都收敛.解因为n某1某3某2incok某inin某in22k1222111inn某inn某inn某,222数学分析第十二章数项级数高等教育出版社。
第十三章 函数列与函数项级数 2 一致收敛函数列与函数项级数的性质定理13.8:设函数列{f n }在(x,x 0)∪(x 0,b)上一致收敛于f(x),且对每个n ,x n lim →f n (x)=a n ,则∞→n lim a n 和0x n lim →f(x)均存在且相等.证:∀ε>0,∵{f n }一致收敛于f(x),∴∃N>0,当n>N 和任意自然数p , 对一切x ∈(x,x 0)∪(x 0,b)有,|f n (x)-f n+p (x)|< ε,∴|a n -a n+p |=0x n lim →|f n (x)-f n+p (x)|≤ε,∴{a n }是收敛数列. 设∞→n lim a n =A ,则∀ε>0,∃N>0,当n>N 时,对一切x ∈(x,x 0)∪(x 0,b)同时有, |f n (x)-f(x)|<3ε和|a n -A|<3ε. 特别取n=N+1,有|f N+1(x)-f(x)|<3ε和|a N+1-A|<3ε. 又0xn lim →f N+1(x)=a N+1,∴∃δ>0, 当0<|x-x 0|<δ时,|f N+1(x)-a N+1|<3ε,从而当x 满足0<|x-x 0|<δ时,有 |f(x)-A|≤|f N+1(x)-f(x)|+|f N+1(x)-a N+1|+|a N+1-A|<3ε+3ε+3ε=ε, 即0xn lim →f(x)=A ,得证!注:定理13.8指出:∞→→n x n lim lim 0f n (x)=0xn n lim lim →∞→f n (x).定理13.9:(连续性)若函数列{f n }在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.证:设x 0为I 上任一点,∵0xn lim →f n (x)=f n (x 0),由定理13.8知, 0x n lim →f(x)存在,且0x n lim →f(x)=∞→n lim f n (x 0)=f(x 0),∴f(x)在I 上连续.注:定理13.9指出:各项为连续函数的函数列在区间I 上其极限函数不连续,则此函数列在区间I 上不一致收敛. 如: 函数列{x n }各项在(-1,1]上都连续,但其极限函数f(x)=⎩⎨⎧=< 1x 11|x |0,,在x=1时不连续,所以{x n }在(-1,1]上不一致收敛.推论:若连续函数列{f n }在区间I 上内闭一致收敛于f ,则f 在I 上连续.定理13.10:(可积性)若函数列{f n }在[a,b]上一致收敛,且每一项都连续,则⎰∞→b an lim f n (x)dx=⎰∞→ban n (x )f lim dx.证:设f 是{f n }在[a,b]上的极限函数. 由定理13.9,f 在[a,b]上连续, ∴f n (n=1,2,…)与f 在[a,b]上都可积. ∵在[a,b]上f n (x)⇉f(x) (n →∞), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b]都有|f n (x)-f(x)|<ε. 根据定积分的性质,当n>N 时,有⎰⎰-baban f(x)dx (x)dx f =f(x))dx (x)(f ban -⎰≤dx f(x )(x )f ban ⎰-≤ε(b-a).∴⎰∞→ban n(x )f lim dx=⎰ba f(x )dx =⎰∞→ba n lim f n (x)dx. 得证!例1:举例说明当{f n (x)}收敛于f(x)时,一致收敛性是极限运算与积分运算交换的充分条件,但不是必要条件.解:如f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<≤ 1x n 10,n 1x n 21x ,2na -a 2n21x 0 ,x 2na n n n , n=1,2,…. 其图像如图:{f n (x)}是[0,1]上的连续函数列,且∀x ∈[0,1],∞→n lim f n (x)=0=f(x). 又Dx sup ∈|f n (x)-f(x)|=a n ,∴{f n (x)}在[0,1]上一致收敛于0的充要条件是:∞→n lim a n =0.∵⎰10n (x )f dx=2na n,∴⎰10n (x )f dx →⎰10f(x )dx=0的充要条件是:2n a lim n n∞→=0. 当a n ≡1时,{f n (x)}在[0,1]上不一致收敛于f(x),但定理13.10仍成立. 而当a n =n 时,{f n (x)}不一致收敛于f(x), 且⎰10n (x )f dx ≡21不一致收敛于⎰10f(x )dx=0.定理13.11:(可微性)设{f n }为定义在[a,b]上的函数列,若x 0∈[a,b]为{f n }的收敛点,{f n }的每一项在[a,b]上有连续的导数,且{f ’n }在[a,b]上一致收敛,则())x (f lim dx d n n ∞→=⎪⎭⎫⎝⎛∞→)x (f dx d limn n . 证:设)x (f lim 0n n ∞→=A ,f ’n ⇉g (n →∞), x ∈[a,b],则对任一x ∈[a,b],总有f n (x)=f n (x 0)+⎰'x x n 0(t)f dt. 两边对n →∞取极限得:)x (f lim n n ∞→=A+⎰xx 0g(t)dt ,又)x (f lim n n ∞→=f(x),∴f(x)=A+⎰xx 0g(t)dt. 两边微分得证!