导数中求参数的取值范围
- 格式:docx
- 大小:104.73 KB
- 文档页数:10
导数的应用——利用单调性求参数的取值范围在解题中,我们首先要确定参数的取值范围是有限的,也就是参数不能无限制地取值。
然后我们利用导数的单调性来排除一些不符合要求的取值范围,从而找到参数的合理取值范围。
为了更好地理解这个方法,我们来看一个具体的例子:问题:已知函数f(x) = ax^2 + bx + c,其中a > 0。
如果函数f(x)在定义域内是递增函数,求参数b的取值范围。
解答:首先,我们要明确函数f(x)是递增函数的定义:对于任意的x1<x2,有f(x1)<f(x2)。
我们可以通过求函数f(x)的导函数f'(x)来判断函数f(x)的单调性。
在本例中,函数f(x)的导函数为f'(x) = 2ax + b。
由于函数f(x)为递增函数,所以f'(x)应该大于0。
即对于任意的x,有f'(x)>0。
我们可以把f'(x) > 0看作是一个一次函数y = 2ax + b > 0的解。
这个一次函数的解为x < -b/2a。
也就是说,对于任意的x<-b/2a,有f'(x)>0。
这样一来,我们就可以得出结论,函数f(x)在x<-b/2a的区间上是递增函数。
但是我们并不能马上就得出参数b的取值范围是x<-b/2a。
因为函数f(x)的定义域可能不包含这个区间。
为了求出参数b的取值范围,我们需要进一步考虑函数f(x)的定义域。
对于函数f(x) = ax^2 + bx + c来说,它的定义域是所有实数集合R。
因此,对于任意实数x,函数f(x)都有定义。
由于我们已经确定了函数f(x)在x<-b/2a的区间上是递增函数,所以我们只需要确定使得这个区间包含在定义域内的参数b的取值范围即可。
如果我们假设b/2a为一个实数k,那么我们可以得出-x>k。
即对于任意的x>-k,函数f(x)是递增的。
然而,x的取值范围是所有实数,所以我们可以把任意实数k当作是b/2a。
利用导数求参数的取值范围在微积分中,导数是用来描述一个函数在其中一点上的变化率的工具。
通过求导,我们可以研究函数的增减性、最值、拐点等性质。
而利用导数求参数的取值范围,我们主要关注函数的单调性和极值点,对于包含参数的函数,我们可以利用导数来研究参数的取值范围。
设函数$f(x)$为包含参数$a$的函数,我们的目标是求出参数$a$的取值范围,使得函数$f(x)$满足其中一特定条件。
下面将分别讨论求函数单调性和极值点的情况。
一、函数的单调性:1.1单调递增:要求函数$f(x)$在其中一区间上单调递增,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)<f(x_2)$。
若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒大于零,则函数$f(x)$在该区间上是单调递增的。
因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递增。
具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。
2)解方程$f'(x)>0$,求出与参数$a$有关的不等式。
3)解不等式,得到参数$a$的取值范围。
1.2单调递减:要求函数$f(x)$在其中一区间上单调递减,即对于区间上的任意两个点$x_1$和$x_2$,若$x_1<x_2$,则$f(x_1)>f(x_2)$。
若函数$f(x)$在区间上是连续的并且可导的,其导函数$f'(x)$在该区间上恒小于零,则函数$f(x)$在该区间上是单调递减的。
因此,我们可以利用导数来求解参数$a$的取值范围,使得函数$f(x)$在其中一区间上单调递减。
具体步骤如下:1)求出函数$f(x)$的导函数$f'(x)$。
2)解方程$f'(x)<0$,求出与参数$a$有关的不等式。
3)解不等式,得到参数$a$的取值范围。
帮你归纳总结(五〕:导数中的求参数取值范围问题 一、常见基此题型:〔1〕函数单调性,求参数的取值范围,如函数()f x 增区间,那么在此区间上 导函数()0f x '≥,如函数()f x 减区间,那么在此区间上导函数()0f x '≤。
〔2〕不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。
