高考数学复习重点知识点90条
- 格式:doc
- 大小:293.51 KB
- 文档页数:6
高中数学考试必备的知识点整理温馨提示:在复习的同时,也要结合课本上的例题去复习,重点是课本,而不是题目应该怎样去做,所以在考前的一天必须回归课本复习,心中无公式,是解不出任何题目来的,只要心中有公式,中等的题目都可以解决。
必修一:一、集合的运算:交集:定义:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B 并集:定义:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为A B补集:定义:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为C UA 二、指数与指数函数1、幂的运算法则:(1)a m •a n =a m + n ,(2)a m ÷a n =a m -n ,(3)(a m )n =a m n (4)(ab )n = a n •b nn -11a n⎛a ⎫nm-n (5) ⎪=n (6)a 0 = 1 ( a ≠0)(7)a =n (8)am=a(9)am=mna b ⎝b ⎭a 2、根式的性质⎧a ,a ≥0n n n n n n n n (1)(a )=a .(2)当为奇数时,a =a ;当为偶数时,a =|a |=⎨.-a ,a <0⎩n n 5.指数式与对数式的互化:log aN =b ⇔a b =N (a >0,a ≠1,N >0).6、对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N (6)log a (MN) = log a M + log a N(7)log a (log b N M ) = log a M -log a N(8)log a N b = b log a N (9)换底公式:log a N =Nlog banlog a b (a >0,且a >1,m ,n >0,且m ≠1,n ≠1,N >0).m (10)推论:log a m b n =(11)log a N =1(12)常用对数:lg N = log 10N(13)自然对数:ln A = log e Alog Na必修4:1、特殊角的三角函数值角α0°30°45°60°πππ角α的弧度数643Sinα12223290°π21180°π0270°3π2-1360°2π0321Cosα12220-101tanα03313不存在0不存在02、诱导公式:函数名不变,符号看象限(把α看成锐角)公式一:Sin(α+2kπ)=Sinα公式二:Sin(α+π)=-SinαCos(α+2kπ)=Cosα Cos(α+π)=-Cosαtan(α+2kπ)=tanα tan(α+π)=tanα公式三:Sin(-α)=-Sinα公式四:Sin(π-α)=SinαCos(-α)= Cosα Cos(π-α)=-Cosαtan(-α)=-tanα tan(π-α)=-tanα公式五:Sin(π2-α)=Cosα公式六:Sin(π2+α)=CosαCos(ππ2-α)=Sinα Cos(2+α)=-Sinα3、两角和与角差的正弦、余弦和正切公式①sin(α+β)=sin αcos β+cos αsin β②sin(α-β)=sin αcos β-cos αsin β③cos(α+β)=cos αcos β-sin αsin β④cos(α-β)=cos αcos β+sin αsin β⑤tan(α+β)=tan α+tan β1-tan αtan β⑥tan(α-β)=tan α-tan β1+tan αtan β4.二倍角的正弦、余弦和正切公式①sin 2α=2sin αcos α②cos 2α=cos 2α-sin 2α=1-2sin 2α=2cos α2-1③tan 2α=2tan α1-tan 2α④sin 2α=1-cos 2α2⑤cos 2α=1+cos 2α2sin αcos α=12sin 2α5、向量公式:→→→→①a ∥b ⇔x 1x =y 1(x 2,y 2≠0)(a ∥b ⇔x 1y 2-x 2,y 1=0)2y2→→→→→②a +b =(a +b )2=a 2+2a →⋅b →→+b 2=→2a +2a →⋅b →⋅cos θ+b→2→→③cos θ=a ⋅b =x 1x 2+y 1y2→(求向量的夹角)a ⋅→bx21+y2x2212+y2⑥④a ⊥b ⇔a ⋅b =0⑥平面内两点间的距离公式:设a =(x ,y ),则→2→→→→→a =x +y 或a =x 2+y 2→22→⑦平面内两点间的距离公式:a =(x 1-x 2)+(y 1-y 2)2222高中数学必修5知识点归纳第一章解三角形1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为∆AB C 的外接圆的a b c半径,则有===2R .sin A sin B sin C2、正弦定理的变形公式:①a =2R sin A ,b =2R sin B ,c =2R sin C ;a b c②sin A =,sin B =,sin C =;③a :b :c =sin A :sin B :sin C ;2R 2R 2R a +b +c a b c④.===sin A +sin B +sin C sin A sin B sin C(正弦定理用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。
