深基坑施工监测方案
- 格式:docx
- 大小:37.50 KB
- 文档页数:4
目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。
十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。
十一、监测人员配备............................. 错误!未定义书签。
十二、监测资料的提交........................... 错误!未定义书签。
一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。
建设地点: 四川省乐山市夹江县南岸乡。
通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。
占地面积1956.19㎡, 建筑面积4298.00㎡。
建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。
二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。
基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。
四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。
深基坑施工监测方案一、工程概述本工程为_____项目,位于_____,占地面积约_____平方米,基坑开挖深度为_____米。
周边环境复杂,临近建筑物、道路及地下管线等。
二、监测目的1、及时掌握基坑在施工过程中的变形情况,确保施工安全。
2、为优化施工方案提供数据支持,保障工程质量。
3、预警可能出现的危险情况,以便采取相应的应急措施。
三、监测内容1、水平位移监测在基坑周边设置观测点,采用全站仪或经纬仪进行定期观测,测量水平位移量。
2、竖向位移监测使用水准仪对观测点进行高程测量,监测基坑的竖向位移情况。
3、深层水平位移监测通过埋设测斜管,利用测斜仪测量不同深度处的水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。
5、地下水位监测设置水位观测井,定期测量地下水位的变化。
6、周边建筑物及道路沉降监测在周边建筑物和道路上设置观测点,监测其沉降情况。
四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔_____米布置一个监测点,重点部位适当加密。
2、深层水平位移监测点在基坑周边的关键位置埋设测斜管,每边不少于_____个。
3、支撑轴力监测点选择受力较大的支撑构件,每个构件布置_____个轴力计。
4、地下水位监测点在基坑周边均匀布置水位观测井,间距约为_____米。
5、周边建筑物及道路沉降监测点在建筑物角点和道路沿线每隔_____米设置一个观测点。
五、监测频率1、开挖期间每天监测_____次。
2、底板浇筑完成后每_____天监测一次。
3、主体结构施工期间每_____周监测一次。
4、遇到特殊情况(如暴雨、周边荷载突然增大等)加密监测频率。
六、监测方法及仪器1、水平位移监测采用全站仪或经纬仪进行测量,测量精度不低于_____毫米。
2、竖向位移监测使用高精度水准仪,测量精度不低于_____毫米。
3、深层水平位移监测使用测斜仪进行测量,分辨率不低于_____毫米/米。
4、支撑轴力监测采用轴力计进行监测,测量精度不低于_____kN。
深基坑施工监测方案一、引言深基坑施工是建筑工程中常见的一项重要工作,为了确保施工的安全和质量,监测方案的制定和实施显得尤为重要。
本文将介绍深基坑施工监测方案的编制过程和关键内容,以期为相关工程提供参考和指导。