推论:设函数列{f n }定义在区间I 上的,若x 0∈I 为{f n }的收敛点,且{f ’n }在I 上内闭一致收敛,则f 在I 上可导,且f ’(x)=())x (f lim n n '∞→.例2:举例一致收敛性是极限运算与求导运算交换的充分条件,但不是必要条件. 解:如函数列f n (x)=2n 1 ln(1+n 2x 2)及f ’n (x)=22x n 1nx+, n=1,2,… 在[0,1]上都收敛于0,即∞→n lim f n (x)=∞→n lim f ’n (x)=0,∴在[0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.又由][0,1x ∞n max lim ∈+→|f ’n (x)-f ’(x)|=nx 2nx lim∞n +→=21, 知 导函数列{f ’n (x)}在[0,1]上不一致收敛. 但对任意δ>0,有,1][δx sup ∈|f ’n (x)-f ’(x)|=22,1] [δx x n 1nx sup+∈≤22δn 1n+→0 (n →∞), ∴{f ’n }在(0,1]上内闭一致收敛. ∴在(0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.定理13.12:(连续性)若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续. 即有:∑⎪⎭⎫ ⎝⎛→(x)u lim nx n 0=()∑→(x)u lim n x n 0. 证:设x 0为[a,b]上任意一点,∑(x)u n 在区间[a,b]上一致收敛于S(x). 则∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b],有|S(x)-S n (x)|<3ε, |S n (x 0)-S(x 0)|<3ε, 又u n (x)在[a,b] 上连续(n=1,2,……), ∴对取定的n>N ,S n (x)在[a,b]上连续,∴对上述的ε,∃δ>0, 当x ∈[a,b],且|x-x 0|<δ时,|S n (x)-S n (x 0)|<3ε ,∴当x ∈[a,b]时,|S(x)-S(x 0)|=|S(x)-S n (x)+S n (x)-S n (x 0)+S n (x 0)-S(x 0)| ≤|S(x)-S n (x)|+|S n (x)-S n (x 0)|+|S n (x 0)-S(x 0)|<ε. 即S(x)在x 0连续, 从而在[a,b]上连续. 得证!定理13.13:(逐项求积) 若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则∑⎰ba n (x )u dx =⎰∑ba n (x )u dx.定理13.14:(逐项求导) 若函数项级数∑(x)u n 在每一项都有连续的导函数,x 0∈[a,b]为∑(x)u n 的收敛点,且∑'(x)u n 在[a,b]上一致收敛,则∑⎪⎭⎫ ⎝⎛(x )u dx d n =()∑(x)u dxdn . 证:设∑'(x)u n 在[a,b]上一致收敛于S *(x),∵u ’n (x)在[a,b]上连续, 由定理13.12知,S *(x)在[a,b]上连续. 又由定理13.13知,∀x ∈[a,b], 有⎰xa *(t)S dt=⎰∑'ba n (t)u dt=∑⎰'xa n (t)u dt =∑(x)u n -∑(a)u n =S(x)-S(a). 等式两端对x 求导得:S ’(x)=S *(x)=∑'(x)u n ,得证!例3:设u n (x)=3n1ln(1+n 2x 2), n=1,2,…. 证明:函数项级数∑(x)u n 在[0,1]上一致收敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性. 证:对每个n ,易见u n (x)在[0,1]上递增,且当t ≥1时,有ln(1+t 2)<t , ∴u n (x)≤u n (1)=3n 1ln(1+n 2)<3n 1·n=2n1, n=1,2,… 又∑2n1收敛,∴∑(x)u n 在[0,1]上一致收敛. 由每一个u n (x)在[0,1]上连续,知其和函数在[0,1]上的连续且可积.又u ’n (x)=)x n 1(n x2n 2232+=)x n 1(n 2x 22+≤)x n 1(n 2nx 222+≤2n 1, n=1,2,…知 ∑'(x)u n在[0,1]上一致收敛. ∴其和函数在[0,1]上可微.例4:证明:函数ζ(x)=∑∞=1n x n 1在(1,+∞)上有连续的各阶导函数. 证:记u n (x)=x n 1, u n (k)(x)=(ln n 1)k x n 1=(-1)k x knn ln , k=1,2,…. 对任意x ∈[a,b]⊂(1,+∞),有|u n (k)(x)|=xkn nln≤a k nnln , k=1,2,….由∞→n lim 1)/2-(a k n n ln =0知,当n 充分大时,有1)/2-(a k n nln <1,从而 xk n n ln =1)/2-(a k 1)/2(a n n ln n 1⋅+<1)/2(a n 1+, 又∑+1)/2(a n 1收敛, ∴∑∞=1n (k )n (x )u 在[a,b]上一致收敛,从而∑∞=1n (k )n (x)u 在(1,+∞)上内闭一致收敛. ∴ζ(x)在(1,+∞)上有连续的各阶导函数,且ζ (k)(x)=(-1)k xkn nln, k=1,2,….习题1、讨论下列函数列在所定义的区间上:a. {f n }与{f ’n }的一致收敛性;b. {f n }是否有定理13.9~11的条件与结论.