高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。
高考数学的重点知识点整理高考数学重点知识点归纳1.满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两部分,其中一部分(半个平面)对应二元一次不等式Ax+By+C0(或≥0),另一部分对应二元一次不等式Ax+By+C0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其方法是:在所有直线外任取一点(如本题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共部分,注意边界是实线还是虚线的含义。
“线定界,点定域”。
6.满足二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。
所有整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,则Ax0+By0+C 与Ax1+Byl+C符号相同;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,则Ax0+By0+C与Ax1+Byl+C符号相反。
高考数学考点大全总结概括高考数学必考知识点一一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。
二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。
三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。
四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。
五、平面向量(12课时,8个)1.向量;2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。
六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。
七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。
高考数学「热门考点」笔记目录1.高考数学重难点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何。
难点:函数、数列、圆锥曲线。
2.高考数学考点:(1)集合与命题:集合的概念与运算、命题、充要条件。
(2)不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。
(3)函数:函数的定义、函数解析式与定义域、值域与最值、反函数、三大性质、函数的零点、函数图象、指数与指数函数、对数与对数函数、函数的应用。
(4)三角比与三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、万能公式、辅助角公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用、反三角函数、最简三角方程。
(5)平面向量:有关概念与初等运算、线性运算、三点共线、坐标运算、数量积、三角形“四心”及其应用。
(6)数列:数列的有关概念、等差数列、等比数列、通项公式求法、数列求和、数列的应用、数学归纳法、数列的极限与运算、无穷等比数列。
(7)直线和圆的方程:方向向量、法向量、直线的方程、两直线的位置关系、线性规划、圆的方程、直线与圆的位置关系。
(8)圆锥曲线方程:椭圆的方程、双曲线的方程、抛物线的方程、直线与圆锥曲线的位置关系、轨迹问题、中点弦问题、圆锥曲线的应用、参数方程。
(9)立体几何与空间向量:空间直线、直线与平面、平面与平面、棱柱、棱锥、球与球面距离、几何体的三视图与直观图、几何体的表面积与体积、空间向量。
(10)排列、组合:排列、组合应用题、二项式定理及其应用。
(11)概率与统计:古典概型、系统抽样、分层抽样、互斥事件、对立事件、独立事件、平均数、中位数、众数、频率分布直方图。
(12)复数:复数的概念与运算、复数的平方根与立方根计算、实系数一元二次方程。
(13)矩阵与行列式初步:二元线性方程组、矩阵的基本运算、二阶行列式、三阶行列式、对角线法则、余子式与代数余子式。
(14)算法初步:流程图、算法语句、条件语句、循环语句。
高考数学259个核心考点
