2019届高考数学二轮复习突破热点分层教学专项二专题三2第2讲数列求和及综合应用学案
- 格式:doc
- 大小:340.02 KB
- 文档页数:15
第二讲 数列的综合应用由递推关系求通项授课提示:对应学生用书第30页[悟通——方法结论] 求数列通项常用的方法(1)定义法:①形如a n +1=a n +C (C 为常数),直接利用定义判断其为等差数列.②形如a n +1=ka n (k 为非零常数)且首项不为零,直接利用定义判断其为等比数列.(2)叠加法:形如a n +1=a n +f (n ),利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1),求其通项公式. (3)叠乘法:形如a n +1a n =f (n )≠0,利用a n =a 1·a 2a 1·a 3a 2·…·a na n -1,求其通项公式. (4)待定系数法:形如a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0),先用待定系数法把原递推公式转化为a n +1-t =p (a n -t),其中t =q1-p,再转化为等比数列求解.(5)构造法:形如a n +1=pa n +q n(其中p ,q 均为常数,pq (p -1)≠0),先在原递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q ,构造新数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,接下来用待定系数法求解. [全练——快速解答]1.(2018·洛阳四校联考)已知数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则数列{a n }的通项公式为( )A .a n =2n +1B .a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2C .a n =2nD .a n =2n +2解析:由题意可知,数列{a n }满足条件12a 1+122a 2+123a 3+…+12n a n =2n +5,则n ≥2时,有12a 1+122a 2+123a 3+…+12n -1a n -1=2(n -1)+5,n ≥2,两式相减可得,a n2n =2n +5-2(n -1)-5=2,∴a n =2n +1,n ≥2,n ∈N *.当n =1时,a 12=7,∴a 1=14,综上可知,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧14,n =1,2n +1,n ≥2.答案:B2.(2018·潮州月考)数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1,n ∈N *),则数列{a n }的通项公式是________.解析:法一:由a n +1=2S n +1可得a n =2S n -1+1(n ≥2),两式相减得a n +1-a n =2a n ,即a n +1=3a n (n ≥2). 又a 2=2S 1+1=3,∴a 2=3a 1,故{a n }是首项为1,公比为3的等比数列, ∴a n =3n -1.法二:由于a n +1=S n +1-S n ,a n +1=2S n +1, 所以S n +1-S n =2S n +1,S n +1=3S n +1, 所以S n +1+12=3⎝⎛⎭⎪⎫S n +12,所以数列⎩⎨⎧⎭⎬⎫S n +12为首项是S 1+12=32,公比为3的等比数列,故S n +12=32×3n -1=12×3n,即S n =12×3n -12.所以,当n ≥2时,a n =S n -S n -1=3n -1,由n =1时a 1=1也适合这个公式,知所求的数列{a n }的通项公式是a n =3n -1.答案:a n =3n -13.(2018·福州模拟)已知数列{a n }的前n 项和为S n ,且S n =2a n -1. (1)证明数列{a n }是等比数列;(2)设b n =(2n -1)a n ,求数列{b n }的前n 项和T n .解析:(1)证明:当n =1时,a 1=S 1=2a 1-1,所以a 1=1, 当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), 所以a n =2a n -1,所以数列{a n }是以1为首项,2为公比的等比数列. (2)由(1)知,a n =2n -1, 所以b n =(2n -1)×2n -1,所以T n =1+3×2+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1①2T n =1×2+3×22+…+(2n -3)×2n -1+(2n -1)×2n②由①-②得-T n =1+2×(21+22+…+2n -1)-(2n -1)·2n=1+2×2-2n -1×21-2-(2n -1)×2n=(3-2n )×2n-3, 所以T n =(2n -3)×2n+3.由a n 与S n 关系求通项公式的注意事项(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论,特别注意a n =S n -S n -1中需n ≥2. (2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合,则需统一“合写”.(3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.数列求和授课提示:对应学生用书第31页[悟通——方法结论] 常用求和方法(1)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(2)裂项相消法:即将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法.裂项相消法适用于形如⎩⎨⎧⎭⎬⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列. (3)拆项分组法:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分别求和.(2017·高考全国卷Ⅲ)(12分)设数列{a n }满足(1)求{a n }的通项公式;(2)求数列的前n 项和.[学审题][12n 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).(2分)两式相减得(2n -1)a n =2, 所以a n =22n -1(n ≥2).(4分)又由题设可得a 1=2,满足上式, 从而{a n }的通项公式为a n =22n -1.(6分) (2)记{a n2n +1}的前n 项和为S n . 由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.(10分)则S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.(12分)1.分类讨论思想在数列求和中的应用(1)当数列通项中含有(-1)n时,在求和时要注意分n 为奇数与偶数处理. (2)对已知数列满足a n +2a n=q ,在求{a n }的前n 项和时分奇数项和偶数项分别求和.2.学科素养:通过数列求和着重考查学生逻辑推理与数学运算能力.