2017年安徽高考文科数学试题含答案(Word版)
- 格式:doc
- 大小:1.08 MB
- 文档页数:15
2016-2017学年安徽省高三(上)10月联考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知集合A={y|y=x2﹣2x﹣1,x∈R},B={y|y=x+,x∈R且x≠0},则(∁R B)∩A=()A.(﹣2,2] B.[﹣2,2)C.[﹣2,+∞)D.(﹣2,2)2.在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列推理过程是演绎推理的是()A.由平面三角形的性质推测空间三棱锥的性质B.某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C.两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B D.在数列{a n}中,a1=2,a n=2a n+1(n≥2),由此归纳出{a n}的通项公式﹣14.已知tanα<0,则()A.sinα<0 B.sin2α<0 C.cosα<0 D.cos2α<05.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c7.设动点P(x,y)满足,则z=x+y的最大值是()A.10 B.30 C.20 D.908.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9 B.11 C.10 D.9.已知函数y=sinx+acosx的图象关于x=对称,则函数y=asinx+cosx的图象的一条对称轴是()A.x=B.x=C.x=D.x=10.在整数Z中,被7除所得余数为r的所有整数组成的一个“类”,记作[r],即[r]={7k+r|k ∈Z},其中r=0,1,2,…6.给出如下五个结论:①2016∈[1];②﹣3∈[4];③[3]∩[6]=Ø;④z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6];⑤“整数a,b属于同一“类””的充要条件是“a﹣b∈[0].”其中,正确结论的个数是()A.5 B.4 C.3 D.211.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.212.对区间I上有定义的函数f(x),记f(I)={y|y=f(x),x∈I},已知函数y=f(x)的定义域为[0,3],自变量x与因变量y一一对应,且f([1,2])=[0,1),f([0,1])=[2,4),若方程f(x)﹣x=0有解x0,则x0=()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分).13.已知||=1,||=2,( +)⊥,则与夹角为.14.已知p:方程x2+mx+1=0有两个不等的正实数根,若¬p是真命题,则实数m的取值范围为.15.已知数列{a n},{b n}满足a1=,a n+b n=1,b n=,n∈N*,则b2016=.+116.已知函数f(x)=sinx,若存在x1,x2,…,x m满足0≤x1<x2<…x m≤6π,且|f(x1))﹣f(x n)|=12,(m≥2,m∈N*),则m的最﹣f(x2)|+|f(x2)﹣f(x3)|+…|f(x n﹣1小值为.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.设函数f(x)=cos(2x+)+2cos2x.(Ⅰ)求f(x)的最大值,并写出f(x)取最大值时x取值构成的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,a=1,求△ABC周长的最大值.18.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?19.如图,在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上的一点,=.(Ⅰ)证明:CB1∥平面A1EM;(Ⅱ)若A1A的长度为,求三棱锥E﹣C1A1M的体积.=2S n+1(n∈N*),等差数列{b n}中,b2=5,20.已知数列{a n}的前n项和为S n,a1=1,a n+1且公差d=2.(1)求数列{a n},{b n}的通项公式;(2)是否存在正整数n,使得a1b1+a2b2+…+a n b n>60n?若存在,求n的最小值,若不存在,说明理由.21.已知椭圆C: +=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(Ⅰ)求椭圆C的方程;(Ⅱ)探照灯的轴截面是一抛物线,如图所示表示平行于x轴的光线于抛物线上的点P,Q 的反射情况,光线PQ过焦点F,如图所示,若抛物线y2=4x,设点P的纵坐标为a(a>0),问a取何值时,从入射点P到反射点Q的光线的路程PQ最短.22.