(1)f n (x)=nx n2x ++, x ∈[0,b];(2)f n (x)=x-n x n , x ∈[0,1];(3)f n (x)=nx 2-nx e, x ∈[0,1].解:(1)记∞n lim +→f n (x)=nx n2x lim∞n +++→=1=f(x); b][0,x sup ∈|f n (x)-f(x)|=nx xsupb][0,x +∈→0 (n →∞),∴{f n }在[0,b]上一致收敛性;记∞n lim +→f ’n (x)=2∞n n)(x nlim++→=g(x); b][0,x sup ∈|f ’n (x)-g(x)|=2b][0,x n)(x nsup+∈→0 (n →∞),∴{f ’n }在[0,b]上一致收敛性. 又∵f n (x)=nx n2x ++和f ’n (x)=2n)(x n +, n=1,2,… 在[0,b]上都连续, ∴{f n }有定理13.9~11的条件与结论.(2)记∞n lim +→f n (x)=⎪⎪⎭⎫ ⎝⎛+→n x -x lim n ∞n =x=f(x); [0,1]x sup ∈|f n (x)-f(x)|=n x sup n[0,1]x ∈→0 (n →∞),∴{f n }在[0,1]上一致收敛性;记g(x)=∞n lim +→f ’n (x)=∞n lim +→(1-x n-1)=⎩⎨⎧<≤=1x 01,1 x 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续, ∴{f ’n }在[0,1]上不一致收敛性.又f n (x)=x-nx n, n=1,2,… 在[0,1]上都连续,∴{f n }有定理13.9~10的条件与结论,但不具有13.11的条件. 又f ’(x)=x ’=1≠∞n lim +→f ’n (x),∴{f n }也不具有13.11的条件.(3)记∞n lim +→f n (x)=2-nx ∞n nx e lim +→=0=f(x); [0,1]x sup ∈|f n (x)-f(x)|=2-nx [0,1]x nxe sup ∈=n ·2)1/2n n(e n21-=1/2e 2n →∞ (n →∞),∴{f n }在[0,1]上不一致收敛性;记g(x)=∞n lim +→f ’n (x)=2-nx ∞n ne lim +→(1-2nx 2)=⎩⎨⎧=∞+≤<0x ,1x 0 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续,∴{f ’n }在[0,1]上不一致收敛性. 从而{f n }不具有定理13.9~11的条件. ∵f(x)=0在[0,1]上连续,∴{f n }有定理13.9的结论.∵⎰+→10nx -∞n 2nx e lim dx=⎰+→10nx -∞n 2e 21lim d(nx 2)=⎪⎭⎫ ⎝⎛-+→n ∞n e 2121lim =21≠⎰+→10n ∞n )x (f lim dx=0. 又{f ’n (x)}在x=0不收敛;∴{f n }不具有定理13.10~11的结论.2、证明:若函数列{f n }在[a,b]上满足定理13.11的条件,则{f n }在[a,b]上一致收敛.证:设f ’n (x)⇉g(x) (n →∞), x ∈[a,b],则∀ε>0,∃N 1>0,当n>N 1时, 对一切t ∈[a,b],有|f ’n (t)-g(t)|<)a b (2ε-; 又f n (x)点x 0收敛,∴对上述的ε>0,∃N 2>0,当n>N 2时,有|f n (x 0)-f(x 0)|<2ε. ∵对任意x,x 0∈[a,b]有f n (x)=f n (x 0)+⎰'xx n 0(t)f dt ,∴f(x)=∞→n lim f n (x)=f(x 0)+⎰xx 0g(t)dt. 取N=max{N 1,N 2},则当n>N 时,有∴|f n (x)-f(x)|=|f n (x 0)-f(x 0)+[]⎰'xx ng(t)-(t)f dt | ≤|f n (x 0)-f(x 0)|+|⎰'xx ng(t)-(t)f dt |<ε. 得证.3、设S(x)=∑∞=1n 21-n nx , x ∈[-1,1],计算积分⎰x 0S(t)dt .解:∵21-n n x ≤2n 1, x ∈[-1,1],由M 判别法知∑∞=1n 21-n n x 在[-1,1]上一致收敛.又21-n n x (n=1,2,…)在[-1,1]上连续,∴⎰x 0S(t)dt =∑⎰∞=1n x 021-n dt n t =∑∞=1n 3nnx .4、S(x)=∑∞=1n nn cosnx , x ∈R ,计算积分⎰x0S(t)dt .解:∵nn cosnx ≤nn 1, x ∈R ,由M 判别法知∑∞=1n nn cosnx 在R 上一致收敛.又nn cosnx (n=1,2,…)在R 上连续,∴⎰x0S(t)dt =∑⎰∞=1n xdt nn cosnt =∑∞=1n 2nnsinnx .5、S(x)=∑∞=1n nx -ne , x>0,计算积分⎰ln3ln2S(t)dt .解:由(ne -nx )’=-n 2e -nx <0,知ne -nx 单调减,∴对任何x ∈[ln2,ln3],有 ne -nx ≤ne-nln2=n 2n . 又由n n 2n =2n n→21<1 (n →∞),知∑n 2n收敛.∴∑∞=1n nx -ne 在[ln2,ln3]上一致收敛. 又ne -nx (n=1,2,…)在[ln2,ln3]上连续,∴⎰ln3ln2S(t)dt =∑⎰∞=1n ln3ln2nt-dt ne =∑∞=⎪⎭⎫⎝⎛-1n n n3121=21.6、证明:函数f(x)=∑3n nxsin 在R 上连续,且有连续的导函数. 