[练通——即学即用]1.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( )A .0B .100C .-100D .10 200解析:由题意,a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100,故选B.答案:B2.已知数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12D .-15解析:∵a n =(-1)n(3n -2),∴a 1+a 2+…+a 10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.答案:A3.(2018·张掖诊断)已知数列{a n }的前n 项和为S n ,若a n =-3S n +4,b n =-log 2a n +1. (1)求数列{a n }和{b n }的通项公式;(2)令c n =b n 2n +1+1n (n +1),其中n ∈N *,若数列{c n }的前n 项和为T n ,求T n .解析:(1)由a 1=-3a 1+4,得a 1=1, 由a n =-3S n +4, 知a n +1=-3S n +1+4, 两式相减并化简得a n +1=14a n ,∴a n =⎝ ⎛⎭⎪⎫14n -1,b n =-log 2a n +1=-log 2⎝ ⎛⎭⎪⎫14n =2n .(2)由题意知,c n =n 2n +1n (n +1).令H n =12+222+323+…+n2n ,①则12H n =122+223+…+n -12n +n2n +1,② ①-②得,12H n =12+122+123+…+12n -n 2n +1=1-n +22n +1. ∴H n =2-n +22n.又M n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,∴T n =H n +M n =2-n +22n+nn +1.数列的综合应用授课提示:对应学生用书第32页[悟通——方法结论]数列中的综合问题,大多与函数、方程、不等式及解析几何交汇,考查利用函数与方程的思想及分类讨论思想解决数列中的问题,用不等式的方法研究数列的性质,数列与解析几何交汇,主要涉及点列问题.(1)(2018·德州模拟)已知点O 为坐标原点,点A n (n ,a n )(n ∈N *)为函数f (x )=1x +1的图象上的任意一点,向量i =(0,1),θn 是向量OA n →与i的夹角,则数列⎩⎨⎧⎭⎬⎫cos θn sin θn 的前2 015项的和为( ) A .2 B.2 0142 015 C.2 0152 016D .1解析:因为a n =1n +1,所以OA n →=(n ,1n +1),所以cos θn =OA n →·i |OA n →||i |=1n +1n 2+1(n +1)2,因为0≤θn ≤π,所以sin θn =1-cos 2θn =nn 2+1(n +1)2,所以cos θn sin θn =1n (n +1)=1n -1n +1,所以cos θ1sin θ1+cos θ2sin θ2+…+cos θ 2 015sin θ2 015=1-12+12-13+…+12 015-12 016=1-12 016=2 0152 016. 答案:C(2)(2018·日照模拟)已知数列{a n }的前n 项和S n 满足:2S n +a n =1. ①求数列{a n }的通项公式;②设b n =2a n +1(1+a n )(1+a n +1),数列{b n }的前n 项和为T n ,求证:T n <14.解析:①因为2S n +a n =1,所以2S n +1+a n +1=1, 两式相减可得2a n +1+a n +1-a n =0,即3a n +1=a n ,即a n +1a n =13, 又2S 1+a 1=1,所以a 1=13,所以数列{a n }是首项、公比均为13的等比数列.故a n =13·(13)n -1=(13)n ,数列{a n }的通项公式为a n =(13)n.②证明:因为b n =2a n +1(1+a n )(1+a n +1),所以b n =2·(13)n +1[1+(13)n ][1+(13)n +1]=23n +13n +13n ·3n +1+13n +1=2·3n(3n +1)·(3n +1+1)=13n +1-13n +1+1. 故T n =b 1+b 2+…+b n =(131+1-132+1)+(132+1-133+1)+…+(13n +1-13n +1+1)=14-13n +1+1<14.所以T n <14.数列与不等式的交汇多为不等式恒成立与证明,在求解时要注意等价转化即分离参数法与放缩法的技巧应用.[练通——即学即用]1.(2018·宝鸡摸底)正项等比数列{a n }中,a 2 017=a 2 016+2a 2 015,若a m a n =16a 21,则4m +1n的最小值等于( )A .1 B.32 C.53D.136解析:设等比数列{a n }的公比为q ,且q >0, ∵a 2 015q 2=a 2 015q +2a 2 015,∴q 2-q -2=0,∴q =2或q =-1(舍去), 又a 1q m -1·a 1qn -1=16a 21,∴2m +n -2=16,∴m +n -2=4,m +n =6,∴⎝ ⎛⎭⎪⎫4m +1n ·m +n 6=16⎝ ⎛⎭⎪⎫5+4n m +m n ≥16⎝ ⎛⎭⎪⎫5+24n m ·m n =32,当且仅当m =4,n =2时等号成立.故4m +1n 的最小值为32.答案:B2.(2018·烟台模拟)设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n ∈N *,且n ≥2.(1)求数列{a n }的通项公式; (2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t4n 恒成立,求实数t 的取值范围. 解析:(1)由a n =f (1a n -1)得,a n -a n -1=23,n ∈N *,n ≥2, 所以{a n }是首项为1,公差为23的等差数列.所以a n =1+23(n -1)=2n +13,n ∈N *.(2)因为a n =2n +13,所以a n +1=2n +33,所以1a n a n +1=9(2n +1)(2n +3)=92(12n +1-12n +3).则S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=92(13-12n +3)=3n 2n +3. 故S n ≥3t 4n 恒成立等价于3n 2n +3≥3t 4n ,即t≤4n 22n +3恒成立.令g (x )=4x 22x +3(x >0),则g ′(x )=8x (x +3)(2x +3)2>0,所以g (x )=4x22x +3(x >0)为单调递增函数.所以当n =1时,4n 22n +3取得最小值,且(4n 22n +3)min =45.所以t≤45,即实数t 的取值范围是(-∞,45].授课提示:对应学生用书第131页一、选择题1.(2018·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 018OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 018等于( )A .1 007B .1 009C .2 016D .2 018解析:∵A ,B ,C 三点共线,∴a 1+a 2 018=1, ∴S 2 018=2 018(a 1+a 2 018)2=1 009.