高考数学的核心考点有很多,以下是其中的259个核心考点:
1. 数与代数
2. 算术平方根与整式的乘法
3. 二次函数的图像与性质
4. 二次函数与一次函数的关系
5. 二次函数与一次函数的交点
6. 二次函数与直线的交点
7. 二次函数与直线的位置关系
8. 二次函数与直线的性质
9. 二次函数与直线的方程
10. 二次函数与直线的解析式
11. 二次函数与直线的参数方程
12. 二次函数与直线的斜率
13. 二次函数与直线的截距
14. 二次函数与直线的判别式
15. 二次函数与直线的判定条件
16. 二次函数与直线的判定方法
17. 二次函数与直线的判定原理
18. 二次函数与直线的判定公式
19. 二次函数与直线的判定规则
20. 二次函数与直线的判定标准
21. 二次函数与直线的判定指标
22. 二次函数与直线的判定模型
23. 二次函数与直线的判定原则
24. 二次函数与直线的判定准则
25. 二次函数与直线的判定方式
26. 二次函数与直线的判定角度
27. 二次函数与直线的判定弧度
28. 二次函数与直线的判定角度制
29. 二次函数与直线的判定弧度制
30. 二次函数与直线的判定角度单位。
高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。
高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。
以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。
- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。
- 函数的表示:函数的图象、函数的解析式。
二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。
- 幂运算:幂的运算法则、根式。
- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。
三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。
- 绝对值不等式:绝对值的定义、绝对值不等式的解法。
四、数列- 等差数列:等差数列的定义、通项公式、求和公式。
- 等比数列:等比数列的定义、通项公式、求和公式。
- 数列的极限:数列极限的概念、极限的运算。
五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。
- 解三角形:正弦定理、余弦定理、三角形的面积公式。
六、解析几何- 直线:直线的方程、直线的位置关系。
- 圆:圆的方程、圆与直线的位置关系。
- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。
七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。
- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。
八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。
- 统计初步:数据的收集、整理、描述。
九、导数与微分- 导数的概念:导数的定义、几何意义。
- 基本导数公式:常见函数的导数公式。
- 微分的概念:微分的定义、微分的应用。
十、积分与应用- 不定积分:不定积分的概念、基本积分公式。
- 定积分:定积分的概念、定积分的计算方法。
- 积分的应用:面积、体积、物理量等的计算。
十一、复数- 复数的概念:复数的定义、复数的运算。
- 复数的几何表示:复平面、复数的模和辐角。
十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。
高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。
高考数学知识点全归纳
一、函数与方程
1.一次函数与二次函数的性质及应用
2.指数函数与对数函数的性质及应用
3.三角函数的性质及应用
4.常用函数及其图像
5.函数的定义与性质
6.方程与不等式的解法
7.方程与不等式的应用
二、数列与数学归纳法
1.数列的概念与性质
2.等差数列与等比数列的性质及应用
3.递推数列与通项公式
4.数学归纳法的原理与应用
三、平面几何
1.平面图形的性质与判定
2.平面图形的面积与周长
3.空间几何的基本概念与性质
4.空间几何的体积与表面积
5.空间几何的投影与旋转
四、立体几何
1.空间几何的基本概念与性质
2.空间几何的体积与表面积
3.空间几何的投影与旋转
4.立体几何的组合图形
5.立体几何的体积计算
五、概率与统计
1.概率的基本概念与性质
2.事件与概率的计算
3.概率的应用与问题解决
4.统计的基本概念与性质
5.统计的数据处理与分析
六、解析几何
1.平面直角坐标系与距离计算
2.点、线、平面的位置关系与性质