证:∵3n nx sin ≤3n 1, x ∈R ,由M 判别法知∑3nnxsin 在R 上一致收敛. 又3nnxsin (n=1,2,…)在R 上连续,∴f(x)在R 上连续. ∵|(3n nx sin )’|=|2n cosnx |≤2n 1,由M 判别法知∑2n cosnx在R 上一致收敛.又2ncosnx(n=1,2,…)在R 上连续,∴f(x)在R 上有连续的导函数.7、证明:定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫⎝⎛∞=2π0n n dt cosnx r =2π. 证: ∵|r n cosnx|≤r n (0<r<1), x ∈[0,2π],又∑ r n (0<r<1)收敛, 由M 判别法知∑∞=0n n cosnx r 在[0,2π]上一致收敛.又r ncosnx 在[0,2π]上连续,∴∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫ ⎝⎛∞=2π0n n dx cosnx r =∑⎰∞=0n 2π0ncosnx dx r . 又⎰2π0dx =2π,⎰2π0cosnx dx =0(n=1,2…)∴⎰∑⎪⎭⎫⎝⎛∞=2π00n n dt cosnx r =2π.8、讨论下列函数列在所定义区间上的一致收敛性及极限函数的连续性、可微性和可积性:(1)f n (x)=x 2-nx e ,n=1,2,…, x ∈[-L,L]; (2)f n (x)=1nx nx+, n=1,2,…, I. x ∈[0,+∞);II. x ∈[a,+∞) (a>0). 解:(1)∵∞n lim +→f n (x)=0=f(x), x ∈[-L,L],且L][-L,x sup ∈|f n (x)-f(x)|=L][-L,x sup ∈| x 2-nx e |≤2ne1→0 (n →∞),∴{f n (x)}在[-L,L]上一致收敛于0,且其极限函数f(x)=0在[-L,L]上连续可积可微. 又f n (x)=x 2-nx e ,n=1,2,…在[-L,L]上连续,∴()⎰+→LL -n ∞n dx (x )f lim =⎪⎭⎫ ⎝⎛⎰+→LL -n ∞n (x)dx f lim . ∵f ’n (x)=2-nx e(1-2nx 2), 且(x)f lim n ∞n '+→=⎩⎨⎧=≠≤≤ 0x 10x L x L -0,,且, ∴[(x)f lim n ∞n +→]’≠(x)f lim n ∞n '+→.(2)∵f(x)=∞n lim +→f n (x)=1=⎩⎨⎧+∞<≤<=x a 010x 0,,,且)[a,x sup +∞∈|f n (x)-f(x)|=1nx 1-sup)[a,x ++∞∈=1na 1+→0 (n →∞), ∴{f n (x)}在[a,+∞) (a>0)上一致收敛于1,在[0,+∞)上内闭一致收敛. ∴其极限函数不在[0,+∞)上连续可积可微;但在[a,+∞) (a>0)上其极限函数f(x)=1连续可微,但不可积.9、证明:函数S(x)=∑xn 1在(1,+∞)上连续,且有连续的各阶导数. 证:∀x ∈(1,+∞),取1<p<x ,则0<x n 1≤p n1,由M 判别法,知 ∑x n 1在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. 又x n 1在(1,+∞)上连续,∴S(x)在(1,+∞)上连续. 又)k (x n 1⎪⎭⎫ ⎝⎛=x k kn n ln )1(-, k=1,2,…在(1,+∞)上连续. ∀x ∈(1,+∞),取1<p<x ,使x k kn n ln )1(-≤p k n n ln . 固定k ,取q>p>1, 由p k n n ln /q n 1=q -p k n n ln →0 (n →∞),及∑q n1收敛,知∑p k n n ln 收敛, ∴∑-x k kn n ln )1(在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. ∴S (k)(x)=∑⎪⎭⎫ ⎝⎛)k (x n 1=∑-x k kn n ln )1( 在(1,+∞)上连续. 得证!10、设f 在(-∞,+∞)上有任何阶导数,记F n =f (n), 且在任何有限区间内F n ⇉φ (n →∞),试证:φ(x)=ce x (c 为常数). 证:由条件可知φ’(x)=[∞n lim +→f (n)(x)]’=∞n lim +→[f (n)(x)]’ =∞n lim +→f (n+1)(x)=φ(x). 即有φ(x )(x )φ'=1,两边取积分得:⎰'φ(x )(x )φdx =⎰dx +C ,即⎰φ(x )1d φ(x) =x+c 1, ∴ln φ(x)=x+c 1,即φ(x)=1c x e +=1c e e x =ce x (其中c=1c e 为常数).。