答案:B2.已知数列{a n }满足a 1=5,a n a n +1=2n,则a 7a 3=( ) A .2 B .4 C .5D.52解析:因为a n +1a n +2a n +3a n +4a n a n +1a n +2a n +3=a n +4a n =2n +1·2n +32n ·2n +2=22,所以令n =3,得a 7a 3=22=4,故选B.答案:B3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n,那么S 100的值为( ) A .2 500 B .2 600 C .2 700D .2 800解析:当n 为奇数时,a n +2-a n =0⇒a n =1, 当n 为偶数时,a n +2-a n =2⇒a n =n ,故a n =⎩⎪⎨⎪⎧1,n 为奇数,n ,n 为偶数,于是S 100=50+(2+100)×502=2 600.答案:B4.(2018·海淀二模)在数列{a n }中,“a n =2a n -1,n =2,3,4,…”是“{a n }是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当a n =0时,也有a n =2a n -1,n =2,3,4,…,但{a n }不是等比数列,因此充分性不成立;当{a n }是公比为2的等比数列时,有a na n -1=2,n =2,3,4,…,即a n =2a n -1,n =2,3,4,…,所以必要性成立. 答案:B5.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 017项和S 2 017等于( )A .2 018B .2 015C .1D .0解析:由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 017=6×336+1,∴S 2 017=2 015.答案:B6.若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( ) A .22 B .21 C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n <23.5,所以使a k ·a k +1<0的k 值为23.答案:D7.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n (n 为正奇数),a n +1(n 为正偶数),则其前6项之和为( )A .16B .20C .33D .120解析:a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,所以前6项和S 6=1+2+3+6+7+14=33,故选C.答案:C8.已知等差数列{a n }的公差为d ,关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],则使数列{a n }的前n 项和S n最大的正整数n 的值是( )A .4B .5C .6D .7解析:∵关于x 的不等式dx 2+2a 1x ≥0的解集为[0,9],∴0,9是一元二次方程dx 2+2a 1x =0的两个实数根,且d <0,∴-2a 1d =9,a 1=-9d 2.∴a n =a 1+(n -1)d =(n -112)d ,可得a 5=-12d >0,a 6=12d <0.∴使数列{a n }的前n 项和S n 最大的正整数n 的值是5.答案:B9.(2018·湘中名校联考)若{a n }是等差数列,首项a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,则使前n 项和S n>0成立的最大正整数n 是( )A .2 016B .2 017C .4 032D .4 033解析:因为a 1>0,a 2 016+a 2 017>0,a 2 016·a 2 017<0,所以d <0,a 2 016>0,a 2 017<0,所以S 4 032=4 032(a 1+a 4 032)2=4 032(a 2 016+a 2 017)2>0,S 4 033= 4 033(a 1+a 4 033)2=4 033a 2 017<0,所以使前n 项和S n >0成立的最大正整数n 是4032.答案:C10.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2.若函数f (x )=sin 2x +2 cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:由已知得2a n +1=a n +a n +2, 即数列{a n }为等差数列. 又f (x )=sin 2x +1+cos x ,a 1+a 9=a 2+a 8=…=2a 5=π,故cos a 1+cos a 9=cos a 2+cos a 8=…=cos a 5=0, 又2a 1+2a 9=2a 2+2a 8=…=4a 5=2π,故sin 2a 1+sin 2a 9=sin 2a 2+sin 2a 8=…=sin 4a 5=0,故数列{y n }的前9项和为9. 答案:C11.已知数列{a n },“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:∵|a n +1|>a n ,∴⎩⎪⎨⎪⎧a n +1>0,a n +1>a n 或⎩⎪⎨⎪⎧a n +1≤0,-a n +1>a n .又∵数列{a n }为递增数列,∴a n +1>a n ,∴“|a n +1|>a n ”是“数列{a n }为递增数列”的既不充分也不必要条件. 答案:D12.已知数列{a n }是首项为a ,公差为1的等差数列,数列{b n }满足b n =1+a n a n.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围是( )A .(-8,-7)B .[-8,-7)C .(-8,-7]D .[-8,-7]解析:因为{a n }是首项为a ,公差为1的等差数列,所以a n =n +a -1,因为b n =1+a n a n,又对任意的n ∈N *都有b n ≥b 8成立,所以1+1a n ≥1+1a 8,即1a n ≥1a 8对任意的n ∈N *恒成立,因为数列{a n }是公差为1的等差数列,所以{a n }是单调递增的数列,所以⎩⎪⎨⎪⎧a 8<0,a 9>0,即⎩⎪⎨⎪⎧8+a -1<0,9+a -1>0,解得-8<a <-7.答案:A 二、填空题13.(2018·沈阳模拟)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2),则a n =________.解析:法一:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-a n a n -a n -1=2(n ≥2),所以a n +1-a n =(a 2-a 1)2n -1=2n -1(n ≥2),又a 2-a 1=1,所以a n -a n -1=2n -2,a n -1-a n -2=2n -3,…,a 2-a 1=1,累加,得a n =2n -1(n ∈N *).