二、监测目标深基坑施工监测的目标是全面了解基坑周边土体的变形和沉降情况,及时掌握并评估施工过程中可能出现的安全隐患。
监测方案应包括以下几个方面的监测目标:1. 土体沉降监测:记录基坑周边土体的沉降变形情况,分析变形特点和趋势;2. 地下水位监测:监测地下水位变化,评估对基坑土体的影响;3. 周边建筑物、地下管线和交通设施的变形监测:关注基坑施工对周围环境的影响,及时发现并解决变形引起的安全问题。
三、监测方法和仪器设备为了实现监测目标,需要选择合适的监测方法和仪器设备。
根据实际情况,可以采用以下常用监测方法:1. 土体沉降监测:倾斜仪、自动水准仪、全站仪等;2. 地下水位监测:水位计、压力传感器等;3. 建筑物、地下管线和交通设施的变形监测:激光测距仪、位移传感器、摄像机等。
四、监测频率与数据处理监测的频率和数据处理是保证监测效果的重要环节。
监测频率应根据施工进度和环境变化确定,常见的频率包括日、周、月等。
数据处理应包括数据收集、校正、分析和报告输出等环节,确保数据的准确性和实时性。
五、监测预警和控制措施在实际监测过程中,如果发现土体变形或沉降超出预定的控制值,需要及时进行预警和采取有效的控制措施。
预警和控制措施应结合具体情况制定,包括但不限于以下几个方面:1. 增加监测频率,密切关注变形情况;2. 加固、加密现场监测设备;3. 调整施工方案,降低土体变形速度;4. 增加支护结构,提高基坑的稳定性;5. 及时向相关部门报告,寻求支持和解决方案。
六、监测报告为了记录监测的结果和过程,并及时向相关方进行汇报,监测方案中应包含监测报告的要求。
监测报告应包括以下几个方面的内容:1. 工程概况和监测目标的说明;2. 监测方法、设备和频率的描述;3. 监测数据的收集、校正和处理过程;4. 监测结果的分析和评估;5. 预警和控制措施的描述;6. 监测报告的格式和提交要求。
深基坑施工监测方案为确保深基坑施工的安全性和可靠性,本文提出了一份深基坑施工监测方案。
该方案包括监测目标、监测内容、监测方法和监测频率等方面。
通过合理的监测手段和措施,能够及时发现并解决施工过程中的问题,保障工程质量,并最大程度地降低施工风险。
1. 监测目标深基坑施工监测的目标是全面掌握工程施工过程中的变形、沉降、应力等情况,确保基坑的稳定和周边环境的安全。
具体目标包括:1.1 基坑变形监测:监测基坑的水平位移、垂直位移和旋转位移等变形情况,及时了解基坑的形变趋势,判断基坑结构的稳定性。
1.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,以判断基坑施工对周边建筑物的影响,并及时采取相应措施。
1.3 周边地面沉降监测:监测周边地面沉降情况,评估施工对地下水位及地基的影响,保证周边环境的稳定。
1.4 轴力监测:监测基坑支护结构的轴力情况,判断结构的受力状态,及时调整支护结构的施工方案。
2. 监测内容深基坑施工监测的内容涵盖了各个方面的参数和指标。
具体监测内容包括:2.1 基坑变形监测:每隔一定时间对基坑内部和周边地表进行变形监测,使用全站仪或测斜仪进行测量,记录基坑的水平位移、垂直位移和旋转位移等变形数据。
2.2 周边建筑物变形监测:对周边建筑物进行水平位移和沉降监测,使用测点标志和测斜仪等设备定期进行测量,记录建筑物的变形数据。
2.3 周边地面沉降监测:在不同位置设置监测点,使用水准仪或激光水准仪等设备进行地面沉降监测,记录地面沉降情况。
2.4 轴力监测:在基坑支护结构上设置应变片或应变计,监测支护结构的轴力情况,记录轴力数据。
3. 监测方法为了确保监测数据的准确性和可靠性,深基坑施工监测采用了多种监测方法。
具体监测方法包括:3.1 全站仪测量法:通过使用全站仪对基坑内部的参考点和周边地表的监测点进行测量,获取基坑的变形数据。