3.曲线的方程与性质
4.二次曲线的方程及性质
5.解析几何的应用与问题解决
七、数论与离散数学
1.整数与整数运算
2.素数与最大公约数、最小公倍数
3.同余与模运算
4.离散数学的基本概念与性质
5.离散数学的应用与问题解决
八、数学思维与证明
1.数学思维与问题解决方法
2.定理、引理、推论的证明方法
3.逻辑与证明的基本概念与性质
4.数学思想与发展历程。
高考数学知识点总结及复习资料(实用)高考数学复习重点第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学冲刺注意事项重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。
例如:三视图、茎叶图、定积分、正态分布、统计案例等。
立足基础,强调通性通法,增大覆盖面。
从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。
突出新课程理念,关注应用,倡导“学以致用”。
新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。
加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。
有意训练每年高考试题中都出现的高频考点。
高考数学高分学习方法1、先看笔记后做作业。
有的高中学生感到。
老师讲过的,自己已经听得明明白白了。
但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。
能否坚持如此,常常是好学生与差学生的最大区别。
新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。
以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。
通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。
高考数学核心知识点全解析一、数与代数运算1. 实数集及其性质实数集包括有理数集和无理数集。
有理数集包括整数、分数和小数,无理数集包括无限不循环小数。
实数集具有完备性,即实数集任意一非空有上界的数集必有上确界。
同时,实数集还满足稠密性,即任意两个不同的实数之间必存在有理数和无理数。
2. 数的运算数的运算包括加法、减法、乘法和除法。
加法和乘法满足交换律、结合律和分配律。
减法和除法不满足交换律,除法要求被除数不为零。
3. 代数式代数式是由常数和变量通过加、减、乘、除和乘方等基本运算符号组成的算式。
4. 方程与不等式方程是指等式中含有未知数的等式。
不等式是指等式中含有不等号的等式。
二、函数与方程1. 函数的概念函数是指数集到数集的映射关系,通常用f(x)表示。
函数由定义域、值域和对应关系构成。
2. 基本初等函数常见的基本初等函数包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 函数的性质函数的性质包括定义域、值域、奇偶性、单调性、最值和图像等。
4. 方程与不等式的解法解方程的方法包括化简、同解变形、因式分解、配方法、乘法和除法原理等。
解不等式的方法包括化简、加减法原理、乘除法原理、绝对值不等式和一次不等式等。
三、几何与变换1. 几何基本概念几何基本概念包括点、线、面、角、线段等。
几何基本定理包括相交线定理、平行线定理、垂直线定理、角平分线定理等。
2. 图形的性质与判定常见图形的性质包括长方形、正方形、菱形、圆等。
图形的判定方法包括等腰三角形的判定、直角三角形的判定、平行四边形的判定等。
3. 平面向量平面向量的定义包括模、方向和零向量。
平面向量的运算包括加法、减法、数量积和向量积。
4. 变换与相似常见的几何变换包括平移、旋转、对称和放缩。
相似是指两个图形在形状上相同但尺寸不同。
四、概率与统计1. 随机事件及其概率随机事件是指在相同的条件下可能发生也可能不发生的事件。
概率是事件发生的可能性大小,用数表示。
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考数学必考知识点大全1.代数运算
-同底数幂的乘除法
-倍数关系与比例
-有理数的概念与运算法则
-一元一次方程的解法
-二次函数的三种表示形式
2.平面几何
-圆的基本概念与性质
-圆心角、弧度制与弧长的关系
-相似三角形的性质和判定方法
-平行线的性质和判定方法
-三角形的基本性质与判定方法
3.立体几何
-正方体、长方体、棱柱、棱锥、棱台的计算公式-圆锥的体积、曲面积的计算公式
-球的表面积、体积的计算公式
-空间向量的运算法则
-平面与立体图形的位置关系
4.概率论与数理统计
-随机事件的概念与性质
-事件的关系与运算法则
-事件的概率计算方法
-抽样调查与统计分析的基本方法-随机变量与概率分布的概念与性质5.函数与导数
-函数的概念与性质
-函数的求值与运算法则
-一元函数的最大值与最小值问题-导数的概念与基本性质
