核磁共振H谱F
- 格式:ppt
- 大小:6.17 MB
- 文档页数:140
第二章核磁共振氢谱(1H-NMR)§ 1概述 基本情况1H天然丰度:99.9844%, 1=1/2 ,Y =26.752 (107radT-1S-1) 共振频率:42.577 MHz/T 3 : 0〜20ppmY (relntive) tie-qiiciKV M I L7 Tn JI Lira] fiHiindancc relaii^c wrni 竹 viTy*'IIKH) 5(KJ MHz ms 1%25 L25 Mllz I 1 %⑴七“N-105( ►MHzI 曰19 F455 MHzHH)叫,-20购 Mllz4.7 %nr-釦P40 203 MH7 1 <M) %0.07also trskinp iiitci accniniT Kpicall llliRc^'b idth' and rdl.ix-Viojii mtc%§ 2化学位移1. 影响3值的因素 A.电子效应 (1) 诱导效应a 电负性电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,b.多取代有加和性C.诱导效应通过成键电子传递,随着与电负性取代基 减弱,通常相隔3个以上碳的影响可以忽略不计(2) .共轭效应氮、氧等杂原子可与双键、苯环共轭。
苯环上的氢被推电子基取代,由于 p-n 共轭,使苯环电子云密度增大,3值向高场移动苯环上的氢被吸电子基取代, 由于p-n 共轭或n -n 共轭,使苯环电子云密度降低,3值向低场移动(3) .场效应在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响距离的增大,诱导效应的影响逐渐,使其化学位移发生变化 .这些通过电场发挥的作用称为场效应(4).范德华(Van der Waals )效应在某些刚性结构中 ,当两个氢核在空间上非常接近,其 外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,5值向低场移动B.邻近基团的磁各向异性某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用 是有方向性的。
常见的核磁共振氢谱(化学位移)1. 烷烃 (Alkanes)烷烃中的氢原子通常出现在0.81.3 ppm 的区域。
具体位置取决于烷烃的分支程度和相邻基团的影响。
例如,甲基(CH3)通常在0.9 ppm 左右,而乙基(CH2)则在1.21.4 ppm。
2. 烯烃 (Alkenes)烯烃中的氢原子由于双键的存在,其化学位移通常在 5.06.5 ppm。
双键的位置和相邻基团也会影响具体的化学位移值。
例如,乙烯基(CH=CH2)的氢原子通常在5.05.5 ppm。
3. 芳香烃 (Arenes)芳香烃中的氢原子由于芳香环的存在,其化学位移通常在7.08.5 ppm。
苯环上的氢原子根据其取代基的位置和类型,化学位移会有所不同。
例如,苯环上的甲基(CH3)通常在2.2 ppm 左右,而苯环上的氢原子则在7.27.6 ppm。
4. 醇 (Alcohols)醇中的氢原子由于羟基(OH)的存在,其化学位移通常在1.05.0 ppm。
具体位置取决于羟基与相邻基团的影响。
例如,伯醇(CH2OH)的氢原子通常在3.54.5 ppm,而仲醇(CHOH)则在4.04.5 ppm。
5. 醚 (Ethers)醚中的氢原子由于氧原子的影响,其化学位移通常在 3.04.5 ppm。
具体位置取决于醚键与相邻基团的影响。
例如,甲基醚(OCH3)的氢原子通常在3.23.5 ppm,而乙基醚(OCH2CH3)则在3.54.0 ppm。
6. 酮 (Ketones)ppm。
具体位置取决于羰基与相邻基团的影响。
例如,甲基酮(COCH3)的氢原子通常在2.02.2 ppm,而乙基酮(COCH2CH3)则在2.22.5 ppm。
7. 醛 (Aldehydes)醛中的氢原子由于羰基(C=O)的存在,其化学位移通常在9.010.0 ppm。
具体位置取决于羰基与相邻基团的影响。
例如,甲醛(CHO)的氢原子通常在9.510.0 ppm,而乙醛(CH2CHO)则在9.510.0 ppm。
核磁共振谱在有机化学结构的测定中,核磁共振(NMR)谱有着广泛的应用。
核磁共振谱是由具有磁距的原子核,受辐射而发生跃迁所形成的吸收光谱。
在有机化学中,研究的最多,应用最广的是氢原子核(即质子)的核磁共振谱。
这种核磁共振谱又叫做质子磁共振(PMR)谱。
质子像电子一样,可以自旋而产生磁距。
在磁场中,质子自旋所产生的磁距可以有两种取向,或者与磁场方向一致(↑),或者相反(↓)。
质子磁距的两种取向相当于两个能级。
磁距的方向与外界磁场方向相同的质子的能量较低,不相同的则能量较高。
用电磁波照射磁场中的质子,当电磁波的能量等于两个能级的能量差时,处于低能级的质子就能吸收能量,跃迁到高能级(辐射能吸收的量子化)。
这种现象叫做核磁共振。
(与电子的跃迁相似)用来测定核磁共振的仪器叫做核磁共振仪。
理论上讲,可以把物质放在恒定的磁场中,由逐渐改变辐射频率来进行测定。
当辐射频率恰好等于能级差时,即可发生共振吸收。
此时核磁共振仪就能接收到信号。