3.2 测斜仪测量法:在基坑内部和周边地表设置测斜仪,并定期对其进行测量,监测基坑和周边建筑物的变形情况。
深基坑施工监测方案一、项目概述深基坑工程是指土木工程中深度超过3米的基坑挖掘工程,其施工困难度大、风险高,需要进行持续而严密的监测工作。
本监测方案针对深基坑施工监测的全过程进行设计,旨在确保施工的安全性和顺利进行。
二、监测目标1.地质监测:对基坑周边的地质环境进行监测,包括土层的稳定性、地下水位以及地下水流动等情况,提前发现地质灾害隐患。
2.结构监测:对基坑周边的建筑物、道路、管线等结构进行监测,及时了解其受力情况,避免因基坑施工引起的损坏。
3.地下水监测:对基坑内的地下水位、水压等进行监测,确保基坑的排水畅通,从而保证施工的安全性和质量。
三、监测方法1.地质监测:采用地质勘探和地下水位监测等方法,对基坑周边的土层稳定性和地下水位进行实时监测,并定期进行分析和评估。
2.结构监测:采用挠度监测、应变测量以及烘箱干燥法等方法,对基坑周边的建筑物、道路、管线等进行结构监测,并记录监测数据,以便及时发现异常情况。
3.地下水监测:设置地下水位探头、水压计等监测设备,对基坑内部的地下水位和水压进行实时监测,并根据监测数据进行相应的处理和分析。
四、监测频率2.结构监测:在基坑开挖前、挖掘过程中和开挖完成后进行结构监测,根据需要可进行实时监测或定期监测,以确保结构的安全。
3.地下水监测:在基坑开挖前、挖掘过程中和挖掘完成后进行地下水位和水压监测,及时采取排水措施,确保基坑的排水正常。
五、监测报告1.地质监测报告:根据地质监测数据和分析结果,编制地质监测报告,评估基坑周边的地质环境稳定性和地下水位的变化情况,并提出相应的建议和措施。
2.结构监测报告:根据结构监测数据和分析结果,编制结构监测报告,评估基坑周边建筑物、道路、管线等的受力情况,并提出相应的建议和措施。
3.地下水监测报告:根据地下水监测数据和分析结果,编制地下水监测报告,评估基坑内部的地下水位和水压情况,并提出相应的建议和措施。
六、监测责任1.施工方:负责监测设备的安装、维护和数据的收集及整理工作,按照监测方案的要求进行监测,并保证监测设备的正常运行。
施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm 。
仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。
2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。
3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。
深基坑施工监测方案一、背景介绍深基坑施工是建筑工程中一项重要的地下工程施工活动。
由于基坑较深、土壤条件复杂,施工过程中可能会面临一系列的安全隐患。
为了及时发现和解决问题,确保施工的顺利进行,深基坑施工监测方案应运而生。
二、监测目标1. 地面沉降:监测地表沉降情况,及时评估并控制地面沉降的范围和速度。
2. 地下水位:监测基坑周边地下水位的变化,防止地下水涌入基坑,导致工程事故。
3. 地下管线:监测基坑周边地下管线的位移情况,避免工程施工对管线造成破坏。
4. 地面建筑物:监测基坑施工对周边建筑物的影响,保证周边建筑物的安全。
三、监测方法1. 地面沉降监测:a. 使用全站仪实时监测地面水平和垂直位移的变化。
b. 设置沉降点网格,在关键位置进行连续监测。
c. 编制沉降监测曲线,分析沉降速度和变化趋势。
2. 地下水位监测:a. 安装水位计监测基坑周边地下水位的变化。
b. 建立水位监测井,定期采集地下水位数据。
c. 分析地下水位变动趋势,及时采取排水措施。
3. 地下管线监测:a. 使用高精度测距仪监测地下管线的位移情况。