法二:因为a n +1=3a n -2a n -1(n ≥2),所以a n +1-2a n =a n -2a n -1,得a n +1-2a n =a n -2a n -1=a n -1-2a n -2=…=a 2-2a 1=0,即a n =2a n -1(n ≥2),所以数列{a n }是以1为首项,2为公比的等比数列,所以a n =2n -1(n ∈N *).答案:2n -1(n ∈N *)14.(2018·辽宁五校联考)设数列{a n }的前n 项和为S n ,若a 1=3且当n ≥2时,2a n =S n ·S n -1,则{a n }的通项公式a n =________.解析:当n ≥2时,由2a n =S n ·S n -1可得2(S n -S n -1)=S n ·S n -1,∴1S n -1-1S n =12,即1S n -1S n -1=-12,∴数列{1S n }是首项为13,公差为-12的等差数列,∴1S n =13+(-12)·(n -1)=5-3n 6,∴S n =65-3n .当n ≥2时,a n =12S n S n -1=12×65-3n ×65-3(n -1)=18(5-3n )(8-3n ),又a 1=3,∴a n =⎩⎪⎨⎪⎧3,n =1,18(5-3n )(8-3n ),n ≥2.答案:⎩⎪⎨⎪⎧3,n =118(5-3n )(8-3n ),n ≥215.(2018·广州调研)已知数列{a n }满足a 1=1,a n +1=a 2n +a n ,用[x ]表示不超过x 的最大整数,则⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 017+1=________.解析:因为a n +1=a 2n +a n , 所以1a n +1=1a n (a n +1)=1a n -1a n +1,即1a n +1=1a n -1a n +1, 于是1a 1+1+1a 2+1+…+1a 2 017+1=⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a 2 017-1a 2 018=1a 1-1a 2 018. 因为a 1=1,a 2=2>1,a 3=6>1,…, 可知1a 2 018∈(0,1),则1a 1-1a 2 018∈(0,1),所以⎣⎢⎡⎦⎥⎤1a 1-1a 2 018=0.答案:016.已知数列{a n }满足a 1=-40,且na n +1-(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为________. 解析:由na n +1-(n +1)a n =2n 2+2n =2n (n +1), 两边同时除以n (n +1),得a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为-40、公差为2的等差数列,所以a n n=-40+(n -1)×2=2n -42, 所以a n =2n 2-42n ,对于二次函数f (x )=2x 2-42x ,在x =-b 2a =--424=10.5时,f (x )取得最小值,因为n 取正整数,且10和11到10.5的距离相等, 所以n 取10或11时,a n 取得最小值. 答案:10或11 三、解答题17.(2018·枣庄模拟)已知方程a n x 2-a n +1x +1=0(a n >0)有两个根αn 、βn ,a 1=1,且满足(1-1αn )(1-1βn)=1-2n,其中n ∈N *.(1)求数列{a n }的通项公式;(2)若b n =log 2(a n +1),c n =a n b n ,求数列{c n }的前n 项和T n .解析:(1)由已知可得,⎩⎪⎨⎪⎧αn+βn =a n +1a nαnβn =1a n,又(1-1αn )(1-1βn )=1-2n ,∴1-αn +βn αn βn +1αn βn=1-2n, 整理得,a n +1-a n =2n,其中n ∈N *.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+1=1-2n1-2=2n-1.(2)由(1)知,b n =log 2(2n-1+1)=n , ∴c n =n (2n -1)=n ·2n-n .∴T n =c 1+c 2+…+c n =1×2+2×22+3×23+…+n ×2n-(1+2+…+n ), 设P n =1×2+2×22+3×23+…+n ×2n,① 则2P n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1,②①-②得-P n =2+22+23+…+2n -n ×2n +1=2(1-2n)1-2-n ×2n +1=(1-n )×2n +1-2,∴P n =(n -1)×2n +1+2.又Q n =1+2+…+n =n (n +1)2,∴T n =P n -Q n =(n -1)×2n +1+2-n (n +1)2.18.(2018·九江一中模拟)设等差数列{a n }的前n 项和为S n ,a 22-3a 7=2,且1a 2,S 2-3,S 3成等比数列,n ∈N *.(1)求数列{a n }的通项公式;(2)令b n =4(n +1)a 2n a 2n +2,数列{b n }的前n 项和为T n ,若对于任意的n ∈N *,都有64T n <|3λ-1|成立,求实数λ的取值范围.解析:(1)设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 22-3a 7=2(S 2-3)2=1a 2·S 3得⎩⎪⎨⎪⎧(a 1+21d )-3(a 1+6d )=2(2a 1+d -3)·(a 1+d )=3a 1+3d ,即⎩⎪⎨⎪⎧-2a 1+3d =2(a 1+d )(2a 1+d -6)=0,解得⎩⎪⎨⎪⎧a 1=2d =2或⎩⎪⎨⎪⎧a 1=-25d =25.当a 1=-25,d =25时,S 2-3=-175没有意义, ∴a 1=2,d =2,此时a n =2+2(n -1)=2n . (2)b n =4(n +1)a 2n a 2n +2=n +14(n +2)2n 2=116[1n 2-1(n +2)2].T n =b 1+b 2+b 3+…+b n =116(112-132)+116(122-142)+116(132-152)+…+ 116[1(n -1)2-1(n +1)2]+116[1n 2-1(n +2)2] =116[1+14-1(n +1)2-1(n +2)2] =564-116[1(n +1)2+1(n +2)2], ∴64T n =5-4[1(n +1)2+1(n +2)2]<5,为满足题意,只需|3λ-1|≥5,∴λ≥2或λ≤-43.19.(2018·临汾中学模拟)已知数列{a n }的前n 项和为S n ,且S n =12(a 2n +a n ),a n >0.(1)求数列{a n }的通项公式;(2)若b n =a n2n -1,数列{b n }的前n 项和为T n ,则是否存在正整数m ,使得m ≤T n <m +3对任意的正整数n 恒成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)S n =12(a 2n +a n ),即a 2n +a n -2S n =0,①当n ≥2时, S n -1=12(a 2n -1+a n -1),即a 2n -1+a n -1-2S n -1=0,②①-②得(a n -a n -1)(a n +a n -1)+a n -a n -1-2a n =0, (a n +a n -1)(a n -a n -1-1)=0, ∵a n >0, ∴a n -a n -1=1,当n =1时,a 21+a 1-2a 1=0,∵a n >0, ∴a 1=1,∴a n =1+(n -1)=n . (2)由(1)知b n =n2n -1,所以T n =1×(12)0+2×(12)1+…+n (12)n -1,③12T n =1×(12)1+2×(12)2+…+n (12)n,④ ③-④得12T n =1+12+…+(12)n -1-n (12)n =2[1-(12)n ]-n (12)n,故T n =4[1-(12)n ]-2n (12)n =4-4×(12)n -2n (12)n =4-(2n +4)(12)n.易知T n <4,∵T n +1-T n =4-(2n +6)(12)n +1-4+(2n +4) ·(12)n =(n +1)(12)n>0,∴T n ≥T 1=1,故存在正整数m =1满足题意.。
