概率论与数理统计(二)笔记
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
<概率论>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。
2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。
3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。
4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。
5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。
6.设样本的频数分布为则样本方差2s =_____________________。
7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。
8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。
若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。
9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。
10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。
11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
交通学院 学号1126002026 姓名 吕立正 课堂笔记第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x )证明:设x A ={X ≤x+ 1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()n n P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim(arctan x)=a-02x A B B π→∞+= 所以A=12 B= 1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P (X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。
概率论与数理统计第二章笔记一、引言概率论与数理统计是数学中的一个重要分支,它研究的是随机现象的规律性和统计规律性。
在第二章中,我们将深入探讨随机变量及其分布,以及随机变量的数字特征。
二、随机变量及其分布1. 随机变量的定义及分类在概率论与数理统计中,随机变量是描述随机现象数值特征的变量。
根据随机变量可取的值的性质,可以分为离散随机变量和连续随机变量。
离散随机变量只取有限个或无限可数个值,而连续随机变量则可以取在一定范围内的任意一个值。
2. 随机变量的分布及特征随机变量的分布是描述其取值的概率规律。
对于离散随机变量,常见的分布包括二项分布、泊松分布等;对于连续随机变量,则有均匀分布、正态分布等。
通过对随机变量的分布进行分析,可以推导出其数字特征,如均值、方差等。
三、随机变量数字特征1. 随机变量数字特征的意义随机变量的数字特征是对其分布的定量描述,包括均值、方差、标准差等。
这些数字特征可以帮助我们更直观地理解随机变量的分布规律,从而作出合理的推断和决策。
2. 随机变量数字特征的计算对于离散随机变量,其均值、方差的计算可通过对其分布进行加权平均;对于连续随机变量,则需要进行积分计算。
这些计算方法在实际问题中起着重要作用,例如在风险评估、市场预测等方面的应用。
四、总结和回顾概率论与数理统计第二章主要介绍了随机变量及其分布,以及随机变量的数字特征。
通过对离散和连续随机变量的分类和分布进行深入讨论,我们对随机现象的规律性有了更清晰的认识。
通过数字特征的计算,我们可以更准确地描述和解释随机现象的规律,为实际问题的分析和决策提供了有力工具。
个人观点和理解在学习概率论与数理统计第二章的过程中,我深刻认识到随机变量和其分布对于随机现象的定量分析至关重要。
通过对数字特征的计算,我们可以更准确地描述和解释随机现象的规律,这对于我在日常生活和工作中的决策和分析将有着实质性的帮助。
结论概率论与数理统计第二章所介绍的内容为我们提供了深入了解随机现象规律性的基础,并且为日后的学习和实践奠定了坚实的基础。
《概率论与数理统计》第二章随机变量及其概率分布考点10 随机变量的概念(★三级考点,选择、填空)设Ω={ω}是试验的样本空间,如果对每个ω∈Ω,总有一个实数X(ω)与之对应,则称Ω上的实值函数X(ω)为E的一个随机变量。
随机变量常用X、Y、Z等表示。