b. 定期巡检地下管线,发现问题及时修复或迁移。
4. 地面建筑物监测:a. 安装倾斜仪、位移传感器等监测周边建筑物的位移情况。
b. 实时监测建筑物的倾斜角度、位移量等数据。
c. 设立安全预警值,一旦超过预警值,及时采取措施保护建筑物。
四、监测报告1. 每周编制监测报告,详细记录各项监测数据和分析结果。
2. 报告中应包括监测数据的变化曲线图、分析结果及建议措施。
3. 监测报告应及时上报给相关负责人,并定期进行讨论和总结。
五、紧急情况处理1. 当监测数据超过安全范围或出现异常情况时,立即采取紧急措施。
2. 紧急措施包括但不限于停工、加固、排水等,以保证工程的安全进行。
六、总结深基坑施工监测方案是保证施工安全和质量的重要保障措施。
通过合理的监测方法和及时的监测报告,可以及早发现问题、预防事故的发生,保证工程的正常进行。
深基坑监测施工方案一、项目背景和目的深基坑施工是工程建设中常见的一项工作,其目的是为了解决工程中的土壤支护问题。
随着城市建设的不断发展,深基坑工程日益增多,为此,需要建立一套科学有效的监测施工方案,以确保施工过程的安全性和顺利性。
二、施工前的准备工作在深基坑监测施工方案中,施工前的准备工作至关重要。
首先,需要对基坑的边界和土质进行详细的调查和评估,以确定土层的强度和稳定性情况。
其次,需要制定具体的监测方案和安全措施,以确保施工过程中的监测工作能够有效进行。
三、设计监测方案1.监测点的确定:根据基坑的大小和形状,需要设计合理的监测点布置方案。
监测点应覆盖基坑的各个关键部位,如坑底、坑壁和坑口等。
同时,根据基坑所在地的土质特点,可以选择不同的监测方法,如测斜、测水位和测应力等。
2.监测仪器的选择和安装:根据监测点的位置和监测参数的要求,需要选择合适的监测仪器,并进行正确的安装和校准。
监测仪器的选择应该考虑到其测量范围、测量精度和使用方便程度等因素。
3.数据采集和处理:监测过程中得到的数据需要进行实时采集和处理。
可以通过传感器和数据采集系统实现数据的实时采集,并利用专业的监测软件对数据进行分析和处理。
同时,需要建立完善的数据备份和存档制度,以保证数据的完整性和可靠性。
四、施工中的监测措施1.现场巡检:深基坑施工过程中,需要安排专人进行现场巡检,以及时发现和处理施工过程中的问题。
巡检的内容包括坑底土层的沉降情况、坑壁的裂缝和滑动情况等。
2.监测数据的实时传输和分析:监测数据应该实时传输到监测中心,并由专业的工程师对数据进行分析和评估。
如果发现数据异常,需要及时采取相应的措施进行处理,以防止事故的发生。
3.应急预案的制定:在施工过程中,可能会遇到突发事件,如降雨、地震等。
为此,需要制定相应的应急预案,以便在紧急情况下能够及时采取措施进行处理,保障工程的安全。
五、监测报告的编制和总结深基坑监测施工结束后,需要编制监测报告,对监测数据进行总结和分析。
深基坑施工监测方案一、前言深基坑施工是城市建设中常见的一项工程,由于其施工过程具有一定的风险性,因此需要进行监测以确保工程的安全进行。
本文将介绍深基坑施工监测方案。
二、监测目的深基坑施工监测的目的是通过对基坑周围土体变形、水位变化、支护结构变形等进行实时监测,以判断施工过程中是否存在风险,及时采取相应措施保障工程安全。
三、监测内容与方法1. 土体变形监测通过安装变形监测仪器,如测站、刷卡仪等,定时测量监测点位的变形数据,包括沉降、位移等。
监测点位需根据基坑的情况进行设置,一般包括基坑四周、内外支护结构、重要附属设施等位置。
2. 土体水位监测通过设置水位测点,监测基坑周围水位变化情况。
水位监测需考虑地下水位、降雨情况等因素,确保监测数据准确可靠。
3. 支护结构变形监测通过在支护结构上安装变形仪器,监测支护结构的变形情况。
常见的变形仪器包括支护边墙的倾斜仪、锚杆的应变测计等。
这些仪器能够实时监测支护结构的变形情况,及时预警并采取安全措施。