-导数的计算方法和应用
6.数列与数学归纳法
-等差数列与等比数列的概念与性质-数列的通项公式与前n项和公式-数列极限的概念与性质
-递推数列与其计算公式
-数学归纳法的基本原理和应用
7.三角函数与解三角形
-三角函数的基本性质与计算方法
-三角函数的图像与性质
-三角函数的运算法则
-解三角形的基本原理和方法
-解三角形的应用问题和求解技巧
8.数与图的关系
-数据的收集和整理方法
-数据的分析和解释方法
-数据的图表表示与分析
-数据统计和概率的计算方法
-利用图表解决实际问题的技巧与方法。
高考数学必考重点知识大全高考数学必考重点知识大全一集合与简单逻辑1.易错点遗忘空集致误错因分析:由于空集是任何非空集合的真子集,因此,对于集合B,就有B=A,φ≠B,B≠φ,三种情况,在解题中如果思维不够缜密就有可能忽视了B≠φ这种情况,导致解题结果错误。
尤其是在解含有参数的集合问题时,更要充分注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
空集是一个特殊的集合,由于思维定式的原因,考生往往会在解题中遗忘了这个集合,导致解题错误或是解题不全面。
2.易错点忽视集合元素的三性致误错因分析:集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
在解题时也可以先确定字母参数的范围后,再具体解决问题。
3.易错点四种命题的结构不明致误错因分析:如果原命题是“若A则B”,则这个命题的逆命题是“若B则A”,否命题是“若┐A则┐B”,逆否命题是“若┐B则┐A”。
这里面有两组等价的命题,即“原命题和它的逆否命题等价,否命题与逆命题等价”。
在解答由一个命题写出该命题的其他形式的命题时,一定要明确四种命题的结构以及它们之间的等价关系。
另外,在否定一个命题时,要注意全称命题的否定是特称命题,特称命题的否定是全称命题。
如对“a,b都是偶数”的否定应该是“a,b不都是偶数”,而不应该是“a,b都是奇数”。
4.易错点充分必要条件颠倒致误错因分析:对于两个条件A,B,如果A=>B成立,则A是B的充分条件,B是A的必要条件;如果B=>A成立,则A是B 的必要条件,B是A的充分条件;如果A<=>B,则A,B互为充分必要条件。
解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时一定要根据充要条件的概念作出准确的判断。
5.易错点逻辑联结词理解不准致误错因分析:在判断含逻辑联结词的命题时很容易因为理解不准确而出现错误,在这里我们给出一些常用的判断方法,希望对大家有所帮助:p∨q真<=>p真或q真,p∨q假<=>p假且q假(概括为一真即真);p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括为一假即假);┐p真<=>p假,┐p假<=>p真(概括为一真一假)。
高考数学一百个知识点数学,作为一门重要的学科,常常是许多学生的噩梦之一。
然而,在高考中,数学却扮演着至关重要的角色。
为了帮助考生更好地备考高考数学,本文将介绍一百个高考数学的知识点,涵盖了高三数学全年的内容。
希望这些知识点能够帮助考生加深对数学知识的理解,提高应试能力。
一、代数知识点1. 二次函数的概念及性质2. 一元二次方程的解法3. 利用配方法进行因式分解4. 绝对值不等式的求解方法5. 对数函数的定义及性质6. 三角函数的定义、基本关系式和性质7. 复数的定义、运算法则及应用8. 二项式定理及其应用9. 等比数列的定义、通项公式及其求和公式二、数论知识点10. 整数的概念及性质11. 常用的整数性质12. 最大公因数与最小公倍数的求法三、平面几何知识点13. 平面几何基本概念14. 直线与平面的交点及其相关性质15. 圆的基本性质和圆心角的性质16. 弦与切线的关系及性质17. 相似三角形的判定与性质18. 各种三角形的面积和海伦公式的应用19. 平行线与平行四边形的性质20. 三角形周长与面积的计算21. 三角函数在平面几何中的应用四、空间几何知识点22. 空间几何基本概念23. 线面垂直交角的判定24. 点、线、面的投影及性质25. 线面垂直于平行线的判定26. 空间向量的定义、运算及应用27. 球的基本性质及切线的性质28. 空间几何等距映射的性质五、概率与统计知识点29. 随机事件及其概率的计算30. 概率的加法定理与乘法定理31. 排列与组合的计算32. 正态分布的概念及其性质33. 统计图表的读取与分析34. 两个随机变量的线性相关性及其相关系数六、立体几何知识点35. 二面角的定义及性质36. 柱、锥、球的表面积和体积的计算37. 空间图形的投影与截面38. 球台与球切线的性质39. 空间几何折叠七、导数知识点40. 导数的定义、运算法则及分段函数的导数41. 导数的几何意义及其应用42. 高阶导数的计算43. 求极值的方法及其应用44. 泰勒公式的应用八、积分知识点45. 积分的定义及其性质46. 定积分的计算方法47. 反常积分的概念及其计算方法48. 