考点11 离散型分布变量及其分布律(★★二级考点,选择、填空、计算)1.若随机变量X取值x1,x2,…,x n,…且取这些值的概率依次为p1,p2,…,p n,…,则称X为离散型随机变量,而称P{X=x k}=p k,(k=1,2,…)为X的分布律或概率分布。
可表为X~P{X=x k}=p k,(k=1,2,…),2.分布律的矩阵(表格)表示方法:3.分布律的性质1)p k ≥0,k=1,2,…;2)∑≥11kkp=考点12 0-1分布与二项分布(★★★一级考点,选择、填空)1.0-1分布设E是一个只有两种可能结果的随机试验,用Ω={ω1,ω2}表示其样本空间。
P({ω1})=p,P({ω2})=1-p记则称X服从参数p的(0-1)分布(或两点分布),记成X~B(1,p)。
2.二项分布设试验E只有两个结果AA或,记p=P(A),将试验E独立重复进行n次,则称这n次试验为n重伯努利试验。
若以X表示n重贝努里试验事件A发生的次数,则称X服从参数为n,p的二项分布。
记作X~B(n,p)其分布律为:),...,1,0(,)1(}{nkppkXP k nkknC=-==-考点13 泊松分布(★★★一级考点,选择、填空)1.泊松分布:设随机变量X所有可能取的值为:0,1,2,…,概率分布为:其中λ>0为常数,则称随机变量X 服从参数为λ的泊松分布,记为X~P (λ)。
2.二项分布与泊松分布的关系(泊松定理)对二项分布B (n ,p ),当n 充分大,p 又很小时,对任意固定的非负整数k ,有近似公式 .,!)1(), ( n k np e k p p C p n k k k n k k n <=»-=--,其中;l l l B 理解:泊松定理表明,泊松分布是二项分布的极限分布,当n 很大,p 很小时,二项分布就可近似地看成是参数λ=np 的泊松分布。
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
第二章 随机变量及其概率分布1. 离散型随机变量()01k K K KP X x p p ==≥⎧⎪⎨=⎪⎩∑ 例1 设 ,则3.02.05.01=--=c------------------------------------------------------------------------------------------------ 8.知识点:离散型随机变量的分布律性质下列各表中可作为某随机变量分布律的是( ) A . B .C .D .答案:C解:A 事件概率不可能为负值 B ,D1i iP ≠∑返回:第二章 随机变量及其概率分布------------------------------------------------------------------------------------------------2.常见离散型随机变量(1)0—1分布:设X ~),1(p B ,则应用背景:一次抽样中,某事件A 发生的次数X ~),1(p B ,其中EX X P A P p ====)1()(例2 设某射手的命中率为p ,X 为其一次射击中击中目标的次数,则X ~),1(p B(2)二项分布:设X ~),(p n B ,则()(1),0,1,2,,k k n kn P X k C p p k n -==-=应用背景:n 次独立重复抽样中某事件A 发生的次数X ~),(p n B ,其中()p P A =为事件A 在一次抽样中发生的概率。
例3 某射手的命中率为0.8,X 为其5次射击中命中目标的次数,则X 取的可能值为5,,1,0 ,52()0.80.2k k k P X k C -==,即X ~)8.0,5(B记住:若X ~),(p n B ,则np EX =,)1(p np DX -=------------------------------------------------------------------------------------------------ 9.知识点:事件的关系及二项分布设每次试验成功的概率为)10(<<p p ,则在3次独立重复试验中至少成功一次的概率为( ) A .3)1(1p -- B .2)1(p p - C .213)1(p p C -D .32pp p ++答案:A解: 利用对立事件求解。
第二章 随机变量及其分布 随机变量:设随机试验的样本空间为S={e},X=X{e}是定义在样本空间S 上的实值单值函数,称X=X{e}为随机变量一般以大写字母X,Y,Z,W,…表示随机变量,而以小写字母x,y,z,……表示实数离散型随机变量:全部可能取到的不相同的值是有限个或可列无限多个的随机变量 ?怎么判断可列无限多个呢? 离散型随机变量的分布律: 1)等式形式表示为{},2,1,===k p x X P k k … 2)表格形式表示:X 1x 2x … n x … i p1p2p…n p…三种重要的离散型随机变量: 1.(0-1)分布设随机变量X 只能取0与1两个值,它的分布律是 {})10(1,0,)1(1<<=-==-p k p p k X P k k 则称X 服从(0-1)分布或两点分布 其分布律也可写成:X0 1 i p1-pp2.伯努利试验、二项分布伯努利试验:设试验E 只有两个可能结果:A 及A ,则称E 为伯努利试验,设P(A)=p(0<p<1),此时P(A )=1-p 。