110第十三章 函数列与函数项级数 ( 1 2 时 )§1 一致收敛性( 6 时 )一 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念:收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛(或称为“点态收敛”)的“N -ε”定义.例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x ,用“N -ε”定义验证其收敛域为] 1 , 1 (-,且∞→n l i m )(x f n = ∞→n lim n x =⎩⎨⎧=<.1 , 1 , 1 || , 0 x x例2 )(x f n =nnx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0.例3 考查以下函数列的收敛域与极限函数: ) (∞→n .⑴ )(x f n =xxx x nn n n --+-. )(x f n →,sgn x R ∈x .⑵ )(x f n =121+n x . )(x f n →,sgn x R ∈x .⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令)(x f n =⎩⎨⎧≠∈=.,,, ] 1 , 0 [ , 0,,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [.⑷ )(x f n =2222xnxen -. )(x f n →0, R ∈x .⑸ )(x f n =⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,4111x x x x x n n n n n n n有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意⎰≡11)(dx x f n .)111二. 函数列的一致收敛性:问题: 若在数集D 上)(x f n →)(x f ,) (∞→n .试问:通项)(x f n 的解析性质是否必遗传给极限函数)(x f ?答案是否定的.上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传.例3⑷⑸说明虽然可积性得到遗传, 但→n lim()⎰⎰∞→≠11)(lim)(dx x f dx x f n n n .用函数列的极限表示函数是函数表达的一种重要手段.特别是表达非初等函数的一种手段. 对这种函数, ∞→n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果.定义1 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则) 函数列}{n f 在数集D 上一致收敛⇔N , 0∃>∀ε,N n m >∀ , D x ∈∀⇒ε<-)()(x f x f n m .( 介绍另一种形式ε<-+n p n f f .) 证)⇒(利用式.f f f f f f n m n m -+-≤-))⇐易见逐点收敛.设∞→n lim)(x f n =)(x f ,……,有 2|)()(|ε<-x f x f n m .令∞→m ,⇒εε<≤-2|)()(|x f x f n 对∈∀x D成立,即)(x f n −→−−→−)(x f ,) (∞→n ,∈x D .Th2 在D 上nf −→−−→−f ,) (∞→n ⇔0|)()(|sup lim =-∞→x f x f n Dn .推论 设在数集D 上)(x f n →)(x f ,) (∞→n .若存在数列}{n x ⊂D ,使0 |)()(|→/-n n n x f x f , 则函数列)}({x f n 在数集D 上非一致收敛.应用推论判断函数列)}({x f n 在数集D 上非一致收敛时,常选n x 为函数=)(x F n )(x f n ―)(x f 在数集D 上的最值点.112验证函数一致收敛性: 例4 )(x f n nnx sin =. 证明函数列)}({x f n 在R 内一致收敛.例5 )(x f n 2222xnxe n -=. 证明在R 内 )(x f n →0, 但不一致收敛.证 显然有)(x f n →0, |)()(|x f x f n -= )(x f n 在点n x =n21处取得极大值022121→/=⎪⎭⎫ ⎝⎛-nen f n ,) (∞→n . 由系2 , )}({x f n 不一致收敛.例6 221)(xn x x S n +=. 证明在) , (∞+∞-内)(x S n −→−−→−0, ) (∞→n .证 易见 ∞→n lim .0)()(==x S x S n 而nnx x n n xn x x S x S n 21)(1||2211|||)()(|222≤+⋅=+=- 在) , (∞+∞-内成立.由系1 , ⇒ ……例7 对定义在区间] 1 , 0 [上的函数列⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<=≤<-≤≤=. 11 , 0), , 2 , 1 ( , 121 ,22,210 , 2)(22x n n n x n x n n n x x n x f n证明: ∞→n lim )(x f n =0, 但在] 1 , 0 [上不一致收敛. [1]P 30 E3,图13—3.证10≤<x 时,只要1->x n ,就有)(x f n =0.因此,在] 1 , 0 (上有)(x f =∞→n l i m )(x f n =0. 0)0(=n f ⇒)0(f =∞→n lim)0(n f =0.于是, 在] 1 , 0 [上有)(x f =∞→n lim )(x f n =0.但由于021|)()(|max ]1,0[→/=⎪⎭⎫ ⎝⎛=-∈n n f x f x f n n x ,) (∞→n ,因此, 该函数列在] 1 , 0 [上不一致收敛.113例8 )(x f n =12sin2+n x . 考查函数列)}({x f n 在下列区间上的一致收敛性:⑴ )0( , ] , [>-l l l ; ⑵ ) , 0 [∞+.Ex [1]P 35 1⑴—⑸,2.三. 函数项级数及其一致收敛性:1. 