例1.a ∈R ,函数2()()e x f x x ax -=-+.〔x ∈R ,e 为自然对数的底数〕〔1〕假设函数()(1,1)f x -在内单调递减,求a 的取值范围;〔2〕函数()f x 是否为R 上的单调函数,假设是,求出a 的取值范围;假设不是,请说明 理由. 解: 〔1〕2-()()e x f x x ax =-+-2-()(2)e ()(e )x x f x x a x ax '∴=-++-+-=2-(2)e x x a x a ⎡⎤-++⎣⎦.()()f x 要使在-1,1上单调递减, 那么()0f x '≤ 对(1,1)x ∈- 都成立, 2(2)0x a x a ∴-++≤ 对(1,1)x ∈-都成立. 令2()(2)g x x a x a =-++,那么(1)0,(1)0.g g -≤⎧⎨≤⎩1(2)01(2)0a a a a +++≤⎧∴⎨-++≤⎩, 32a ∴≤-.〔2〕①假设函数()f x 在R 上单调递减,那么()0f x '≤ 对x ∈R 都成立即2-(2)e 0xx a x a ⎡⎤-++≤⎣⎦对x ∈R 都成立.2e 0,(2)0x x a x a ->∴-++≤ 对x ∈R 都成立令2()(2)g x x a x a =-++,图象开口向上 ∴不可能对x ∈R 都成立②假设函数()f x 在R 上单调递减,那么()0f x '≥ 对x ∈R 都成立,即2-(2)e 0xx a x a ⎡⎤-++≥⎣⎦ 对x ∈R 都成立,e 0,x -> 2(2)0x a x a ∴-++≥ 对x ∈R 都成立. 22(2)440a a a ∆=+-=+>故函数()f x 不可能在R 上单调递增.综上可知,函数()f x 不可能是R 上的单调函数例2:函数()()ln 3f x a x ax a R =--∈,假设函数()y f x =的图像在点(2,(2))f 处的切线的倾斜角为45,对于任意[1,2]t ∈,函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围;解: /(2)1,22af a =-==-由32/2()2ln 23()(2)2, ()3(4)22f x x x mg x x x x g x x m x ∴=-+-∴=++-=++- 令/()0g x =得,2(4)240m ∆=++>故/()0g x =两个根一正一负,即有且只有一个正根函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数 ∴/()0g x =在(,3)t 上有且只有实数根///(0)20,()0,(3)0g g t g =-<∴<>∴237, (4)233m m t t >-+<-故243m t t +<-,而23y t t =-∈在t [1,2]单调减, ∴9m <-,综合得3793m -<<-例3.函数14341ln )(-+-=xx x x f . 〔Ⅰ〕求函数)(x f 的单调区间;〔Ⅱ〕设42)(2-+-=bx x x g ,假设对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥ 恒成立,求实数b 的取值范围. 解:〔I 〕14341ln )(-+-=xx x x f 的定义域是(0,)+∞22243443411)(x x x x x x f --=--=' 由0>x 及0)(>'x f 得31<<x ;由0>x 及0)(<'x f 得310><<x x 或, 故函数)(x f 的单调递增区间是)3,1(;单调递减区间是),3(,)1,0(∞+ 〔II 〕假设对任意)2,0(1∈x ,[]2,12∈x ,不等式)()(21x g x f ≥恒成立, 问题等价于max min )()(x g x f ≥,由〔I 〕可知,在(0,2)上,1x =是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以min 1()(1)2f x f ==-; []2()24,1,2g x x bx x =-+-∈当1b <时,max ()(1)25g x g b ==-; 当12b ≤≤时,2max ()()4g x g b b ==-; 当2b >时,max ()(2)48g x g b ==-;问题等价于11252b b <⎧⎪⎨-≥-⎪⎩ 或212142b b ≤≤⎧⎪⎨-≥-⎪⎩ 或21482b b >⎧⎪⎨-≥-⎪⎩解得1b <或12b ≤≤或 b ∈∅即2b ≤,所以实数b的取值范围是,⎛-∞ ⎝⎦。
利用函数的单调性求参数的取值范围函数的单调性是指在一定范围内,函数的增减性质的统一性。
对于有单调性的函数,可以通过研究函数的导数来判断参数的取值范围。
首先,我们来回顾一下导数的定义和性质。
对于函数f(x),其导数可以表示为f'(x),导数表示函数在其中一点的变化率。
导数的正负号可以告诉我们函数的单调性。
1.若在[a,b]上f'(x)≥0,则函数在[a,b]上为单调递增函数。
2.若在[a,b]上f'(x)≤0,则函数在[a,b]上为单调递减函数。
3.若在[a,b]上f'(x)>0,则函数在[a,b]上为严格递增函数。
4.若在[a,b]上f'(x)<0,则函数在[a,b]上为严格递减函数。
步骤1:确定函数的定义域,即参数的取值范围。
步骤2:求出函数的导函数。
步骤3:利用导函数的性质来判断函数的单调性。
步骤4:结合定义域和单调性判断,确定参数的取值范围。
步骤5:验证参数的取值范围是否符合要求。
下面我们通过具体例子来说明求解参数取值范围的方法。
例子:求函数f(x) = ax^2 + bx + c 在定义域上的参数a、b、c的取值范围。
步骤1:确定函数的定义域。
对于二次函数,其定义域是整个实数集R。
步骤2:求出函数的导函数。
对f(x)求导得到f'(x) = 2ax + b。