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.2016-2017学年安徽省高三(上)10月联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知集合A={y|y=x2﹣2x﹣1,x∈R},B={y|y=x+,x∈R且x≠0},则(∁R B)∩A=()A.(﹣2,2] B.[﹣2,2)C.[﹣2,+∞)D.(﹣2,2)【考点】交、并、补集的混合运算.【分析】求出集合A中二次函数的值域,确定出集合A,当x大于0时,利用基本不等式求出集合B中函数的值域;当x小于0时,﹣x大于0,同理利用基本不等式求出函数的值域,综上,求出两解集的并集确定出集合B,根据全集为R,求出集合B的补集得到C R B,然后找出C R B与集合A的公共部分即可得到所求的集合.【解答】解:由集合A中的函数y=x2﹣2x﹣1=(x﹣1)2﹣2≥﹣2,∴集合A=[﹣2,+∞),由集合B中的函数y=x+,当x>0时,x+≥2;当x<0时,﹣x>0,﹣(x+)=(﹣x)+(﹣)≥2,此时x+≤﹣2,综上,集合B=(﹣∞,﹣2]∪[2,+∞),又全集为R,∴C R B=(﹣2,2),则(C R B)∩A=(﹣2,2).故选D2.在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数z===的共轭复数对应的点位于第三象限.故选:C.3.下列推理过程是演绎推理的是()A.由平面三角形的性质推测空间三棱锥的性质B.某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C.两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B D.在数列{a n}中,a1=2,a n=2a n+1(n≥2),由此归纳出{a n}的通项公式﹣1【考点】演绎推理的基本方法.【分析】根据三种推理的定义及特点,逐一分析四个答案中的推理过程,可得结论.【解答】解:A中,由平面三角形的性质推测空间三棱锥的性质是类比推理;B中,某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人,是归纳推理;C中,两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B,是演绎推理;D中,在数列{a n}中,a1=2,a n=2a n+1(n≥2),由此归纳出{a n}的通项公式,是归纳推理.﹣1故选:C4.已知tanα<0,则()A.sinα<0 B.sin2α<0 C.cosα<0 D.cos2α<0【考点】三角函数值的符号.【分析】化切为弦,然后利用二倍角的正弦得答案.【解答】解:∵tanα<0,∴<0,∴sinα与cosα异号,∴2sinα•cosα=sin2α<0.故选:B.5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;空间中直线与平面之间的位置关系.【分析】由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”⇒“d1=d2”及“d1=d2”⇒“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.【解答】解:由已知中α1,α2,α3是三个相互平行的平面,且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,又由直线l与α1,α2,α3分别相交于P1,P2,P3.则“P1P2=P2P3”⇒“d1=d2”为真命题且“d1=d2”⇒“P1P2=P2P3”是真命题故“P1P2=P2P3”是“d1=d2”的充分必要条件故选C.6.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【考点】对数值大小的比较;不等关系与不等式.【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选D.7.设动点P(x,y)满足,则z=x+y的最大值是()A.10 B.30 C.20 D.90【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+y,得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,得,即A(10,20),此时z的最大值为z=10+20=30,故选:B.8.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9 B.11 C.10 D.