函数项级数及其和函数:∑)(x u n , 前n 项部分和函数列)}({x S n ,收敛点,收敛域, 和函数, 余项.例9 定义在) , (∞+∞-内的函数项级数(称为几何级数)+++++=∑∞=nn nx x x x201的部分和函数列为 ) 1 ( 11)(≠--=x xxx S nn , 收敛域为) 1 , 1 (-.2. 一致收敛性: 定义一致收敛性.Th3 (Cauchy 准则)级数∑)(x u n 在区间D 上一致收敛⇔N ,0∃>∀ε,,N n >∀N ∈∀p ,∈∀x D ⇒ ε<-+)()(x S x S n p n 或ε |)()()(|21<++++++x u x u x u p n n n .推论 级数∑)(x u n 在区间D 上一致收敛⇒ n u )(x −→−−→−0, ) (∞→n .Th4 级数∑)(x u n 在区间D 上一致收敛于)(x S ⇔∞→n lim =∈|)(|sup x R n x D∞→n lim 0|)()(|sup =-∈x S x S n x D.例10 几何级数∑∞=0n n x 在区间] , [a a -)10(<<a 上一致收敛;但在) 1 , 1(-内非一致收敛.证 在区间] , [a a -上,有011sup|)()(|sup ],[],[→-=--=---aaaxx S x S nna a n a a ) (∞→n ⇒∑一致收敛;114而在区间) 1 , 1(-内, 取∈+=1n n x n ) 1 , 1(-, 有∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫ ⎝⎛+≥-=----1)1,1()1,1(1111 1sup |)()(|sup n nnn n n n nn n n x x x S x S ,) (∞→n ⇒∑非一致收敛.(亦可由通项n n x x u =)(在区间) 1 , 1(-内非一致收敛于零⇒∑非一致收敛.)几何级数∑∞=0n n x 虽然在区间) 1 , 1(-内非一致收敛,但在包含于) 1 , 1(-内的任何闭区间上却一致收敛. 我们称这种情况为“闭一致收敛”.因此,我们说几何级数∑∞=0n n x 在区间) 1 , 1(-内闭一致收敛 .Ex [1]P 35 4,5, 6.四. 函数项级数一致收敛判别法:1.M-判别法:Th5 ( Weierstrass 判别法)设级数∑)(x u n 定义在区间D 上,∑nM是收敛的正项级数.当n 充分大时,对∈∀x D 有||)(x u n n M ≤,则∑在D 上一致收敛.证 , |)(| )( 1111∑∑∑∑==+=++=+=≤≤pi pi in pi in i n pi i n MMx u x u 然后用Cauchy 准则.亦称此判别法为优级数判别法. 称满足该定理条件的正项级数∑nM是级数∑)(x un的一个优级数. 于是Th 4 可以叙述为:若级数∑)(x u n 在区间D 上存在优级数,则级数∑)(x u n 在区间D 上一致收敛.应用时,常可试取|})({|sup x u Mn Dx n∈=.但应注意,级数∑)(x u n 在区间D 上不存在优级数⇒/级数∑)(x u n 在区间D 上非一致收敛.115注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.例11 判断函数项级数 ∑∞=in nnx 2sin 和 ∑∞=in nnx 2cos 在R 内的一致收敛性.例12 设) , 2 , 1 ( )( =n x u n 是区间] , [b a 上的单调函数. 试证明:若级数∑)(a u n 与∑)(b un都绝对收敛, 则级数∑)(x u n 在区间] , [b a 上绝对并一致收敛 .简证 , 留为作业. |)(||)(| |)(|b u a u x u n n n +≤.…… 2. Abel 判别法:Th 5 设ⅰ> 级数∑)(x u n 在区间I 上收敛; ⅱ> 对每个∈x I ,数列)}({x v n 单调; ⅲ> 函数列)}({x v n 在I 上一致有界, 即0 >∃M ,使对I ∈∀x 和n ∀,有M x v n |)(|≤. 则级数∑)()(x v x u n n 在区间I 上一致收敛 . ( [1]P 33 )3. Dirichlet 判别法:Th 6 设ⅰ> 级数∑)(x u n 的部分和函数列∑==nk kn x ux U 1)()(在区间I 上一致有界;ⅱ> 对于每一个∈x I ,数列)}({x v n 单调; ⅲ> 在区间I 上函数列)}({x v n 一致收敛于零.则级数∑)()(x v x u n n 在区间I 上一致收敛. 例13 判断函数项级数∑++-1)() 1(n nn nn x 在区间] 1 , 0 [上的一致收敛性.解 记nn nn n x x v nx u ⎪⎭⎫ ⎝⎛+=-=1)( , ) 1()(. 则有ⅰ> 级数∑)(x u n 收敛; ⅱ> 对每个∈x ] 1 , 0 [, )(x v n ↗;ⅲ>e n x x v nn ≤⎪⎭⎫ ⎝⎛+=1|)(| 对∀∈x ] 1 , 0 [和n ∀成立.由Abel 判别法, ∑在区间] 1 , 0 [上一致收敛. 例14 设数列}{n a 单调收敛于零.试证明: 级数∑nx ancos 在区间] 2 , [απα-)0(πα<<上一致收敛.116证 由本教案Ch12§3例4,在] 2 , [απα-上有212sin2121|2sin|21212sin2) 21sin(|cos |1+≤+≤-+=∑=αx x xn kx nk .可见级数∑nx cos 的部分和函数列在区间] 2 , [απα-上一致有界.