步骤3:利用f'(x)的性质来判断函数的单调性。
-若2a>0,则函数在整个定义域上递增。
-若2a<0,则函数在整个定义域上递减。
步骤4:结合定义域和单调性判断,确定参数的取值范围。
-若2a>0,则函数在整个定义域上递增,所以a>0。
-若2a<0,则函数在整个定义域上递减,所以a<0。
然后,我们可以根据b和c的取值范围来进一步限定a的取值范围。
当a>0时:根据二次函数的几何性质,对于抛物线开口朝上的情况,函数的最小值出现在顶点处,顶点的x坐标为 -b/2a,对应的y坐标为 c - b^2/4a。
利用导数求参数的取值范围方法归纳导数是微积分中的重要概念,可以用于求函数的变化率、极值、最值等问题。
利用导数求参数的取值范围可以帮助我们找到函数的关键点、拐点以及定义域的范围等信息。
下面是一些常见的方法归纳。
求函数在处的导数:1.首先,计算函数的导数表达式。
2.将参数值代入导数表达式,得到函数在该处的导数。
3.根据导数值的正负来判断函数在该处的增减性。
求函数的关键点:1.通过导数求出函数的导数表达式。
2.设置函数的导数等于零的方程,并求解得到参数的取值。
3.将参数的取值代入原函数,得到关键点的横坐标。
4.进一步求得关键点的纵坐标,得到函数的关键点。
求函数的拐点:1.首先,求出函数的二阶导数表达式。
2.解出二阶导数等于零的方程,得到参数的取值。
3.将参数的取值代入原函数,求出拐点的横坐标。
4.进一步求得拐点的纵坐标,得到函数的拐点。
求函数的定义域范围:1.首先,确定函数的定义区间,并计算函数在该区间的导数。
2.判断导数的正负情况,以确定函数的单调性。
3.判断函数在定义区间的端点处是否存在极值。
若存在,则考虑边界条件。
4.根据以上分析,确定函数在定义区间的取值范围。
举例说明:1. 求函数 f(x) = ax^2 + bx 的最值:首先,求出函数的导数 f'(x) = 2ax + b。
令导数等于零,得到 2ax + b = 0,解方程可得 x = -b/(2a)。
将x的值代入原函数,得到最值的纵坐标。
进一步分析函数的单调性和边界条件,得到函数的取值范围。
2. 求函数 g(x) = sin(ax) 的最值:首先,求出函数的导数 g'(x) = acos(ax)。
判断导数的正负情况,确定函数的单调性。
根据函数的周期性和边界条件,得出函数在定义区间的取值范围。
3. 求函数 h(x) = log(x + a) 的定义域范围:首先,确定函数的定义区间为x+a>0,即x>-a。
对函数求导,得到导数h'(x)=1/(x+a)。
导数题中求参问题的常见解法方法一:函数最值法例一:设函数f(x)=e2x+ae x a∈R。
(1)当a=-4时,求f(x)的单调区间;(2)若对任意的x∈R,f(x)≥a2x 恒成立,求实数a的取值范围。
+2lnx 。
练习:设函数f(x)=1x(1)讨论函数f(x)的单调性。
(2)如果对所有x≥1 ,都有f(x)≤ax,求a的取值范围。
方法二:分离参数法例二:已知f(x)=ln x-x3+2e x2-ax,a∈R,其中e为自然对数的底数.(1)若f(x)在x=e处的切线的斜率为e2,求a;(2)若f(x)有两个零点,求a的取值范围.练习:已知函数f(x)=e x−asinx−1 (a∈R)。
(1)若a=1,求f(x)在x=0处的切线方程;(2)若f(x)≥0对一切x∈[0,1]恒成立,求实数a的取值范围。
方法三:变换后构造新函数法(重点在变换)例三:已知函数f(x)=ax2−ax,g(x)=xlnx ,若f(x)≥g(x)恒成立,求实数a的值。
练习:已知函数f(x)=alnx−2ax+1,对任意x≥1,f(x)≥−e x−1恒成立。
求实数a的取值范围。
(本题的重点在处理方法)方法四切线法例四:已知(1−x2)e x≤ax+1,对x≥0恒成立,求a的取值范围。
练习:1、已知函数f (x )=(x +1)lnx −a(x −1)。
(1) 当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2) 若当x ∈(1,+∞)时,f(x)>0,求a 的取值范围。
2、若函数f (x )=lnx −e x −2mx +n ,f(x)≤0对任意x ∈(0,+∞)都成立,求n m 的最大值。
法五::不等式法例题五:已知函数f (x )=x (e 2x −a )−lnx ,若f(x)≥1在(0,+∞)上恒成立,则实数a 的取值范围是( )A 、 (−∞,e −1]B 、 (−∞,e −1)C 、 (−∞,2]D 、(−∞,2)解:因为f (x )≥1在(0,+∞)恒成立,所以a ≤xe 2x −lnx−1x 令h (x )=e lnx e 2x −lnx−1x =e lnx+2x −lnx−1x ≥lnx+2x+1−lnx−1x =2练习:1已知函数f (x )=axe x (a ∈R,e 为自然对数的底数),g (x )=lnx +kx +1(k ∈R).(1) 若k=-1,求函数g(x)的单调区间。