【考点】由三视图求面积、体积.【分析】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为一个长方体截去一个三棱锥.【解答】解:该几何体为一个长方体截去一个三棱锥,其长方体的体积为2×2×3=12,三棱锥的体积××1×2×3=1,故该几何体的体积V=12﹣1=11,故选B.9.已知函数y=sinx+acosx的图象关于x=对称,则函数y=asinx+cosx的图象的一条对称轴是()A.x=B.x=C.x=D.x=【考点】三角函数中的恒等变换应用.【分析】函数y=sinx+acosx变为y=sin(x+φ),tanφ=a又图象关于x=对称,+φ=kπ+,k∈z,可求得φ=kπ+,由此可求得a=tanφ=tan(kπ+)=,将其代入函数y=asinx+cosx化简后求对称轴即可.【解答】解:y=sinx+acosx变为y=sin(x+φ),(令tanφ=a)又∵图象关于x=对称,∴+φ=kπ+,k∈z,可求得φ=kπ+,由此可求得a=tanφ=tan(kπ+)=,∴函数y=sinx+cosx=sin(x+θ),(tanθ=)其对称轴方程是x+θ=kπ+,k∈z,即x=kπ+﹣θ又tanθ=,故θ=k1π+,k1∈z故函数y=asinx+cosx的图象的对称轴方程为x=(k﹣k1)π+﹣=(k﹣k1)π+,k﹣k1∈z,当k﹣k1=0时,对称轴方程为x=,故选:D.10.在整数Z中,被7除所得余数为r的所有整数组成的一个“类”,记作[r],即[r]={7k+r|k ∈Z},其中r=0,1,2,…6.给出如下五个结论:①2016∈[1];②﹣3∈[4];③[3]∩[6]=Ø;④z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6];⑤“整数a,b属于同一“类””的充要条件是“a﹣b∈[0].”其中,正确结论的个数是()A.5 B.4 C.3 D.2【考点】整除的定义.【分析】根据“类”的定义分别进行判断即可.【解答】解:①∵2016÷7=288,∴2016∈[0],故①不正确;②∵﹣3=7×(﹣1)+4,∴﹣3∈[4],故②正确;③[3]∩[6]=Ø,正确④∵整数集中的数被7除的数可以且只可以分成7类,故Z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6],故④正确;⑤∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a﹣b被5除的余数为0,反之也成立,故当且仅当“a﹣b∈[0]”整数a,b属于同一“类”.故⑤正确.正确的结论为②③④⑤.故选:B.11.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【分析】设F(c,0),渐近线方程为y=x,运用点到直线的距离公式可得焦点到渐近线的距离为b,即为圆F的半径,再由MF垂直于x轴,可得a=b,运用a,b,c的关系和离心率公式,即可得到所求值.【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.12.对区间I上有定义的函数f(x),记f(I)={y|y=f(x),x∈I},已知函数y=f(x)的定义域为[0,3],自变量x与因变量y一一对应,且f([1,2])=[0,1),f([0,1])=[2,4),若方程f(x)﹣x=0有解x0,则x0=()A.1 B.2 C.3 D.4【考点】映射.【分析】根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.【解答】解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分).13.已知||=1,||=2,( +)⊥,则与夹角为.【考点】数量积表示两个向量的夹角.【分析】设向量与夹角为θ,由题意可得:(+)•=0,即+cosθ=0,代入已知可得答案.【解答】解:设向量与夹角为θ,则由题意可得:(+)•=0,即+cosθ=0,代入可得:1+1×2×cosθ=0,解得cosθ=,又θ∈[0,π],故θ=故答案为:14.已知p:方程x2+mx+1=0有两个不等的正实数根,若¬p是真命题,则实数m的取值范围为[﹣2,+∞).【考点】命题的真假判断与应用.【分析】借助一元二次函数图象,分析命题p为真的等价条件,求出m的范围;即可求解¬p是真命题,实数m的取值范围.【解答】解:∵方程x2+mx+1=0有两个不等的正实数根,∴⇒m<﹣2,∴若¬p是真命题,m的取值范围是m≥﹣2;故答案为:[﹣2,+∞).15.已知数列{a n},{b n}满足a1=,a n+b n=1,b n=,n∈N*,则b2016=.+1【考点】数列递推式.