将E 独立地重复进行n 次,则称这一串重复的独立试验为n 重伯努利试验设X 为n 重伯努利试验中事件A 发生的次数,则X 是一个随机变量,且满足n k q p C k X P kn k k n ,^,2,1,0,)(===-,称随机变量X 服从参数为n,p 的二项分布,记为X ~b(n,p)3.泊松分布设随机变量X 所以可能取的值为0,1,2,…,而取各个值的概率为 !}{k e k X P k λλ-==,k=0,1,2,……其中λ>0是常数,则称X 服从参数为λ的泊松分布,记为X ~π(λ)非离散型随机变量:其可能取值不能一个一个地列举出来非离散型随机变量取任一指定的实数值的概率都等于0 分布函数:设X 是一个随机变量,x 是任意实数,函数F(x)=P{X ≤x}称为X 的分布函数 对于任意实数1x ,2x (1x <2x ),有)()(}{}{}{121221x F x F x X P x X P x X x P -=<-≤=≤<分布函数完整地描述了随机变量的统计规律性。
第二章 随机变量及其分布 §1.随机变量与分布函数一、随机变量的概念定义:假设Ω为试验E 的样本空间,对任意的ω∈Ω都赋予一个实数X (ω)与之对应,则实值函数X ()称为随机变量,一般用X ,Y ,Z 或者,ξη 注:1、Z (ω)由ω唯一确定2、随机变量X 与实数x 的区别3、对实数x ,事件{X ≤x}有一定的概率,P{X ≤x} 二、分布函数定义:设(Ω, ,P )为概率空间,还为定义在Ω上的随机变量,对任意x ∈R ,一元实值函数F (x )= P{X ≤x},称为r ,v ,X 的概率分布函数,简称分布函数 注:1、F (x )= P{X ≤x},x ∈R2、分布函数是指描述随机变量分布的根本方法3、分布函数的性质性质1、(单调性)对任意的12X X ≤,有F (1X )≤F (2X ) 注:P (a X b <≤)=F (b )-F (a )P (a X b ≤≤)= F (b )-F (a )+P (X=a )P (a X b ≤<)= F (b )-F (a )+P (X=a )-P (X=b ) P (a X b <<)= F (b )-F (a )-P (X=b ) P (X a ≤)= F (a ) P (a X <)=1- F (a ) 性质2、(有界性):0≤F (x )1≤ 性质3、()lim ()1x F F x →+∞+∞==()lim ()0x F F x →-∞-∞==性质4、(右连续性) 对任意x ∈R ,有F (x+0)=F (x ) 证明:设x A ={X ≤x+1n} 则123......A A A ⊇⊇⊇且n ={}n A X x +∞=-∞⋂≤所以F(x)=P{X ≤x}=P(1n n A ∞=⋂)=lim ()n n P A →+∞=n +11lim (x+)=lim ()nn P X F x n→+∞→∞≤+由F(x)的单调性 F(x)=F(x+0)例:设r.v.X 的分布函数为F(x)=A+Barctanx x ∈R 求待定系数A.B 由F(+∞)=1 F(-∞)=0 得到lim (arctan )12x A B x A B π→+∞+=+=lim (arctan x )=a-02x A B B π→∞+= 所以A=12B=1π第二节 离散型r .v .及其分布一.基本概念定义:设X 为样本空间Ω的随机变量,若存在一个有限或可列无限集B ,使得P{X ∈B}=1则称X 为离散型r . v . 设其所有可列取值为{k X } K=1.2.3……n …则k P =P(X=k X ) K=1.2.3…..n …则称为X 的概率分布列[注]:1.概率分布列是描述离散型随机变量的概率分布的方法之一分布矩阵1212........................n n x x x p p p ⎛⎫⎪⎝⎭3.非负性:k P >0.k=1.2….. 归一性:K kP ∑=14.求离散型r . v . 分布列的步骤Step1:列出r . v . X 的所有可能取值 Step2:计算几个取值对应的概率例:甲乙两队进行比赛,规定谁先赢三局获胜。