四、监测频率与报告监测频率应根据具体的施工情况而定,一般来说,在基坑开挖过程中,监测频率可逐渐提高,以便及时发现问题并采取措施。
监测报告应按照一定的时间间隔提交,内容应包括监测数据、分析结果、问题和建议等。
五、应急措施在深基坑施工监测过程中,如果发现存在安全隐患或风险,应立即采取相应的应急措施,保护施工人员和周围环境的安全。
应急措施可能包括停工、加固支护结构、调整施工方案等。
六、总结深基坑施工监测方案对于施工过程的安全控制起到重要作用。
通过对土体变形、水位变化、支护结构变形等的监测,能够及时发现问题并采取相应的措施,确保施工过程的安全。
在实施监测过程中,应按照监测频率提交监测报告,并采取应急措施来应对意外情况。
以上介绍了深基坑施工监测方案的相关内容,希望能对深基坑施工的安全控制提供一定的参考和指导。
通过严谨的监测方案的实施,可以有效降低施工风险,保障工程的顺利进行。
深基坑施工监测方案
深基坑施工是一种重要的地下建筑工程形式,为了确保基坑施工过程中的安全和稳定性,需要进行细致的监测和控制,以及有效的应对措施。
本文将就深基坑施工监测方案进行探讨。
一、监测目标
深基坑施工监测的目标是对基坑工程施工过程中各项参数和指标进行监测,主要包括:土壤位移、支撑结构变形、地下水位、沉降、裂缝变化等。
通过监测这些指标,可以及时发现施工过程中可能出现的问题,采取相应的措施进行调整和修正。
二、监测方法
1. 土壤位移监测
采用高精度测量仪器,如全站仪、陀螺仪等,对基坑周边的固定点进行位移监测。
监测时间周期为每日、每周和每月,并记录监测数据,进行分析和评估。
2. 支撑结构变形监测
选择适当的变形测量仪器,如倾斜仪、水平测量仪等,对支撑结构进行变形监测。
监测频次为每天、每班、每小时,并及时记录监测数据。
3. 地下水位监测
使用水位计或压力传感器等仪器,对基坑内外地下水位进行监测。
监测频次为每天、每周,并记录监测数据。
同时,要与附近建筑物及
地下管线进行联动监测,确保施工过程中的水位变动对周边环境无影响。
4. 沉降监测
采用经验法和仪器法相结合的方法,对基坑区域和周边区域进行
沉降监测。
经验法包括基坑周边建筑物的观测和技术交底,仪器法则
使用精密测量仪器进行监测,并将监测数据进行分析和评估。
5. 裂缝变化监测
通过视觉观测和测量仪器相结合的方法,对基坑周边建筑物的裂
缝变化进行监测。
监测频次为每日、每周,并记录监测数据,并及时
采取措施进行处理。
三、监测数据处理
在监测过程中,应将监测数据进行及时整理和处理,主要包括以下
几个方面:
1. 数据分析
将监测数据进行统计分析和评估,以便了解施工过程中存在的问
题和隐患,并及时采取相应的措施进行调整和整改。
2. 结果报告
每次监测结束后,应编制监测结果报告,详细记录监测过程、数
据和分析结果。
报告中应包括监测数据的图表展示和文字说明,以便
后续工作的参考。
四、应急措施
1. 监测告警
在施工监测过程中,如发现土壤位移超出允许范围、支撑结构变
形异常、地下水位剧烈波动等情况,应及时发出告警信号,采取紧急
措施进行应对。
2. 支撑结构加固
对于出现支撑结构变形过大或失稳的情况,应及时采取相应的加
固措施,以确保基坑的稳定性和安全性。
3. 泄水排涝
如发现地下水位过高或渗水问题,应及时采取排涝措施,以减小
地下水对基坑的影响。
4. 紧急疏散
在发生紧急情况时,要做好相关人员的疏散工作,确保人员的安全。
五、总结
深基坑施工监测是确保基坑工程施工过程安全和稳定性的重要手段。
通过合理的监测方案和有效的监测方法,可以及时发现问题并采取相
应的措施进行处理。
同时,在监测数据处理和应急措施上也需要做好工作,以确保深基坑施工过程的顺利进行。
最后,还需要结合实际情况进行不断总结和改进,提高深基坑施工监测的效果和水平。