=,n∈N*,可得b1=1﹣a1=,【分析】数列{a n},{b n}满足a1=,a n+b n=1,b n+1==.求出b2,b3,b4,…,猜想:b n=,即可得出.b n+1=,n∈N*,【解答】解:∵数列{a n},{b n}满足a1=,a n+b n=1,b n+1==.∴b1=1﹣a1=,b n+1∴b2=,b3=,b4=,…,猜想:b n=,=成立.经过验证:b n+1则b2016=.故答案为:.16.已知函数f(x)=sinx,若存在x1,x2,…,x m满足0≤x1<x2<…x m≤6π,且|f(x1))﹣f(x n)|=12,(m≥2,m∈N*),则m的最﹣f(x2)|+|f(x2)﹣f(x3)|+…|f(x n﹣1小值为8.【考点】数列的求和.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,)﹣f(x m)考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.设函数f(x)=cos(2x+)+2cos2x.(Ⅰ)求f(x)的最大值,并写出f(x)取最大值时x取值构成的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,a=1,求△ABC周长的最大值.【考点】余弦定理;余弦函数的图象.【分析】化简函数f(x),(Ⅰ)根据三角函数的图象与性质求出f(x)的最大值以及对应x 的取值集合;(Ⅱ)根据题意求出A的值,再利用正弦定理求出b、c的解析式,写出△ABC的周长L,求出它的最大值.【解答】解:函数f(x)=cos(2x+)+2cos2x=cos2xcos﹣sin2xsin+2×=﹣sin2x+cos2x+1=﹣sin(2x﹣)+1;(Ⅰ)令2x﹣=﹣+2kπ,k∈Z,解得x=﹣+kπ,k∈Z,∴f(x)的最大值为1+1=2,且f(x)取最大值时x的取值集合是{x|x=﹣+kπ,k∈Z};(Ⅱ)△ABC中,f(B+C)=,∴﹣sin[2(B+C)﹣]+1=,sin[2(B+C)﹣]=﹣,∵0<B+C<π,∴﹣<2(B+C)﹣<,∴2(B+C)﹣=,∴B+C=,∴A=;又∵a=1,∴====,∴b=sinB,c=sinC,∴△ABC的周长为:L=a+b+c=1+sinB+sinC=1+sin(﹣C)+sinC=1+cosC+sinC=1+2sin(C+),∵0<C<,∴<C+<,∴当C+=,即C=时,△ABC的周长取最大值为1+2=3.18.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?【考点】列举法计算基本事件数及事件发生的概率;频率分布表.【分析】(1)由频率=可求其数据,频率分布直方图时注意纵轴;(2)用分层抽样的方法获取样本中的比例;(3)用古典概型求概率.【解答】解:(1)①位置上的数据为=35,②位置上的数据为=0.3;频率分布直方图如右图:(2)6×≈2.47,6×≈2.11,6×≈1.41.故第3、4、5组每组各抽取3,2,1名学生进入第二轮面试.(3)其概率模型为古典概型,设第3、4、5组抽取的学生分别为:a,b,c,1,2,m.则其所有的基本事件有:(a,b),(a,c),(a,1),(a,2),(a,m),(b,c),(b,1),(b,2),(b,m),(c,1),(c,2),(c,m),(1,2),(1,m),(2,m).共有15个,符合条件的有9个;故概率为=0.6.19.如图,在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上的一点,=.(Ⅰ)证明:CB1∥平面A1EM;(Ⅱ)若A1A的长度为,求三棱锥E﹣C1A1M的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)连接AB1,交A1E于点N,连接MN,由E为BB1的中点,且=,得MN∥CB1,再由线面平行的判定得CB1∥平面A1EM;(Ⅱ)由题意可得,结合棱锥体积公式求解.【解答】(Ⅰ)证明:如图,连接AB1,交A1E于点N,连接MN,∵E为BB1的中点,∴,又=,∴MN∥CB1,在△ACB1中,∵MN∥CB1,MN⊂面A1EM,CB1⊄面A1EM,∴CB1∥平面A1EM;(Ⅱ)解:由AA1∥BB1,得,由AA1⊥面A1B1C1,得AA1⊥A1B1,又C1A1⊥A1B1,AA1∩C1A1=A1,∴A1B1⊥面AA1C1C,∴=.20.已知数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1(n∈N*),等差数列{b n}中,b2=5,且公差d=2.(1)求数列{a n},{b n}的通项公式;(2)是否存在正整数n,使得a1b1+a2b2+…+a n b n>60n?若存在,求n的最小值,若不存在,说明理由.【考点】数列的求和.