《概率论与数理统计》第二章基础知识小结第二章、基础知识小结一、 离散型分布变量分布函数及其分布律 1. 定义:),3,2,1(}{ ===i p x X P i iX1x 2x 3x … k x …P1p 2p 3p … k p …2.分布律}{k p 的性质: (1);,2,1,0 =≥k p k (2)11=∑∞=k k p3.离散型随机变量的分布函数:∑≤=≤=xx kk px X P x F }{)(4.分布函数F (X )的性质: (1)1)(0≤≤x F(2))(x F 是不减函数,0)()(}{1221≥-=≤<x F x F x X x P(3)1)(,0)(=+∞=-∞F F ,即1)(lim ,0)(lim ==+∞→-∞→x f x f x x (4))(x F 右连续,即)()(lim )0(0x F x x F x F x =∆+=+→∆(5))()(}{}{}{a F b F a X P b X P b X a P -=≤-≤=≤<)(1}{1}{a F a X P a X P -=≤-=>5.三种常见的离散型随机变量的概率分布(1)0-1分布(),1(~p B X )X 0 1 Pp q(2)二项分布(),(~p n B X )n k q p C k X P p kn k k n k ,,2,1,0,}{ ====-(3)泊松分布()(~λP X ),,,2,1,0,!}{n k e k k X P p kk ====-λλ二、连续型随机变量分布函数及其概率密度 1.连续型随机变量的分布函数即概率密度定义:dt t f x X P x F x⎰∞-=<=)(}{)(其中,)(x F 为X 的分布函数,)(x f 为X 的概率密度。
2.概率密度的性质 (1)0)(≥x f (2)1)(=⎰+∞∞-dx x f(3)dx x f a F b F b X a P ba ⎰=-=≤<)()()(}{ (4))()(x f x F ='3.三种常见的连续型随机变量 (1)均匀分布(),(~b a U X )⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a a b x f(2)指数分布()(~λE X )⎩⎨⎧≤>=-0,00,)(x x e x f x λλ(3)正态分布(),(~2σμN X )+∞<<-∞=--x ex f x ,21)(222)(σμσπ(4)标准正态分布()1,0(~N X )及其性质+∞<<-∞=-x ex f x ,21)(22π性质:A.)(1)(x x ΦΦ-=-B.21)0(=Φ(5)非标准正态分布标准化 设),(~2σμN X ,则z =x −μσ~N(0,1)三、随机变量函数的概率分布 1.离散型随机变量函数的概率分布 设离散型随机变量X 的分布律为:X1x 2x 3x …k x …P1p 2p 3p …k p …则X 的函数)(X g Y =的分布律为:X)(1x g )(2x g )(3x g … )(k x g …P1p 2p 3p …k p …2.连续型随机变量函数的分布设X 的连续型随机变量,其概率密度为)(x f X 。
19. (1)由统计物理学知, 分了运动速度的绝对值X 服从马克斯韦尔(Maxwall)分布, 其概率密度为⎩⎨⎧>=-其他00)(/22x e Ax x f b x ,其中kTm b 2=, k 为Boltzmann 常数, T 为绝对温度, m 是分子的质量,试确定常数A .(2)研究了项格兰在1875年~1951年期间, 矿山发生导致10人或10人以上死亡的事故的频繁程度, 得知相继两次事故之间的时间T (以日计)服从指数分布, 其概率密度为⎪⎩⎪⎨⎧>=-其他002411)(241/t e t f t T .求分布函数F T (t ), 并求概率P (50<T <100). 解: (1)由于⎰+∞∞-=1)(dx x f , 因此有10/22=⎰+∞-dx e Ax b x , 从而解得bb A π4=.(2)⎰⎰⎰--===-∞-tt x x tT T x e dx e dx x f t F 00241/241/)241(2411)()( 241/0241/1|t t x e e ---=-= (t ≥0),故 ⎩⎨⎧<≥-=-0001)(241/t t e t F t T . 24110024150)50()100()10050(---=-=<<e e F F T P T T .20. 某种型号的电子管的寿命X (以小时计)具有以下的概率密度:⎪⎩⎪⎨⎧>=其它010001000)(2x x x f .现有一大批此种管子(设各电子管损坏与否相互独立). 任取5只, 问其中至少有2只寿命大于1500小时的概率是多少? 解: 一个电子管寿命大于1500小时的概率为 }1500{1}1500{≤-=>X P X P⎰--=-=15001000150010002)1(1000110001x dx x 32)321(1=--=.用Y 表示任取5只此种电子管中寿命大于1500小时的电子管的个数. 则)32,5(~B Y ,)2(1)2(<-=≥Y P Y P }]1{}0{[1=+=-=Y P Y P])31()32()31[(14155⋅⋅+-=C 243232243111325115=-=⨯+-=.21. 