利用导数求参数的取值范围一•已知函数单调性,求参数的取值范围类型1 •参数放在函数表达式上例1. 设函数f(x) 2x3 3(a 1)x2 6ax 8其中a R •⑴若f (x)在x 3处得极值,求常数a的值.⑵若f(x)在(,0)上为增函数,求a的取值范围二.已知不等式在某区间上恒成立,求参数的取值范围类型1.参数放在不等式上2例3•已知f(x) x3ax2bx c在x 与x 1时都取得极值3(1)求a、b的值及函数f (x)的单调区间.(2)若对x [ 1,2],不等式f(x) C2恒成立,求c的取值范围.23. 已知函数f (x) x3— 2x 5,若对任意x [ 1,21都有f (x) m则实数m的取值范围是2类型2 .参数放在区间上例4 .已知三次函数f(x) ax3 5x2 cx d图象上点(1,8)处的切线经过点(3,0),并且f (x)在x=3处有极值.(1) 求f (x)的解析式•( 2)当x (0,m)时,f (x) >0恒成立,求实数m的取值范围.分析:(1) f (x) x3 5x2 3x 9' 2(2) .f (x) 3x 10x 3 (3x 1)(x 3)由f (x) 0得X1丄必 3当x (0,1)时f (x) 0, f(x)单调递增,所以f (x) f (0) 93 3当x 』,3)时f '(x) 0, f (x)单调递减,所以f (x) f(3) 03所以当m 3时f(x) 0在(0,m)内不恒成立,当且仅当m (0,3]时f (x) 0在(0,m)内恒成立所以m的取值范围为(0,3]基础训练:4. 若不等式x4 4x3 ________________________________________ 2 a对任意实数x 都成立,则实数a的取值范围是___________________________________________________ .三.知函数图象的交点情况,求参数的取值范围.例5•已知函数f(x) ax3 bx2 3x在x 1, x 1处取得极值(1)求函数f(x)的解析式.⑵若过点A(1,m)(m 2)可作曲线y= f (x)的三条切线,求实数m的取值范围略解⑴求得f (x) x3 3x⑵设切点为M(x0,x3 3x0),因为f (x) 3x2 3所以切线方程为y m (3x2 3)(x 1),又切线过点M所以x3 3x0 m (3x2 3)(x01)即2x3 3x(2 m 3 0因为过点A可作曲线的三条切线,所以关于X。
导数中求参数的取值范围求参数取值范围的方法1.分离参数,恒成立转化为最值问题2.分离参数,结合零点和单调性解不等式3.将参数分成若干个区间讨论是否满足题意 1已知函数()-x f x e ax=(a R ∈,e 为自然对数的底数).(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a =,函数()()()2x g x x m f x e x x =--++在()2,+∞上为增函数,求实数m 的取值范围. 解:(Ⅰ)函数()f x 的定义域为R ,()x f x e a'=-.当0a ≤时,()0f x '>,∴()f x 在R 上为增函数;当0a >时,由()0f x '=得ln x a =,当(),ln x a ∈-∞时,()0f x '<,∴函数()f x 在(),ln a -∞上为减函数, 当()ln ,x a ∈+∞时,()0f x '>,∴函数()f x 在()ln ,a +∞上为增函数……4分(Ⅱ)当1a =时,()()()2x x g x x m e x e x x=---++,∵()g x 在()2,+∞上为增函数;∴()10x x g x xe me m '=-++≥在()2,+∞上恒成立,即11x xxe m e +≤-在()2,+∞上恒成立, …………………………6分 令()11x xxe h x e +=-,()2,x ∈+∞,则()()()2221x x xxe xe e h x e--'==-()()221x x xe e x e---,令()2x L x e x =--,()10x L x e '=->在()2,+∞上恒成立,即()2x L x e x =--在()2,+∞上为增函数,即()()2240L x L e >=->,∴()0h x '>,即()11x x xe h x e +=-在()2,+∞上为增函数,∴()()222121e h x h e +>=-, ∴22211e m e +≤-,所以实数m 的取值范围是2221,1e e ⎛⎤+-∞ ⎥-⎝⎦. ………………12分2.(2016·全国甲卷)已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f(1)=0,f′(x)=ln x+1x-3,f′(1)=-2.故曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.(2)当x∈(1,+∞)时,f(x)>0等价于ln x-a(x-1)x+1>0.设g(x)=ln x-a(x-1) x+1,则g′(x)=1x-2a(x+1)2=x2+2(1-a)x+1x(x+1)2,g(1)=0.