第讲数列求和及综合应用数列求和问题(综合型)[典型例题]命题角度一公式法求和 等差、等比数列的前项和()等差数列:=+(为公差)或=. ()等比数列:=其中(为公比).类特殊数列的前项和 ()+++…+=(+). ()+++…+(-)=.()+++…+=(+)(+).()+++…+=(+).已知数列{}满足=,+=,∈*.()求证:数列为等差数列; ()设=-+-+…+-,求.【解】()证明:由+=,得==+,所以-=.又=,则=,所以数列是首项为,公差为的等差数列.()设=-=,由()得,数列是公差为的等差数列,所以-=-,即==-×,所以+-=-=-×=-.又=-×=-×=-,所以数列{}是首项为-,公差为-的等差数列,所以=++…+=-+×=-(+).求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前项和公式来求解,需掌握等差数列{}的前项和公式:=或=+;等比数列{}的前项和公式:=;第三关,运算关,认真运算,此类题将迎刃而解.命题角度二分组转化法求和将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和.已知等差数列{}的首项为,公差为,∈*,且不等式-+<的解集为(,).()求数列{}的通项公式;()若=+-,∈*,求数列{}的前项和.【解】()易知≠,由题设可知解得故数列{}的通项公式为=+(-)·=-.()由()知=-+--,则=(+)+(+)+…+(-+-)-=(++…+-)+(++…+-)-=+-=(-)+-.()在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数进行讨论.最后再验证是否可以合并为一个表达式.()分组求和的策略:①根据等差、等比数列分组.②根据正号、负号分组.命题角度三裂项相消法求和把数列的通项公式拆成两项之差的形式,求和时正负项相消,只剩下首尾若干项,达到化简求和的目的.常见的裂项式有:=,=,=-等.(·唐山模拟)已知数列{}满足:++…+=(-),∈*.()求数列{}的通项公式;()设=,求++…+.。
第二讲 数列求和及综合应用高考数列一定有大题,按近几年高考特点,可估计2016年不会有大的变化,考查递推关系、数学归纳法的可能较大,但根据高考题命题原则,一般会有多种方法可以求解.因此,全面掌握数列求和相关的方法更容易让你走向成功.数列求和的基本方法 1.公式法.(1)等差数列前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)d 2W.(2)等比数列前n 项和公式:S n =⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q=a 1-a n q 1-q ,q ≠1.2.转化法.有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比或常见的数列,即先分别求和,然后再合并.3.错位相减法.这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.4.倒序相加法.这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),把它与原数列相加,若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.5.裂项相消法.利用通项变形,将通项分裂成两项或几项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.数列的应用1.应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.2.数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决此类题的关键是建立一个数列模型{a n },利用该数列的通项公式、递推公式或前n 项和公式求解.3.解应用问题的基本步骤.判断下面结论是否正确(请在括号中打“√”或“×”).(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.(√) (2)当n ≥2时,1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.(√)(3)求S n =a +2a 2+3a 3+……+na n之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.(×)(4)数列⎩⎨⎧⎭⎬⎫12n +2n -1的前n 项和为n 2+12n .(×)(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n-12.(√)(6)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+……+sin 288°+sin 289°=44.5.(√)1.(2015·福建卷)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于(D )A.6B.7C.8D.9解析:不妨设a >b ,由题意得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,∴ a >0,b >0,则a ,-2,b 成等比数列,a ,b ,-2成等差数列,∴ ⎩⎪⎨⎪⎧ab =(-2)2,a -2=2b ,∴ ⎩⎪⎨⎪⎧a =4,b =1,∴ p =5,q =4,∴ p +q =9. 2.(2015·新课标Ⅱ卷)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=(A ) A.5 B.7 C.9 D.11解析:解法一 ∵ a 1+a 5=2a 3,∴ a 1+a 3+a 5=3a 3=3,∴ a 3=1,∴ S 5=5(a 1+a 5)2=5a 3=5,故选A.解法二 ∵ a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3,∴ a 1+2d =1,∴ S 5=5a 1+5×42d =5(a 1+2d )=5,故选A.3.在数列{a n }中,a n =n (n +1)2,则:(1)数列{a n }的前n 项和S n = ; (2)数列{S n }的前n 项和T n = W. 