设顾客在某银行的窗口等待服务的时间X (以分计)服从指数分布, 其概率密度为:⎪⎩⎪⎨⎧>=-其它0051)(5x e x F x X .某顾客在窗口等待服务, 若超过10分钟他就离开. 他一个月要到银行5次. 以Y 表示一个月内他未等到服务而离开窗口的次数, 写出Y 的分布律. 并求P (Y ≥1).解: 该顾客一次等待服务未成而离去的概率为21051051051)()10(-∞+-∞+-∞+=-===>⎰⎰e e dx e dx x f X P x x X , 因此Y ~B (5, e -2), 即k k k e e C k Y P ----==5225)1()((k =1, 2, 3, 4, 5).P (Y ≥1)=1-P (Y <1)=1-P (Y =0) 5552)1353363.01(1)389.711(1)1(1--=--=--=-e=1-0.86775=1-0.4833=0.5167.22. 设K 在(0, 5)上服从均匀分布, 求方程4x 2+4xK +K +2=0有实根的概率.解: 因为K 的分布密度为⎪⎩⎪⎨⎧<<-=其他050051)(K K f .要方程有根, 就是要K 满足 (4K )2-4×4×(K +2)≥0.解不等式, 得K ≥2时, 方程有实根, 所以53051)()2(5522=+==≥⎰⎰⎰∞+∞+dx dx dx x f K P .23. 设X~N (3.22).(1)求P (2<X ≤5), P (-4<X ≤10), P (|X|>2), P (X >3); 解: 因为若X~N (μ, σ 2), 则)()()(σμασμββα-Φ--Φ=≤<X P , 所以 )5.0()1()232()235()51(-Φ-Φ=-Φ--Φ=≤<X P=0.8413-0.3085=0.5328,)5.3()5.3()234()235()104(-Φ-Φ=--Φ--Φ=≤<-X P=0.9998-0.0002=0.9996. P (|X |>2)=1-P (|X |<2)= 1-P (-2<P <2) )]232()232([1--Φ--Φ-==1-Φ(-0.5)+Φ(-2.5)=1-0.3085+0.0062=0.6977.P (X >3)=1-P (X ≤3)5.05.01)233(1=-=-Φ-=.(2)确定C 使得P (X >C )=P (X ≤C );解: 因为P (X >C )=1-P (X ≤C )=P (X ≤C ), 得 P (X ≤C )=1/2=0.5.又 5.0)23(}{=-Φ=≤C C X P ,查表可得023=-C , 所以C =3.24. 某地区18岁的女青年的血压(收缩压, 以mm-Hg 计)服从N (110, 122)在该地区任选一18岁女青年, 测量她的血压X . 求: (1)P (X ≤105), P (100<X ≤120); 解: )12110105(}105{-Φ=≤X P=Φ(-0.4167)=1-Φ(0.4167)=1-0.6616=0.3384. )12110100()12110120(}120100{-Φ--Φ=≤<X P1)65(2)65()65(-Φ=-Φ-Φ==2Φ(0.8333)-1=2⨯0.7976-1=0.5952. (2)确定最小的x 使P (X >x )≤0.05. 解: 按要求, 有05.0)12110(1}{1}{≤-Φ-=≤-=>x x X P x X P ,即 95.0)12110(≥-Φx ,查表得 645.112110≥-x ,解得x ≥110+19.74=129.74, 故最小的x =129. 74.25. 由某机器生产的螺栓长度(单位: cm)服从参数为μ=10.05, σ=0.06的正态分布. 规定长度在范围10.05±0.12内为合格品, 求一螺栓为不合格的概率是多少?解: 设螺栓长度为X , 所求概率为 P (X ∉(10.05-0.12, 10.05+0.12)) =1-P (9.93<X <10.17))]06.005.1097.9()06.005.1017.10([1-Φ--Φ-==1-[Φ(2)-Φ(-2)] =1-[0.9772-0.0228] =0.0456.26. 一工厂生产的电子管的寿命X (以小时计)服从参数为μ=160, σ的正态分布, 若要求P (120<X ≤200)≥0.80, 允许σ最大为多少? 解: 因为)160120()160200(}200120{σσ-Φ--Φ=≤<X P80.0)40()40(=-Φ-Φ=σσ,又对标准正态分布有Φ(-x )=1-Φ(x ), 所以上式变为 80.0)]40(1[)40(≥Φ--Φσσ,解得9.0)40(≥Φσ. 再查表, 得281.140≥σ, 于是25.31281.140=≤σ.27. 设随机变量X 的分布律为:求Y =X 2的分布律. 