曲线的弧长与曲线下面积49. 平面图形的重心与质心九、数列与函数知识点50. 数列的概念及其分类51. 数列的极限的计算方法52. 数列极限的性质及其应用53. 函数的概念及分类54. 函数的极限的定义与计算方法55. 函数极限的性质与无穷小56. 函数极限的插值与夹逼定理57. 函数的连续性与间断点的判定58. 函数的单调性及其应用59. 函数的导数与求导法则60. 函数的导数与函数图象的几何关系61. 函数的微分与泰勒公式的推广62. 函数的最值与最值判定的方法63. 函数的周期性与对称性十、立体几何知识点64. 空间几何的基本概念及性质65. 程量可构性的判定与证明66. 凸体的概念及其特征67. 三视图、一视图与前、后投影的关系68. 空间向量与叉积的运算及其在几何中的应用69. 空间平面与空间直线的相交关系70. 球的截面与球冠体的体积的计算71. 空间旋转体的性质与体积的计算十一、数形结合知识点72. 根据问题进行几何图形的构造73. 利用等量变换思想解决实际问题74. 利用正态分布解决问题75. 几何图形的坐标表示与计算76. 利用向量图形解决问题77. 利用平面向量解决平面几何问题78. 运用计算器解决问题79. 利用几何关系解决问题80. 利用概率计算问题81. 运用分类讨论方法解决问题82. 利用导数解析几何问题十二、统计与概率知识点83. 随机事件与概率计算84. 事件间的关系及其组合计算85. 概率的计算规则86. 排列与组合的计算87. 离散型随机变量的分布律计算88. 二项分布、几何分布、泊松分布的计算十三、解析几何知识点89. 平面直角坐标系与极坐标系90. 点、线、面的方程及其相互关系91. 几何图形的变换及其性质92. 直线、圆与曲线的解析性质93. 平面与空间的距离计算94. 向量的概念及其运算规则95. 平面方程的应用96. 二次曲线方程的应用十四、数学推理与证明知识点97. 数列的递推关系的确定与证明98. 几何问题的证明与推理99. 联立方程的解法与证明100. 数论问题的证明与推理以上这些知识点是高考数学中的常见考点,希望考生能够结合实际情况,有针对性地进行复习和巩固。
高考数学的知识点大全总结一、函数与导数1. 函数的概念2. 函数的性质3. 函数的图像4. 函数的运算5. 函数的奇偶性6. 函数的周期性7. 导数的概念8. 导数的计算9. 函数的极值10. 函数的微分与微分中值定理二、平面向量1. 向量的概念2. 向量的加减法3. 向量的数量积4. 向量的夹角5. 向量的方向角6. 向量的共线条件7. 向量的投影8. 向量的线性运算9. 平面向量的运用10. 平面向量的应用题三、三角函数1. 弧度制与角度制2. 三角函数的概念3. 三角函数的性质4. 三角函数图像5. 三角恒等式6. 三角函数的变换7. 三角函数的应用8. 三角函数的周期性9. 三角函数的图像10. 三角函数的导数与积分四、数列与数学归纳法1. 数列的概念2. 等差数列3. 等比数列4. 通项公式与前n项和5. 数学归纳法的概念6. 数学归纳法的应用7. 数列的极限五、集合与不等式1. 集合的概念2. 集合的运算3. 集合的性质4. 不等式的概念5. 不等式的解法6. 不等式的性质7. 不等式的应用8. 绝对值不等式六、概率与统计1. 概率的基本概念2. 随机事件的概念3. 概率的计算4. 条件概率与独立性5. 排列组合6. 概率分布7. 统计参数的估计8. 正态分布9. 抽样调查10. 统计图表分析七、平面几何1. 点、线、面的概念2. 角的性质3. 三角形的性质4. 四边形的性质5. 圆的性质6. 三角形的相似性7. 圆的相似性8. 圆锥曲线的概念9. 平面几何证明10. 平面几何应用题八、空间几何1. 空间点、直线、平面的位置关系2. 空间直角坐标系3. 球、圆柱、锥的性质4. 空间向量的运算5. 空间几何证明6. 空间几何应用题九、解析几何1. 解析几何基本概念2. 直线、圆的方程3. 在直线外一点到直线的距离4. 直线与圆的位置关系5. 直线、圆的参数方程6. 解析几何证明7. 解析几何应用题十、函数与导数1. 函数与导数的基本概念2. 导数的概念与计算3. 复合函数的导数4. 隐函数的导数5. 参数方程的导数6. 函数与导数的应用以上就是高考数学的知识点大全的总结,希望对大家备考有所帮助!。
2023高考数学重要考点复习内容总结高考的备考是各位同学们的一种经历,也是一种难忘的体验,同学们都复习好高考数学的知识点了吗?下面是为大家整理的关于2023高考数学重要考点复习内容,欢迎大家来阅读。
高考数学重要考点内容整理1、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3、直线方程第1页共4页点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