①当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g′(x)>0,g(x)在(1,+∞)上单调递增,因此g(x)>0;②当a>2时,令g′(x)=0得x1=a-1-(a-1)2-1,x2=a-1+(a-1)2-1.由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g′(x)<0,g(x)在(1,x2)上单调递减,因此g(x)<0.综上,a的取值范围是(-∞,2].3.(2016·全国乙卷)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.解:(1)f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.②设a>0,则当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0,所以f(x)在(-∞,1)内单调递减,在(1,+∞)内单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝ ⎛⎭⎪⎪⎫b2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e 2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0; 当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),又f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2. 设g (x )=-x e 2-x -(x -2)e x , 则g ′(x )=(x -1)(e 2-x -e x ).所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.4.已知函数f (x )=ax -1-ln x (a ∈R). (1)讨论函数f (x )在定义域内的极值点的个数;(2)若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.解:(1)由已知得f ′(x )=a -1x =ax -1x(x >0).当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点. 当a >0时,由f ′(x )<0,得0<x <1a,由f ′(x )>0,得x >1a,∴f (x )在⎝ ⎛⎭⎪⎪⎫0,1a 上单调递减,在⎝ ⎛⎭⎪⎪⎫1a ,+∞上单调递增,即f (x )在x =1a处有极小值. ∴当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点. (2)∵函数f (x )在x =1处取得极值,∴f ′(1)=0,解得a =1,∴f (x )≥bx -2⇒1+1x -ln xx≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=ln x -2x2,令g ′(x )=0,得x =e 2.则g (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增, ∴g (x )min =g (e 2)=1-1e2,即b ≤1-1e2,故实数b 的取值范围为⎝ ⎛⎦⎥⎥⎤-∞,1-1e2.5.(2015·全国卷Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈⎝ ⎛⎭⎪⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝ ⎛⎭⎪⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎪⎫1a =ln ⎝ ⎛⎭⎪⎪⎫1a +a ⎝ ⎛⎭⎪⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎪⎫1a >2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).6.(2016·全国甲卷)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 解:(1)f (x )的定义域为(0,+∞). 当a =4时,f (x )=(x +1)ln x -4(x -1), f (1)=0,f ′(x )=ln x +1x-3,f ′(1)=-2.故曲线y =f (x )在(1,f (1))处的切线方程为2x +y -2=0. (2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0. 