解: 由已知分布得再把X 2的取值相同的合并, 并按从小到大排列, 就得函数Y 的分布律为:28. 设随机变量X 在(0, 1)上服从均匀分布. (1)求Y =e X 的分布密度; 解: X 的分布密度为⎩⎨⎧<<=为其他x x x f 0101)(.Y =g (X )=e X 是单调增函数, 又X =h (Y )=ln Y , 反函数存在, 且 α=min{g (0), g (1)}=min{1, e }=1, β=max{g (0), g (1)}=max{1, e }=e , 所以Y 的分布密度为⎪⎩⎪⎨⎧<<⋅=⋅=为其他y ey yy h y h f y 0111|)('|)]([)(ψ. (2)求Y =-2ln X 的概率密度.解: Y =g (X )=-2ln X 是单调减函数, 又2)(Y e Y h X -==反函数存在, 且 α=min{g (0), g (1)}=min{+∞, 0}=0, β=max{g (0), g (1)}=max{+∞, 0}=+∞, 所以Y 的分布密度为⎪⎩⎪⎨⎧+∞<<=-⋅=⋅=--为其他y y e e y h y h f y y y 0121|21|1|)('|)]([)(22ψ.29. 设X~N (0, 1).(1)求Y =e X 的概率密度; 解: X 的概率密度是2221)(x e x f -=π(-∞<x <+∞). Y =g (X )=e X 是单调增函数, 又X =h (Y )=ln Y , 反函数存在, 且 α=min{g (-∞), g (+∞)}=min{0, +∞}=0, β=max{g (-∞), g (+∞)}=max{0, +∞}=+∞, 所以Y 的分布密度为⎪⎩⎪⎨⎧+∞<<⋅=⋅=-为其他y y y e y h y h f y y 00121|)('|)]([)(2)(ln 2πψ. (2)求Y =2X 2+1的概率密度;解: 在这里, Y =2X 2+1在(+∞, -∞)不是单调函数, 没有一般的结论可用.设Y 的分布函数是F Y (y ), 则 F Y (y )=P (Y ≤y )=P (2X 2+1≤y ))2121(-≤≤--=y X y P . 当y <1时F Y (y )=0;当y ≥1时:⎰----=⎪⎭⎫⎝⎛-≤≤--=212122212121)(y y x y dx e y X y P y F π, 故Y 的分布密度ψ(y )是:当y ≤1时, ψ(y )=[F Y (y )]'=(0)'=0;当y >1时,ψ(y )=[F Y (y )]')21(212122'=⎰----y y x dx e π41)1(21---=y e y π.(3)求Y =| X |的概率密度.解: 因为Y 的分布函数为F Y (y )=P (Y ≤y )=P (|X|≤y ), 当y <0时, F Y (y )=0;当y ≥0时, F Y (y )=P (|X|≤y )=P (-y ≤X ≤y )⎰--=yyx dx e 2221π, 所以Y 的概率密度为:当y ≤0时, ψ(y )=[F Y (y )]'=(0)'=0; 当y <0时, ψ(y )=[F Y (y )]'22222)21(y y yx edx e ---='=⎰ππ.30. (1)设随机变量X 的概率密度为f (x )(-∞<x <+∞), 求Y =X 3的概率密度.解: 因为Y =g (X )=X 3是X 单调增函数,又 31)(Y Y h X ==, 反函数存在,且 α=min{g (-∞), g (+∞)}=min{0, +∞}=-∞, β=max{ g (-∞), g (+∞)}=max{0, +∞}=+∞, 所以Y 的分布密度为323131)(|)(|)]([)(-⋅='⋅=y y f y h y h f y ψ (-∞<y <+∞), 但y ≠0, ψ(0)=0.(2)设随机变量X 的概率密度为⎩⎨⎧>=-其它00)(x e x f x , 求Y =X 2的概率密度.解法一: 因为X 的分布密度为⎩⎨⎧≤>=-000)(x x e x f x . y =x 2是非单调函数,当x <0时, y =x 2 ↘, 反函数是y x -=; 当x <0时, y =x 2↗, y x =,所以)(())(()(~+'--=y f y y f y f Y Y ⎪⎩⎪⎨⎧≤>+=-000210y y e y y⎪⎩⎪⎨⎧≤>=-00021y y e y y .解法二: 因为)()()(~y X y P y Y P y F Y Y ≤<-=≤= )()(y X P y X P -≤-≤=⎪⎩⎪⎨⎧≤>+=⎰-0000y y dx e y x⎩⎨⎧≤>-=-001y y e y ,所以⎪⎩⎪⎨⎧≤>=-00021)(~y y e y y f Y y Y .31.