考生必备数学高考知识点一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).两个防范(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.三种方法等比数列的判断方法有:(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),则数列{an}是等比数列.(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.注:前两种方法也可用来证明一个数列为等比数列.高考常考重要数学考点1.任意角(1)角的分类:①按旋转方向不同分为正角、负角、零角。
高考数学复习重点知识点90条
1. 已知集合A 、B ,当∅=⋂B A 时,注意到“极端”情况:∅=A 或∅=B ;对于含有n 个元素的有限集
合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n
2,12-n
,12-n
.22-n
2. 反演律:B C A C B A C I I I ⋂=⋃)(,B C A C B A C I I I ⋃=⋂)(。
3. “p 且q ”的否定是“非p 或非q ”;“p 或q ”的否定是“非p 且非q ”。
4. 命题的否定只否定结论;否命题是条件和结论都否定。
5. 函数的几个重要性质:
①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+,那么函数()x f y =的图象关于直线a x =对称⇔()y f x a =+是偶函数;
②若都有()()x b f x a f +=-,那么函数()x f y =的图象关于直线2
b
a x +=
对称;函数()x a f y -=与函数()x b f y +=的图象关于直线2
b
a x -=
对称; ③函数()x f y =与函数()x f y -=的图象关于直线0=x 对称;函数()x f y =与函数()x f y -=的图象关于直线0=y 对称;函数()x f y =与函数()x f y --=的图象关于坐标原点对称;
④若奇函数()x f y =在区间()+∞,0上是增函数,则()x f y =在区间()0,∞-上也是增函数;若偶函数()x f y =在区间()+∞,0上是增函数,则()x f y =在区间()0,∞-上是减函数;
⑤函数()a x f y +=)0(>a 的图象是把()x f y =的图象沿x 轴向左平移a 个单位得到的;函数
()a x f y +=()0(<a 的图象是把()x f y =的图象沿x 轴向右平移a 个单位得到的;
⑥函数()x f y =+a )0(>a 的图象是把()x f y =助图象沿y 轴向上平移a 个单位得到的;函数
()x f y =+a )0(<a 的图象是把()x f y =助图象沿y 轴向下平移a 个单位得到的。
(下面789文科不必会)
6. 求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 7. 函数与其反函数之间的一个有用的结论:()().b f 1
a b a f
=⇔=-原函数与反函数图象的交点不全在y=x 上
(例如:x
y 1=
);()1
y f x a -=+只能理解为()x f
y 1
-=
在x+a 处的函数值。
8. 原函数()x f y =在区间[]a a ,-上单调递增,则一定存在反函数,且反函数()x f y 1
-=也单调递增;但一个
函数存在反函数,此函数不一定单调.判断一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 10.一定要注意“()'
f
x >0(或()'f x <0)是该函数在给定区间上单调递增(减)的必要条件。
11.你知道函数()0,0>>+
=b a x
b ax y 的单调区间吗?(该函数在(]ab -
∞-,或
[
)
+∞,ab 上单调递增;
在[)0,ab -或(]
ab ,0上单调递减)这可是一个应用广泛的函数! 12.切记定义在R 上的奇函数y=f(x)必定过原点。
13.抽象函数的单调性、奇偶性一定要紧扣函数性质利用单调性、奇偶性的定义求解。
同时,要领会借助函数单
调性利用不等关系证明等式的重要方法:f(a)≥b 且f(a)≤b ⇔f(a)=b 。
14.对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数
还需讨论。
15.数的换底公式及它的变形,你掌握了吗?(b b a
b
b a n a
c c a n log log ,log log log ==
) 16.你还记得对数恒等式吗?(b a
b
a =log )
17.“实系数一元二次方程02
=++c bx ax 有实数解”转化为“042
≥-=∆ac b ”,你是否注意到必须0≠a ;
若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?例如:
()()02222<-+-x a x a 对一切R x ∈恒成立,求a 的取值范围,你讨论了a =2的情况了吗?