【分析】(1)根据等差数列的通项公式,建立方程关系即可求数列{a n},{b n}的通项公式;(2求出数列{a n b n}的前n项和Sn,即可解不等式.【解答】解:(1)∵a n+1=2S n+1,∴当n≥2时,a n=2S n﹣1+1两式相减得:a n+1=3a n(n≥2)又a2=2a1+1=3=3a1,∴a n+1=3a n(n∈N*).∴数列{a n}是以1为首项,3为公比的等比数列,∴a n=3n﹣1.又b1=b2﹣d=5﹣2=3,∴b n=b1+(n﹣1)d=2n+1.(2)令…①则3T n=3×3+5×32+7×33+…+(2n﹣1)×3n﹣1+(2n+1)×3n…②①﹣②得:∴T n=n×3n>60n,即3n>60,∵33=27,34=81,∴n的最小正整数为4.21.已知椭圆C: +=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(Ⅰ)求椭圆C的方程;(Ⅱ)探照灯的轴截面是一抛物线,如图所示表示平行于x轴的光线于抛物线上的点P,Q 的反射情况,光线PQ过焦点F,如图所示,若抛物线y2=4x,设点P的纵坐标为a(a>0),问a取何值时,从入射点P到反射点Q的光线的路程PQ最短.【考点】椭圆的简单性质.【分析】(I)求得抛物线的焦点,可得c=1,设P为(,m),由椭圆的焦半径公式可得|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解方程可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)设PQ方程为x=my+1,代入抛物线方程,由韦达定理求得y1+y2=4m,y1•y2=﹣4,由弦长公式可知丨PQ丨=•=4(1+m2),即当m=0时,即a=2时,丨PQ丨取得最小值,最小值为4.【解答】解:(Ⅰ)由抛物线y2=4x焦点坐标为(1,0),即c=1,设P为(,m),由椭圆的焦半径公式可得,|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解得:a=2,b==,即有椭圆的方程为;(Ⅱ)由F(1,0),设直线PQ方程为x=my+1,,整理得:y2﹣4my﹣4=0,由韦达定理可知:y1+y2=4m,y1•y2=﹣4,丨PQ丨=•=•,=4(1+m2),∴当m=0时,即a=2时,丨PQ丨取得最小值,最小值为4.22.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出切点(1,1),求出,然后求解斜率k,即可求解曲线f(x)在点(1,1)处的切线方程.(Ⅱ)求出函数的定义域,函数的导函数,①a>﹣1时,②a≤﹣1时,分别求解函数的单调区间即可.(Ⅲ)转化已知条件为函数在[1,e]上的最小值[h(x)]min≤0,利用第(Ⅱ)问的结果,通过①a≥e﹣1时,②a≤0时,③0<a<e﹣1时,分别求解函数的最小值,推出所求a的范围.【解答】解:(Ⅰ)当a=2时,f(x)=x﹣2lnx,f(1)=1,切点(1,1),∴,∴k=f′(1)=1﹣2=﹣1,∴曲线f(x)在点(1,1)处的切线方程为:y﹣1=﹣(x﹣1),即x+y﹣2=0.(Ⅱ),定义域为(0,+∞),,①当a+1>0,即a>﹣1时,令h′(x)>0,∵x>0,∴x>1+a令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤﹣1时,h′(x)>0恒成立,综上:当a>﹣1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.当a≤﹣1时,h(x)在(0,+∞)上单调递增.(Ⅲ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)≤0,即函数在[1,e]上的最小值[h(x)]min≤0.由第(Ⅱ)问,①当a+1≥e,即a≥e﹣1时,h(x)在[1,e]上单调递减,∴,∴,∵,∴;②当a+1≤1,即a≤0时,h(x)在[1,e]上单调递增,∴[h(x)]min=h(1)=1+1+a≤0,∴a≤﹣2,③当1<a+1<e,即0<a<e﹣1时,∴[h(x)]min=h(1+a)=2+a﹣aln(1+a)≤0,∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2此时不存在x0使h(x0)≤0成立.综上可得所求a的范围是:或a≤﹣2.2017年1月11日。
2017年全国卷1高考文科数学真题及答案解析(完整版)
高考是人生的一大考试,成败与否,心态最为重要。
希望大家能保持一颗平常的心态,积极迎战!请大家谨记,为理想奋斗的宝贵过程其意义远远大于未知的结果。
高考频道会及时为广大考生提供[2017年全国卷1高考文科数学真题及答案解析(完整版)],更多高考分数线、高考成绩查询、高考志愿填报、高考录取查询信息等信息请关注我们网站的更新!