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<<=为其他x x x x f 002)(2ππ, 求Y =sin X 的概率密度.解: 因为F Y (y )=P (Y ≤y )=P (sin X ≤y ), 当y <0时, F Y (y )=0; 当0≤y ≤1时,F Y (y )=P (sin X ≤y )=P (0≤X ≤arcsin y 或π-arcsin y ≤X ≤π)⎰⎰-+=ππππy y dx x dx x arcsin 2arcsin 0222; 当1<y 时, F Y (y )=1, 所以Y 的概率密度ψ(y )为当y ≤0时, ψ(y )=[F Y (y )]'=(0)'=0; 当0<y <1时, ψ(y )=[F Y (y )]'2arcsin 2arcsin 0212)22(ydx x dx x yy-='+=⎰⎰-πππππ; 当1≤y 时, ψ(y )=[F Y (y )]'=(1)'=0.32. 设电流I 是一个随机变量, 它均匀分布在9~11A 之间, 若此电流通过2Ω的电阻, 在其上消耗的功率W =2I 2, 求W 的概率密度.解: ⎪⎩⎪⎨⎧<<-=001199111)(i i f I .W =2I 2 ,)2()2()()(22w I P w I P w W P w F W ≤=≤=≤=.当w <0时, F W (w )=0; 当w ≥0时,)22()2()(2w i w P w I P w F W ≤≤-=≤= ⎰⎰⎰⎰=+==--2/92/992/2/2/)()()()(w I w I w I w w I di i f di i f di i f di i f .当9<i <11, 即162<w <242时,)92(2121)29()(2/9-==<<=⎰w di w I P w F w W , 故 ww F w f W W 241)()(='=. 当w ≤162时, F W (w )=0, ϕ(w )=0;当w ≥242时, F W (w )=1, ϕ(w )=0,最后得⎪⎩⎪⎨⎧<<=其他0242162241)(w w w f W .33. 某物体的温度T (︒F )是一个随机变量, 且有T ~N (98.6, 2), 试求θ(︒C )的概率密度. 已知)32(95-=T θ. 解法一: 因为T 的概率密度为22)6.98(2221)(⨯--=t e t f π(-∞<t <+∞), 又)32(95)(-==T T g θ是单调增函数. 3259)(+==θθh T 反函数存在, 且 α=min[g (-∞), g (+∞)]=min(-∞, +∞)=-∞,β=max[g (-∞), g (+∞)]=max(-∞, +∞)=+∞,所以θ的概率密度ψ(θ)为59221|)('|)]([)(4)6.983259(2⋅=⋅=-+-θπθθθψe h h f 100)37(812109--=θπe (-∞<θ<+∞). 解法二: 根据定理: 若X~N (μ, σ2), 则Y =aX+b ~N (a μ+b , a 2σ2), 由于T ~N (98.6, 2), 故⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-⨯-=295,9333295,91606.9895~91609522N N T θ, 故θ的概率密度为100)37(81295293332210929521)(--⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛--==θθππθψe e (-∞<θ<+∞).。
概率论与数理统计第二章总结
概率论与数理统计是研究生数学的重要分支,其研究内容包括概率论、数理统计、随机过程等。
第二章主要涵盖了随机事件和概率的概念、随机变量及其分布、常见的随机变量分布、随机变量的期望和方差等。
在随机事件和概率的概念方面,我们学习了随机事件的定义和分类,以及事件之间的关系和概率的计算方法。
其中,概率的定义和计算方式包括概率的基本性质、事件的概率计算方法、条件概率和贝叶斯公式等。
在随机变量及其分布方面,我们学习了随机变量的定义、表示方式和常见分布的定义和特点。
常见的随机变量分布包括离散型和连续型随机变量的分布,如离散型概率分布、连续型概率分布、二项分布、泊松分布等。
在随机变量的期望和方差方面,我们学习了随机变量期望和方差的定义、计算方法和性质。
期望和方差是随机变量的一些重要数学特征,可以用来计算随机变量的平均值和方差,并且在实际问题中有广泛的应用。
总之,第二章涵盖了概率论与数理统计的基础知识,对于后续的研究和应用具有重要的意义。
概率论与数理统计(二)笔记
经济数学基础二(概率论与数理统计)课程教学大纲
一、课程教学目的与基本要求
概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。
本课程是我院经济、管理类及计算