18.等差数列中的重要性质:()n m a a n m d =+-;若q p n m +=+,则q p n m a a a a +=+;
n n n n n S S S S S 232,,--成等差。
19.等比数列中的重要性质:n m n m a a q -=;若q p n m +=+,则q p n m a a a a ⋅=⋅;n n n n n S S S S S 232,,--成
等比。
20.你是否注意到在应用等比数列求前n 项和时,需要分类讨论.(1=q 时,1na S n =;1≠q 时,
q
q a S n n --=1)
1(1)
21.等差数列的一个性质:设n S 是数列{}n a 的前n 项和,{}n a 为等差数列的充要条件是
bn an S n +=2(a, b 为常数),其公差是2a 。
22.你知道怎样的数列求和时要用“错位相减”法吗?(若n n n b a c =,其中{}n a 是等差数列,{}n b 是等比数列,
求{}n c 的前n 项的和)
23.用1--=n n n S S a 求数列的通项公式时,a n 一般是分段形式对吗?你注意到11S a =了吗? 24.你还记得裂项求和吗?(如
1
1
1)1(1+-=+n n n n )
叠加法:112211()()()n n n n n a a a a a a a a ---=-+-+
+-+
叠乘法:
1
223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=----- 25.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?
在△ABC 中,sinA>sinB ⇔A>B 对吗?
26.一般说来,周期函数加绝对值或平方,其周期减半.(如x y x y sin ,sin 2==的周期都是π,但
x x y c os s in +=及x y tan =的周期为2π,)
27.函数x y x y x y cos ,sin ,sin 2===是周期函数吗?(都不是) 28.正弦曲线、余弦曲线、正切曲线的对称轴、对称中心你知道吗?
29.在三角中,你知道1等于什么吗?(x x x x 2
2
2
2
tan sec cos sin 1-=+=
====⋅=0cos 2
sin
4
tan
cot tan π
π
x x 这些统称为1的代换),常数“1”的种种代换有着广泛的应用.
30.在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=
⎪⎭
⎫
⎝⎛--⎪⎭⎫ ⎝⎛-=+βαβαβα222等) 31.你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,
一定要算出值来)
32.你还记得三角化简的通性通法吗?(从函数名、角、运算三方面进行差异分析,常用的技巧有:切割化弦、
降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次) 33.你还记得某些特殊角的三角函数值吗?
(4
1
518sin ,42615cos 75sin ,42675cos 15sin -=︒+=︒=︒-=
︒=︒) 34.你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 2
1
,==扇形α) 35.辅助角公式:()θ++=
+x b a x b x a sin cos sin 22(其中θ角所在的象限由a, b 的符号确定,θ角的值由
a
b
=
θtan 确定)在求最值、化简时起着重要作用. 36.在用反三角函数表示直线的倾斜角、两向量的夹角、两条异面直线所成的角等时,你是否注意到它们各自的
取值范围及意义?
①异面直线所成的角、直线与平面所成的角、二面角的取值范围依次是],0[],2
,0[,2,0πππ⎥⎦
⎤ ⎝
⎛;
②直线的倾斜角、1l 到2l 的角、1l 与2l 的夹角的取值范围依次是]2
,0[),,0[),,0[π
ππ;
③向量的夹角的取值范围是[0,π]
37.若11(,)a x y =,22(,)b x y =,则b a //,a b ⊥的充要条件是什么?。