2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F是双曲线C:x2-2 3y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.38..函数sin21cosxyx=-的部分图像大致为9.已知函数()ln ln(2)f x x x=+-,则A.()f x在(0,2)单调递增B.()f x在(0,2)单调递减C.y=()f x的图像关于直线x=1对称D.y=()f x的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{1,2,3},{2,3,4}A B ==,则A B =UA.{}123,4,,B.{}123,,C.{}234,,D.{}134,,2.(1)(2)i i ++=A.1i -B.13i +C.3i +D.33i + 3.函数()sin(2)3f x x π=+的最小正周期为 A.4π B.2π C.π D.2π 4.设非零向量a ,b 满足+=-b b a a 则A.a ⊥bB.=b aC.a ∥bD.>b a5.若1a >,则双曲线2221x y a-=的离心率的取值范围是 A.2+∞(,)B.22(,) C.2(1,) D.12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+的最小值是A.-15B.-9C.1 D9 8.函数2()ln(28)f x x x =--的单调递增区间是A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A.乙可以知道两人的成绩 B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A.110B.15C.310D.25 12.过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13.函数()2cos sin f x x x =+的最大值为.14.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,监考员将试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4 5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 8..函数sin21cos x y x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。
2017 年普通高等学校招生全国统一考试 1 卷文科数学一、选择题:本大题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x|x<2} ,B={x|3–2x>0},则( )A.A∩B={x|x< 3 32} B.A∩B=ΦC.A∪B={x|x< 2} D.A∪B=R2、为评估一种农作物的种植效果,选了n 块地作试验田。
这n 块地的亩产量(单位:kg)分别为x1,x2,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,⋯,x n 的平均数B.x1,x2,⋯,x n 的标准差C.x1,x2,⋯,x n 的最大值D.x1,x2,⋯,x n 的中位数3、下列各式的运算结果为纯虚数的是( )2 B.i2(1–i) C.(1+i)2 D.i(1+i)A.i(1+i)4、如下左 1 图,正方形ABCD内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。
在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14πB.8C.12πD.42y 25、已知F 是双曲线C:x –3 =1 的右焦点,P 是C上一点,且PF与x轴垂直,点 A 的坐标是(1,3)。
则△APF的面积为( )A.13 B.12 C.23 D.326、如上左2–5 图,在下列四个正方体中,A,B 为正方体的两个顶点,M ,N,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )x+3y ≤ 3x–y≥,1则z=x+y 的最大值为( )7、设x,y 满足约束条件y≥ 0A.0 B.1 C.2 D.3sin2x的部分图像大致为( )8、函数y=1–cosx9、已知函数f(x)=lnx+ln(2 –x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图像关于直线x=1对称D.y=f(x)的图像关于点(1,0)对称nn>1000 的最小偶数n,那么在和两个空白框中,可以分别填入() 10、如图是为了求出满足 3 –2A.A>1000 和n=n+1 B.A>1000 和n=n+2 C.A≤1000和n=n+1 D.A≤1000和n=n+211、△ABC的内角A、B、C 的对边分别为a、b、c。
2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若>1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 2(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。
则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 三、解答题:共70分。
2019 年第四次文数练一、选择题:大题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项中,有一项是符合题目要求的。
1.已知集合A= x|x 2 ,B= x|3 2x 0 ,则A.A B=3x|x B.A B 2C.A B3x|x D.A B= R 22.为评估一种农作物的种植效果,选n 块地作验.这n 块地的亩产量单位:kg)分x1,x2,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量定度的是A.x1,x2,⋯,x n 的平均数B.x1,x2,⋯,x n 的标准差C.x1,x2,⋯,x n 的最大D.x1,x2,⋯,x n 的中位数3.下列各式的运算结果为纯虚数的是A.i(1+i)22B.i (1-i) C.(1+i)2D.i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知 F 是双曲C:x2-2-2y3=1 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点 A 的坐标是(1,3).则△APF 的面为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直AB 与平面MNQ 不平行的是x 3y 3,x y 1, 则z= x+y 的最大值为7.设x,y 满足约束条件y 0,A.0 B.1 C.2 D.38..函数ysin2 x1 cosx的部分图像大致为9.已知函数 f (x) lnx ln(2 x) ,则A.f (x) 在(0,2)单调递增B.f (x) 在(0,2)单调递减C.y= f (x) 的图像关于直线x=1 对称D.y= f (x) 的图像关于点(1,0)对称n n10.如图是为了求出满足 3 2 1000的最小偶数n,那么在和两个空白框中,可以分别填入A . A>1000 和 n=n+1B .A>1000 和 n= n +2C . A ≤ 1000和 n= n +1D .A ≤ 1000和 n= n +211.△ABC 的内角 A 、B 、C 的对分为 a 、b 、c 。