解析:(1)a n =n (n +1)2=n (n +1)[](n +2)-(n -1)6=16×[]n (n +1)(n +2)-(n -1)n (n +1)S n =16×[(1×2×3-0×1×2)+(2×3×4-1×2×3)+(3×4×5-2×3×4)+…+n ×(n +1)×(n +2)-(n -1)×n ×(n +1)]=n (n +1)(n +2)6.(2)S n =n (n +1)(n +2)6=n (n +1)(n +2)[(n +3)-(n -1)]24=124×[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)]T n =124×[(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n ×(n+1)×(n +2)×(n +3)-(n -1)×n ×(n +1)×(n +2)]=n (n +1)(n +2)(n +3)24.答案:(1)n (n +1)(n +2)6(2)n (n +1)(n +2)(n +3)244.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{1a n}前10项的和为 W.解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵ a 1=1,∴ a n =n 2+n2(n ≥2).∵ 当n =1时也满足此式,∴ a n =n 2+n2(n ∈N *).∴ 1a n =2n 2+n =2(1n -1n +1). ∴ S 10=2(11-12+12-13+…+110-111)=2×(1-111)=2011.答案:2011。
第2讲 数列求和及综合应用高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.真 题 感 悟1.(2017·全国Ⅲ卷)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.2.(2017·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q , 由题意知⎩⎨⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎨⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .考 点 整 合1.(1)数列通项a n 与前n 项和S n 的关系,a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 2.数列求和(1)分组转化求和:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 3.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题、不等关系或恒成立问题.热点一 a n 与S n 的关系问题【例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值. 解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.【训练1】 (2018·安徽江南名校联考)已知数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足2(S n +1)=(n +3)a n . (1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1a n a n +1,记数列{b n }的前n 项和为T n ,求证:T n <3.(1)解 2(S n +1)=(n +3)a n ,① 当n ≥2时,2(S n -1+1)=(n +2)a n -1,② ①-②得,(n +1)a n =(n +2)a n -1, 所以a n n +2=a n -1n +1(n ≥2),又∵a 11+2=13,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +2是首项为13的常数列. 所以a n =13(n +2). (2)证明 由(1)知,b n =1a n a n +1=9(n +2)(n +3)=9⎝ ⎛⎭⎪⎫1n +2-1n +3.∴T n =b 1+b 2+b 3+…+b n=9⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +2-1n +3=9⎝ ⎛⎭⎪⎫13-1n +3=3-9n +3<3.热点二 数列的求和 考法1 分组转化求和【例2-1】 (2018·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63.(1)求数列{a n }的通项公式;(2)若b n =2a n +(-1)n ·a n ,求数列{b n }的前n 项和T n .解 (1)∵{a n }为等差数列,∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎨⎧a 1=3,d =2.因此{a n }的通项公式a n =2n +1.(2)∵b n =2a n +(-1)n ·a n =22n +1+(-1)n ·(2n +1) =2×4n +(-1)n ·(2n +1),∴T n =2×(41+42+…+4n )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n-1)3+G n .当n 为偶数时,G n =2×n2=n , ∴T n =8(4n -1)3+n ;当n 为奇数时,G n =2×n -12-(2n +1)=-n -2, ∴T n =8(4n -1)3-n -2,∴T n =⎩⎪⎨⎪⎧8(4n -1)3+n (n 为偶数),8(4n -1)3-n -2 (n 为奇数).探究提高 1.在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 的奇偶进行讨论.最后再验证是否可以合并为一个表达式. 2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组. 考法2 裂项相消法求和【例2-2】 (2018·郑州调研)设S n 为数列{a n }的前n 项和,S n =2n 2+5n . (1)求证:数列{3a n }为等比数列; (2)设b n =2S n -3n ,求数列⎩⎨⎧⎭⎬⎫n a n b n 的前n 项和T n .(1)证明 ∵S n =2n 2+5n ,∴当n ≥2时,a n =S n -S n -1=4n +3. 又当n =1时,a 1=S 1=7也满足a n =4n +3.故a n =4n +3(n ∈N *).由a n +1-a n =4,得3a n +13a n =3a n +1-a n =34=81. ∴数列{3a n }是公比为81的等比数列. (2)解 ∵b n =4n 2+7n ,∴n a n b n =1(4n +3)(4n +7)=14⎝⎛⎭⎪⎫14n +3-14n +7, ∴T n =14⎝ ⎛⎭⎪⎫17-111+111-115+…+14n +3-14n +7 =14⎝ ⎛⎭⎪⎫17-14n +7=n7(4n +7). 