机类专业继微积分课程之后的一门基础课。
通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。
教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。
通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。
1.要正确理解以下概念:
随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念
2. 要掌握下列基本理论、基本定理和公式:
概率的基本性质。
概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。
切比雪夫大数定律与贝努里大数定律、中心极限定理。
常用的统计量的分布。
参数估计的基本思想。
小概率原理。
3.熟练掌握下列运算法则和方法:
事件的关系与运算。
古典概型的概率计算。
一元随机变量的分布函数、二元随机变量的边缘分布计算。
标准正态分布表的查法。
随机变量的数学期望、方差、协方差计算。
4.应用方面:
用数学期望、方差的概念及性质解决具体问题的计算。
利用正态分布的理论解决具体问题。
用区间估计正确解决实际问题,并能解释其结果。
运用小概率原理,对具体问题做假设检验。
用一元线性回归方程及相关性检验解决实际问题。
二、课程主要内容
第一章随机事件及其概率(10学时)
1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。
2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。
3. 了解概率的公理化定义。
掌握概率的基本性质及概率加法定理。
4. 理解条件概率的概念,掌握概率的乘法定理,理解全概率公式和贝叶斯公式,并会运算和计算。
5. 理解事件的独立性概念,掌握贝努里概型,并会计算有关的概率问题。
第二章随机变量及其分布(8学时)
1. 理解随机变量的概念,了解离散型随机变量及分布律的概念和性质、连续型随机变量及概率密度的概念和性质。
2. 理解分布函数的概念和性质,会利用概率分布计算有关事件的概率
3. 理解0-1分布、二项分布,了解普哇松分布。
了解二项分布与普哇松分布的关系。
4. 了解均匀分布、指数分布,理解正态分布与标准正态分布的定义与关系。
熟练掌握标准正态分布表的查法,会解决具体问题。
5. 会求简单随机变量函数的概率分布。
第三章二维随机变量(8学时)
1. 理解二维随机变量的概念。
2. 了解联合分布的概念及性质,理解边缘分布的概念。
了解联合分布与边缘分布的关系。
3. 理解二维离散型随机变量,会求边缘分布律,了解二维连续型随机变量,会求边缘概率密度。
4. 理解随机变量相互独立性的概念及性质,并会应用。
第四章随机变量的数字特征(10学时)
1. 理解随机变量的数学期望与方差的概念,掌握它们的性质与计算。
2. 会计算随机变量函数的数学期望。
3. 掌握0-1分布、二项分布、普哇松分布、均匀分布、指数分布,正态分布的数学期望与方差
4. 了解协方差与相关系数的概念。
5. 了解切比雪夫不等式及其意义。
6. 了解切比雪夫大数定律与贝努里大数定律的内容与含义。
7. 了解中心极限定理的内容与含义。
第五章数理统计的基本概念(6学时)
1. 理解总体、个体、样本、统计量的概念。
了解直方图的作法。
3. 掌握样本均值、样本方差的计算。
4. 知道三种常见的分布:分布、分布、分布。
第六章参数估计(4学时)
1. 理解参数估计的基本思想,了解矩估计法与最大似然估计法,会运用这些方法估计未知参数。
2. 了解评价估计量的三个标准,会判别
无偏性。
3. 了解置信区间、置信度的概念。
掌握对正态总体均值与方差的区间估计。
会用区间估计正确解决实际问题,并能解释其结果。
第七章假设检验(4学时)
1. 理解假设检验的基本思想,掌握假设检验与区间估计的密切联系。
2. 掌握小概率原理,理解接受域、拒绝域。
了解假设检验中可能产生的两类错误。
3. 掌握对正态总体均值与方差的假设检验,会对相应的具体问题做假设检验。
第八章一元线性回归分析(4学时)
1. 了解回归概念。
2. 会建立一元线性回归方程并进行相关性检验。
3. 了解可线性化回归方程。
三、课程学时分配及教学环节安排表
授课内容提要学时备注
第一章随机事件及其概率10
第二章随机变量及其分布8
第三章二维随机变量8
第四章随机变量的数字特征10
第五章数理统计的基本概念 6
第六章参数估计 4
第七章假设检验 4
第八章一元线性回归分析 4
合计54
四、教材及主要参考书目
1. 教材:《概率论与数理统计》,上海高校《经济数学基础》编写组,立信会计出版社。
2. 参考书目:《概率论与数理统计学习与辅导》,上海高校《经济数学基础》编写组,立信会计出版社。