2017年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
第I 卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设i 是虚数单位,复数=++i
i i 123( ) A. i - B. i C. 1- D. 1
2. 命题“0||,2≥+∈∀x x R x ”的否定是( )
A.0||,2<+∈∀x x R x
B. 0||,2≤+∈∀x x R x
C. 0||,2000<+∈∃x x R x
D. 0||,2000≥+∈∃x x R x
3.抛物线24
1x y =的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x
4.如图所示,程序框图(算法流程图)的输出结果是( )
A.34
B.55
C.78
D.89
5.设
,8.0,2,7log 3.33===c b a 则( ) A.c a b << B.b a c << C.a b c << D.b c a <<
6. 过点P )
(1,3--的直线l 与圆12
2=+y x 有公共点,则直线l 的倾斜角的取值范围是( ) A.]60π,( B.]30π,( C.]60[π, D.]3
0[π, 7.若将函数x x x f 2cos 2sin )(+=的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( ) A.8π B.4π C.83π D.4
3π 8.一个多面体的三视图如图所示,则多面体的体积是( )
A.233
B.476
C.6
D.7
9.若函数()12f x x x a =+++的最小值3,则实数a 的值为( )
A.5或8
B.1-或5
C. 1-或4-
D.4-或8
10.设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( )
A.2
3π B.3π C.6
π D.0 第I I 卷(非选择题 共100分)
二.选择题:本大题共5小题,每小题5分,共25分.
11.34
331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 12.如图,在等腰直角三角形
ABC 中,斜边BC =A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,
垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =
,则7a =________.
13.不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩
表示的平面区域的面积为________.
(13)若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为
()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛f f (14)若直线l 与曲线C 满足下列两个条件:
)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .
下列命题正确的是_________(写出所有正确命题的编号)
①直线0:=y l 在点()0,0P 处“切过”曲线C :2x y =
②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y
③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin =
④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan =
⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =
三.解答题:本大题共6小题,共75分.解答应写文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内
16.(本小题满分12分)
设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3,1b c ==,ABC ∆的面积为求cos A 与a 的值.
17、(本小题满分12分)
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(Ⅰ)应收集多少位女生样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
.估计该校
学生每周平均体育运动时间超过4个小时的概率.
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时
间与性别有关”.
附:
18.(本小题满分12分)
数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈
(1) 证明:数列{}n a n
是等差数列;
(2) 设3n n b ={}n b 的前n 项和n S
19(本题满分13分)
如图,四棱锥ABCD P -的底面边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,//BC 平面GEFH .
(1)证明:;//EF GH
(2)若2=EB ,求四边形GEFH 的面积.
20(本小题满分13分)
设函数23()1(1)f x a x x x =++--,其中0a >
(1) 讨论()f x 在其定义域上的单调性;
(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.
21(本小题满分13分)
设1F ,2F 分别是椭圆E :22221(0)x y a b a b
+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =
(1) 若2||4,AB ABF =∆的周长为16,求2||AF ;
(2) 若23cos 5
AF B ∠=
,求椭圆E 的离心率. 安徽省数学(文)小题解析。