取nx x u n cos )(=,n n a x v =)(就有级数∑)(x u n 的部分和函数列在区间] 2 , [απα-上一致有界, 而函数列)}({x v n 对每一个∈x ] 2 , [απα-单调且一致收敛于零.由Dirichlet 判别法,级数∑nx a n cos 在区间] 2 , [απα-上一致收敛.其实,在数列}{n a 单调收敛于零的条件下,级数∑nx ancos 在不包含) , 2 , 1 , 0 ( 2 ±±=k k π的任何区间上都一致收敛.Ex [1]P 35 3.§2 一致收敛函数列和函数项级数的性质( 4 时 )一. 一致收敛函数列极限函数的解析性质:1.连续性:Th 1 设在D 上n f −→−−→−)(x f ,且对∀n ,函数)(x f n 在D 上连续⇒)(x f 在D 上连续.证 (要证: 对∈∀0x D ,)(x f 在点0x 连续.即证:对0>∀ε,0>∃δ, 当|δ<-|0x x 时⇒ε<-|)()(|0x f x f .)|)()(||)()(||)()(| |)()(|0000x f x f x f x f x f x f x f x f n n n n -+-+-≤-.117估计上式右端三项.由一致收敛, 第一、三两项可以任意小;而由函数)(x f n 在点0x 连续, 第二项|)()(|0x f x f n n -也可以任意小 . ……推论 设在D 上)(x f n →)(x f .若)(x f 在D 上间断,则函数列{)(x f n }在D 上一致收敛和所有)(x f n 在D 上连续不能同时成立.注: Th1表明: 对于各项都连续且一致收敛的函数列{)(x f n },有)(lim lim )(lim lim 00x f x f n x x n n n x x →∞→∞→→=.即极限次序可换 . 2. 可积性:Th 2 若在区间] , [b a 上函数列{)(x f n }一致收敛,且每个)(x f n 在] , [b a 上连续.则有()⎰⎰∞→∞→=baban n n n dx x f dx x f )(lim)(lim.证 设在] , [b a 上n f −→−−→−)(x f , 由Th1,函数)(x f 在区间] , [b a 上连续,因此可积.我们要证 ⎰⎰=∞→baban n dx x f dx x f )()(lim. 注意到⎰⎰⎰-≤-ban baban f f f f || , 可见只要ab x f x f n -<-ε|)()(|在] , [b a 上成立.注:Th2的条件可减弱为:用条件“)(x f n 在] , [b a 上(R )可积”代替条件“)(x f n 在] , [b a 上连续”.证明可参阅 江泽坚著《数学分析》上册P 350. 3. 可微性:Th 3 设函数列{)(x f n }定义在区间] , [b a 上,在某个点∈0x ] , [b a 收敛.对n ∀,118)(x f n 在] , [b a 上连续可导,且由导函数构成的函数列{)(x f n '}在] , [b a 上一致收敛,则函数列{)(x f n }在区间] , [b a 上收敛,且有())(lim)(lim x f dxd x f dxdn n n n ∞→∞→=.证 设)(0x f n →A ,) (∞→n . )(x f n '−→−−→−)(x g , ) (∞→n .对∈∀x ] , [b a , 注意到函数)(x g 连续和 )(x f n =)(0x f n +⎰'xx n dt t f 0)(, 就有∞→n lim )(x f n =∞→n lim )(0x f n + ∞→n lim⎰'xx n dt t f 0)( ( 对第二项交换极限与积分次序)= A + ()d t t f xx n n ⎰'∞→0)(lim = A +⎰==xx dt t g 0)(令)(x f .(估计 |)(0x f n +⎰'x x n dt t f 0)( ― A ― ⎰≤xx dt t g 0|)(≤|)(0x f n ―A | + |()⎰-'xx n dtt g t f 0|)()(, 可证得)(x f n −→−−→−)(x f .))(x f '=='⎪⎭⎫ ⎝⎛+⎰xx dt t g A 0)()(x g =∞→n lim =')(x f n ∞→n lim )(x f dx d n .即()=∞→)(limx f dxdn n ∞→n lim)(x f dxd n . 亦即求导运算与极限运算次序可换.例1 [1]P 38 E1(说明定理的条件是充分的, 但不必要.)例2 [1]P 50 E2(说明定理的条件是充分的, 但不必要.)Ex [1] P 41 1,2, 3.119二. 一致收敛函数项级数和函数的解析性质:把上述Th1—3表为函数项级数的语言,即得关系于和函数解析性质的相应结果.参阅[1]P 40 Th13.12—13.14. 例3 [1]P 40—41 E3例4 证明函数)(x f =∑∞=-1n nxne在区间) , 0 (∞+内连续.证 (先证∑∞=-1n nxne在区间) , 0 (∞+内闭一致收敛.)对+∞<<<∀b a 0,有nanxnene--≤≤0,∈x ] , [b a ;又∑+∞<-nane⇒∑∞=-1n nxne在] , [b a 一致收敛.( 次证对∈∀0x ) , 0 (∞+,)(x f 在点0x 连续 ) 对∈∀0x ) , 0 (∞+, 由上段讨论,∑∞=-1n nxne在区间] 2 , 2[00x x 上一致收敛;又函数nxne-连续⇒)(x f 在区间]2 , 2[00x x 上连续⇒ )(x f 在点0x 连续. 由点0x 的任意性,)(x f 在区间) , 0 (∞+内连续.例5 =)(x S ∑∞=-11n n nn x, ∈x ] 1 , 1 [-. 计算积分 ⎰xdt t S 0)(.Ex [1]P 52—53 3—8,9⑴,10 .。