设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x-2a (x +1)2=x2+2(1-a )x +1x (x +1)2,g (1)=0. ①当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)上单调递增,因此g (x )>0;②当a >2时,令g ′(x )=0得x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1.由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)上单调递减,因此g (x )<0.综上,a 的取值范围是(-∞,2].7.(2016·山东高考)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x.当a ≤0,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0,x ∈⎝ ⎛⎭⎪⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增. 所以f (x )在x =1处取得极小值,不合题意. ②当0<a <12时,12a>1,由(1)知f ′(x )在⎝⎛⎭⎪⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎪⎫1,12a 内单调递增,所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a=1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a<1, 当x ∈⎝ ⎛⎭⎪⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.8..(2016·海口调研)已知函数f (x )=mx -mx ,g (x )=3ln x .(1)当m =4时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若x ∈(1,e ](e 是自然对数的底数)时,不等式f (x )-g (x )<3恒成立,求实数m 的取值范围.解:(1)当m =4时,f (x )=4x -4x ,f ′(x )=4+4x2,f ′(2)=5, 又f (2)=6,∴所求切线方程为y -6=5(x -2), 即y =5x -4. (2)由题意知,x ∈(1,e ]时,mx -mx -3ln x <3恒成立,即m (x 2-1)<3x +3x ln x 恒成立, ∵x ∈(1,e ],∴x 2-1>0,则m <3x +3xln xx2-1恒成立.令h (x )=3x +3xln xx2-1,x ∈(1,e ],则m <h (x )min .h ′(x )=-3(x 2+1)·ln x -6(x 2-1)2=-3(x 2+1)·ln x +6(x 2-1)2, ∵x ∈(1,e ],∴h ′(x )<0, 即h (x )在(1,e ]上是减函数.∴当x ∈(1,e ]时,h (x )min =h (e )=9e2(e -1).∴m 的取值范围是⎝⎛⎭⎪⎪⎫-∞,9e 2e -2. 9..(2017·福建省质检)已知函数f (x )=ax -ln(x +1),g (x )=e x -x -1.曲线y =f (x )与y =g (x )在原点处的切线相同.(1)求f (x )的单调区间;(2)若x≥0时,g(x)≥kf(x),求k的取值范围.解:(1)因为f′(x)=a-1x+1(x>-1),g′(x)=e x-1,依题意,f′(0)=g′(0),即a-1=0,解得a=1,所以f′(x)=1-1x+1=xx+1,当-1<x<0时,f′(x)<0;当x>0时,f′(x)>0.故f(x)的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)由(1)知,当x=0时,f(x)取得最小值0,所以f(x)≥0,即x≥ln(x+1),从而e x≥x+1.设F(x)=g(x)-kf(x)=e x+k ln(x+1)-(k+1)x-1,则F′(x)=e x+kx+1-(k+1)≥x+1+kx+1-(k+1),(ⅰ)当k=1时,因为x≥0,所以F′(x)≥x+1+1x+1-2≥0(当且仅当x=0时等号成立),此时F(x)在[0,+∞)上单调递增,从而F(x)≥F(0)=0,即g(x)≥kf(x).(ⅱ)当k<1时,因为f(x)≥0,所以f(x)≥kf(x).由(ⅰ)知g(x)-f(x)≥0,所以g(x)≥f(x)≥kf(x),故g(x)≥kf(x).(ⅲ)当k>1时,令h(x)=e x+kx+1-(k+1),则h′(x)=e x-k(x+1)2,显然h′(x)在[0,+∞)上单调递增,又h′(0)=1-k<0,h′(k-1)=e k-1-1>0,所以h′(x)在(0,k-1)上存在唯一零点x0,当x∈(0,x0)时,h′(x)<0,所以h(x)在[0,x0)上单调递减,从而h(x)<h(0)=0,即F′(x)<0,所以F(x)在[0,x0)上单调递减,从而当x∈(0,x0)时,F(x)<F(0)=0,即g(x)<kf(x),不合题意.综上,实数k的取值范围为(-∞,1].。