探究提高 1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练2】 (2018·成都二诊)设正项等比数列{a n },a 4=81,且a 2,a 3的等差中项为32(a 1+a 2).(1)求数列{a n }的通项公式;(2)若b n =log 3a 2n -1,数列{b n }的前n 项和为S n ,数列{c n }满足c n =14S n -1,T n 为数列{c n }的前n 项和,若T n <λn 恒成立,求λ的取值范围. 解 (1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎨⎧a 4=a 1q 3=81,a 1q +a 1q 2=3(a 1+a 1q ),解得⎩⎨⎧a 1=3,q =3.所以a n =a 1q n -1=3n .(2)由(1)得b n =log 332n -1=2n -1, S n =n (b 1+b n )2=n [1+(2n -1)]2=n 2∴c n =14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1. 若T n =n 2n +1<λn 恒成立,则λ>12n +1(n ∈N *)恒成立,则λ>⎝ ⎛⎭⎪⎫12n +1max ,所以λ>13.考法3 错位相减求和【例2-3】 (2018·潍坊一模)公差不为0的等差数列{a n }的前n 项和为S n ,已知S 4=10,且a 1,a 3,a 9成等比数列. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和T n .解 (1)设{a n }的公差为d ,由题设得⎩⎨⎧4a 1+6d =10,a 23=a 1·a 9,∴⎩⎨⎧4a 1+6d =10,(a 1+2d )2=a 1(a 1+8d ). 解之得a 1=1,且d =1. 因此a n =n .(2)令c n =n3n ,则T n =c 1+c 2+…+c n =13+232+333+…+n -13n -1+n 3n ,①13T n =132+233+…+n -13n +n3n +1,② ①-②得:23T n =⎝ ⎛⎭⎪⎫13+132+…+13n -n 3n +1=13⎝ ⎛⎭⎪⎫1-13n 1-13-n 3n +1=12-12×3n -n 3n +1, ∴T n =34-2n +34×3n .探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎨⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎨⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎨⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1., 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2]. 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2.所以T n =3n ·2n +2.热点三 与数列相关的综合问题【例3】 设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,∴q =3. ∴b n =3n -1.∴数列{b n }的前n 项和T n =1-3n 1-3=3n -13-1=3n -12.T n ≤S n 可化为3n -12≤n 2. 又n ∈N *,∴n =1,或n =2故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练4】 (2018·长沙雅礼中学质检)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列, 故a n =2n .(2)由(1)可得1a n=12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n . 由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n >1 000,又∵n ∈N *,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10.1.错位相减法的关注点(1)适用题型:等差数列{a n }乘以等比数列{b n }对应项得到的数列{a n ·b n }求和. (2)步骤:①求和时先乘以数列{b n }的公比.②把两个和的形式错位相减.③整理结果形式.2.裂项求和的常见技巧 (1)1n (n +1)=1n -1n +1.(2)1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .(3)1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.(4)14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1. 3.数列与不等式综合问题(1)如果是证明不等式,常转化为数列和的最值问题,同时要注意比较法、放缩法、基本不等式的应用;(2)如果是解不等式,注意因式分解的应用.一、选择题1.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3=a 5.令b n =(-1)n -1a n ,则数列{b n }的前2n 项和T 2n 为( )A.-nB.-2nC.nD.2n解析 设等差数列{a n }的公差为d ,由S 3=a 5得3a 2=a 5,∴3(1+d )=1+4d ,解得d =2,∴a n =2n -1,∴b n =(-1)n -1(2n -1),∴T 2n =1-3+5-7+…+(4n -3)-(4n -1)=-2n .答案 B2.(2018·衡水中学月考)数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A.-10B.-9C.10D.9解析 由于a n =1n (n +1)=1n -1n +1. ∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1.因此1-1n +1=910,所以n =9. 所以直线方程为10x +y +9=0.令x =0,得y =-9,所以在y 轴上的截距为-9.答案 B3.已知T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023解析 因为2n +12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013,所以整数m 的最小值为1 024.答案 C4.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A.9B.15C.18D.30解析 ∵a n +1-a n =2,a 1=-5,∴数列{a n }是公差为2,首项为-5的等差数列. ∴a n =-5+2(n -1)=2n -7.数列{a n }的前n 项和S n =n (-5+2n -7)2=n 2-6n . 令a n =2n -7≥0,解得n ≥72.∴n ≤3时,|a n |=-a n ;n ≥4时,|a n |=a n .