但实际上,因磁感应强度与能引起核磁共振的辐射频率具有一定的比例关系,为了操作方便,采用的是保持辐射频率不变,而逐渐改变磁感应强度的方法。
当磁场达到一定强度时,即可发生共振吸收。
核磁共振仪收到信号时,就以吸收能量的强度为纵坐标,磁感应强度为横坐标绘出一个吸收峰。
由此得到波谱图,就是核磁共振谱。
质子的能级差时一定的,因此有机分子中的所有质子,似乎都应该在同一磁感应强度下吸收能量。
这样,在核磁共振图谱中,就应该只有一个吸收峰。
但有机化合物分子中的质子,其周围都是有电子的。
在外加磁场的作用下,电子的运动能产生感应磁场。
因此质子所感应的磁感应强度,并非就是外加磁场的磁感应强度。
一般来说,质子周围的电子使质子所感应到的磁感应强度要比外加磁感应强度弱些。
也就是说,电子对外加磁场有屏蔽作用。
屏蔽作用的大小与质子周围电子云密度的高低有关。
电子云密度越高,屏蔽作用越大,该质子的信号就要在越高的磁感应强度下才能获得。
核磁共振——氢谱PB07206298龚智良实验目的1. 掌握制样技术;2. 了解超导傅立叶变换核磁共振谱仪的工作原理,实习上机操作;3. 初步掌握获得1H-NMR谱图的操作程序与技术,做出给定未知物的1H-NMR谱图;4. 掌握解析未知物的1H-NMR谱图的方法;5. 掌握使用几种不同的谱图索引查找标准谱NMR图。
实验原理核磁共振的研究对象为具有磁矩的原子核。
由于原子核是带正电的粒子,故在自旋运动时将产生磁矩,但并非所有同位素的原子核都有自旋运动,只有存在自旋运动的原子核才具有磁矩。
原子核的自旋运动与自旋量子数I相关。
I=0的原子核没有自旋运动,I≠0的原子核有自旋运动。
I=1/2的原子核具有电荷在核表面均匀分布的旋转球体。
这类核不具有电四极矩,核磁共振谱线较窄,最适宜核磁共振检测。
氢原子就是这样的原子。
根据量子力学规则,原子核自旋角动量在z轴上的投影只能取一些不连续的值P z=mℏ式中m为原子核的磁量子数。
从而原子核不同能级之间的能量差为∆E=−γ∆mℏB0由量子力学选择定则,只有∆m=±1的跃迁才是允许的。
所以相邻能级之间发生跃迁所对应的能量差为∆E=γℏB0在静磁场中,具有磁矩的原子核存在着不同的能级。
此时,如果运用一特定频率的电磁波来照射样品,并使该电磁波满足hυ=γℏB0即可产生核磁共振现象。
仪器结构脉冲傅立叶变换核磁共振谱仪主要由五个部分组成。
射频发射头、探头、磁场系统、信号接收系统和信号处理系统与控制系统。
仪器的结构框图如图1所示。
图1:脉冲傅立叶变换核磁共振谱仪结构框图射频发射系统是将一个稳定、已知频率的石英晶体震荡器(即主钟)产生的电磁波,经频率综合器精确地合成出欲观测核、被辐照核和锁定核的三个通道所需要的频率射频源。
探头是整个仪器的心脏,固定在磁极间隙中间。
备有多种探头组件和插件。
这些组件和插件中除了有放置样品管的支架和驱使样品管旋转的系统外,还装有向样品管发射射频场的发射线圈和用于接受共振信号的接受线圈。
核磁共振氢谱(PMR或1HNMR)核磁共振技术是20世纪50年代中期开始应用于有机化学领域,并不断发展成为有机物结构分析的最有用的工具之一。
它可以解决有机领域中的以下问题:(1)结构测定或确定,一定条件下可测定构型和构象;(2)化合物的纯度检查;(3)混合物分析,主要信号不重叠时,可测定混合物中各组分的比例;(4)质子交换、单键旋转、环的转化等化学变化速度的测定及动力学研究。
NMR的优点是:能分析物质分子的空间构型;测定时不破坏样品;信息精密准确。
NMR通常与IR并用,与MS、UV及化学分析方法等配合解决有机物的结构问题,还广泛应用于生化、医学、石油、物理化学等方面的分析鉴定及对微观结构的研究。
一、基本概念核磁共振(简称为NMR)是指处于外磁场中的物质原子核系统受到相应频率(兆赫数量级的射频)的电磁波作用时,在其磁能级之间发生的共振跃迁现象。
检测电磁波被吸收的情况就可以得到核磁共振波谱。
因此,就本质而言,核磁共振波谱是物质与电磁波相互作用而产生的,属于吸收光谱(波谱)范畴。
根据核磁共振波谱图上共振峰的位置、强度和精细结构可以研究分子结构。
发展历史1.1946 年美国斯坦福大学的F. Bloch 和哈佛大学E.M .Purcell领导的两个研究组首次独立观察到核磁共振信号,由于该重要的科学发现,他们两人共同荣获1952 年诺贝尔物理奖。
NMR发展最初阶段的应用局限于物理学领域,主要用于测定原子核的磁矩等物理常数。
2.1950 年前后W .G. Proctor等发现处在不同化学环境的同种原子核有不同的共振频率,即化学位移。
接着又发现因相邻自旋核而引起的多重谱线,即自旋—自旋耦合,这一切开拓了NMR 在化学领域中的应用和发展。
3.20 世纪60 年代,计算机技术的发展使脉冲傅里叶变换核磁共振方法和谱仪得以实现和推广,引起了该领域的革命性进步。
随着NMR 和计算机的理论与技术不断发展并日趋成熟,NMR 无论在广度和深度方面均出现了新的飞跃性进展,具体表现在以下几方面:1)仪器向更高的磁场发展,以获得更高的灵敏度和分辨率,现己有300、400、500、600MHz,甚至1000MHz 的超导NMR 谱仪;2)利用各种新的脉冲系列,发展了NMR 的理论和技术,在应用方面作了重要的开拓;3)提出并实现了二维核磁共振谱以及三维和多维核磁谱、多量子跃迁等NMR 测定新技术,在归属复杂分子的谱线方面非常有用。