第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。
第13章函数列与函数项级数13.1本章要点详解本章要点■函数列及其一致收敛性■函数列一致收敛的柯西准则■函数项级数及其一致收敛性■一致收敛的柯西准则■M判别法■阿贝尔判别法■狄利克雷判别法■一致收敛函数列的性质■一致收敛函数项级数的性质重难点导学一、一致收敛性1.函数列及其一致收敛性(1)相关定义①函数列设12,,,,n f f f(13-1)是一列定义在同一数集E 上的函数,则称式(13-1)为定义在E 上的函数列.函数列(13-1)也可记为{}n f 或n f ,n =1,2,….以x 0∈E 代入函数列(13-1),可得数列10200(),(),,(),n f x f x f x②收敛点和发散点设12,,,,n f f f (13-2)10200(),(),,(),n f x f x f x(13-3)如果数列(13-3)收敛,则称函数列(13-2)在点x 0收敛,x 0称为函数列(13-2)的收敛点.如果数列(13-3)发散,则称函数列(13-2)在点x 0发散.当函数列(13-2)在数集D ∈E 上每一个点都收敛时,就称函数列(13-2)在数集D 上收敛.③极限函数若将D 中每一个点x 对对应的数列的极限记作f (x ),则→∞=∈lim ()(),n n f x f x x D称f (x )为函数列(13-2)的极限函数.(2)函数列的一致收敛性设函数列{}n f 与函数f 定义在同一数集D 上,若对任意的正数ε,总存在某一正整数N ,使得当n >N 时,对一切x ∈D ,都有则称函数列{}n f 在D 上一致收敛于f ,记作(3)函数列一致收敛的柯西准则函数列{}n f 在数集D 上一致收敛的充要条件是:对任给正数ε,总存在正整数N ,使得当n ,m >N 时,对一切x ∈D ,都有(4)函数列{}n f 在区间D 上一致收敛于f 的充要条件是(5)函数列{}n f 在D 上不一致收敛于f 的充要条件是:存在{}n x D ⊂,使得{}()()n n n f x f x -不收敛于0.(6)函数列内闭一致收敛设函数列{}n f 与f 定义在区间I 上,若对任意闭区间[],a b I ⊂,{}n f 在[a ,b ]上一致收敛于f ,则称{}n f 在I 上内闭一致收敛于f .2.函数项级数及其一致收敛性(1)相关定义①函数项级数设{}()n u x 是定义在数集E 上的一个函数列,称12()()(),n u x u x u x x E++++∈ (13-4)为定义在E 上的函数项级数,记为或∑u n (x ).称为部分和函数列.②收敛点和发散点若x 0∈E ,数项级数10200()()()n u x u x u x ++++(13-5)收敛,即部分和数列当n →∞时极限存在,则称级数(13-4)在点x 0收敛,x 0称为级数(13-4)的收敛点.若级数(13-5)发散,则称级数(13-4)在点x 0发散.③收敛域若级数(13-4)在E 的某个子集D 上每点都收敛,则称级数(13-4)在D 上收敛.若D 为级数(13-4)全体收敛点的集合,(也就是说级数只在D 上收敛)这时就称D 为级数(13-4)的收敛域.④和函数设级数(13-4)在其收敛域D 上每一点x 与其所对应的数项级数(13-5)的和记为S (x ),则S (x )构成一个定义在D 上的函数,称为级数(13-4)的和函数,并记作即.(2)一致收敛的柯西准则函数项级数∑u n (x )在数集D 上—致收敛的充要条件为:对任给的正数ε,总存在某正整数N ,使得当n >N 时,对一切x ∈D 和一切正整数p ,都有即(3)函数项级数∑u n (x )在数集D 上一致收敛的必要条件是函数列{u n (x )}在D 上一致收敛于零.(4)函数项级数∑u n (x )在数集D 上一致收敛于S (x )的充要条件是3.函数项级数的一致收敛性判别法(1)魏尔斯特拉斯判别法(M 判别法或优级数判别法)设函数项级数()n u x ∑定义在数集D 上,n M ∑为收敛的正项级数.若对一切x ∈D ,有则函数项级数()n u x ∑在D 上一致收敛.(2)函数项级数的一致收敛性判别法.①阿贝尔判别法设a .∑u n (x )在区间I 一致收敛;b .对于每一个x ∈I ,{v n (x )}是单调的;c .{v n (x )}在I 上一致有界,即存在正数M ,使得对一切x ∈I 和正整数n ,有则级数∑u n (x )v n (x )在I 上一致收敛.②狄利克雷判别法设a .∑u n (x )的部分和函数列在I上一致有界;b.对于每个x∈I,{v n(x)}是单调的;c.在I上,则级数∑u n(x)v n(x)在I上一致收敛.二、一致收敛函数列与函数项级数的性质1.一致收敛函数列的性质(1)极限交换定理设函数列{f n}在上一致收敛于f(x),且对每个n,,则和均存在且相等.即(2)性质①连续性若函数列{f n}在区间I上一致收敛,且每一项都连续,则其极限函数f在I上也连续.注:若各项为连续函数的函数列在区间I上其极限函数不连续,则此函数列在区间I上一定不一致收敛.②可积性若函数列{f n}在[a,b]上一致收敛,且每一项都连续,则注:一致收敛性是极限运算与积分运算交换的充分条件,不是必要条件.③可微性设{f n}为定义在[a,b]上的函数列,若x0∈[a,b]为{f n}的收敛点,{f n}的每一项在[a.b]。