则|a 1|+|a 2|+…+|a 6|=-a 1-a 2-a 3+a 4+a 5+a 6=S 6-2S 3=62-6×6-2(32-6×3)=18.答案 C5.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( )A.2B.2nC.2n +1-2D.2n -1-2 解析 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案 C二、填空题6.(2018·昆明诊断)数列{a n }满足a n =n (n +1)2,则1a 1+1a 2+…+1a 2 018等于________.解析 a n =n (n +1)2,则1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1 ∴1a 1+1a 2+…+1a 2 018=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 018-12 019 =2⎝ ⎛⎭⎪⎫1-12 019=4 0362 019. 答案 4 0362 0197.记S n为正项数列{a n}的前n项和,且a n+1=2S n,则S2 018=________. 解析由题意得4S n=(a n+1)2,①当n=1时,4a1=(a1+1)2,a1=1,当n≥2时,4S n-1=(a n-1+1)2,②①-②得a2n-a2n-1-2(a n+a n-1)=0,所以(a n-a n-1-2)(a n+a n-1)=0,又a n>0,所以a n-a n-1=2,则{a n}是以1为首项,2为公差的等差数列.所以a n=2n-1,S2 018=2 018(1+2×2 018-1)2=2 0182.答案 2 01828.(2018·贵阳质检)已知[x]表示不超过x的最大整数,例如:[2.3]=2,[-1.5]=-2.在数列{a n}中,a n=[lg n],n∈N+,记S n为数列{a n}的前n项和,则S2 018=________.解析当1≤n≤9时,a n=[lg n]=0.当10≤n≤99时,a n=[lg n]=1.当100≤n≤999时,a n=[lg n]=2.当1 000≤n≤2 018时,a n=[lg n]=3.故S2 018=9×0+90×1+900×2+1 019×3=4 947.答案 4 947三、解答题9.(2018·济南模拟)记S n为数列{a n}的前n项和,已知S n=2n2+n,n∈N*. (1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.解(1)由S n=2n2+n,得当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1. 又a1=3满足上式.所以a n=4n-1(n∈N*).(2)b n=1a n a n+1=1(4n-1)(4n+3)=14⎝⎛⎭⎪⎫14n-1-14n+3.所以T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-17+⎝ ⎛⎭⎪⎫17-110+…+⎝ ⎛⎭⎪⎫14n -1-14n +3 =14⎝ ⎛⎭⎪⎫13-14n +3=n 12n +9. 10.(2018·南昌调研)已知数列{a n -n }是等比数列,且a 1=9,a 2=36.(1)求数列{a n }的通项公式;(2)求数列{a n -n 2}的前n 项和S n .解 (1)设等比数列{a n -n }的公比为q ,则q =a 2-2a 1-1=6-23-1=2. 从而a n -n =(3-1)×2n -1,故a n =(n +2n )2.(2)由(1)知a n -n 2=n ·2n +1+4n .记T n =22+2·23+…+n ·2n +1,则2T n =23+2·24+…+(n -1)·2n +1+n ·2n +2,两式作差,得-T n =22+23+…+2n +1-n ·2n +2=2n +2-4-n ·2n +2=(1-n )·2n +2-4,∴T n =(n -1)·2n +2+4,故S n =T n +4-4n +11-4=(n -1)·2n +2+4n +1+83. 11.若数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1.(1)求数列{a n },{b n }的通项公式;(2)设数列{c n }满足c n =a n +1b n +1,数列{c n }的前n 项和为T n ,若不等式(-1)n λ<T n +n 2n -1对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)∵数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1. ∴n =1时,a 1+1=2,解得a 1=1.又数列{a n }是公差为2的等差数列,∴a n =1+2(n -1)=2n -1.∴2nb n =nb n +1,化为2b n =b n +1,∴数列{b n }是首项为1,公比为2的等比数列. ∴b n =2n -1.(2)由数列{c n }满足c n =a n +1b n +1=2n 2n =n 2n -1, 数列{c n }的前n 项和为T n =1+22+322+…+n 2n -1, ∴12T n =12+222+…+n -12n -1+n 2n , 两式作差,得∴12T n =1+12+122+…+12n -1-n 2n =1-12n 1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1. 不等式(-1)n λ<T n +n2n -1,化为(-1)n λ<4-22n -1, n =2k (k ∈N *)时,λ<4-22n -1,取n =2,∴λ<3. n =2k -1(k ∈N *)时,-λ<4-22n -1,取n =1,∴λ>-2. 综上可得:实数λ的取值范围是(-2,3).。
第3讲 数列的综合问题[考情考向分析] 1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应用问题相结合,考查数学建模和数学应用能力.热点一 利用S n ,a n 的关系式求a n1.数列{a n }中,a n 与S n 的关系a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. 2.求数列通项的常用方法(1)公式法:利用等差(比)数列求通项公式.(2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n .(3)在已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用累乘法求数列的通项a n . (4)将递推关系进行变换,转化为常见数列(等差、等比数列).例1 已知等差数列{a n }中,a 2=2,a 3+a 5=8,数列{b n }中,b 1=2,其前n 项和S n 满足:b n +1=S n +2(n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)设c n =a n b n,求数列{c n }的前n 项和T n . 解 (1)∵a 2=2,a 3+a 5=8,∴2+d +2+3d =8,∴d =1,∴a n =n (n ∈N *).∵b n +1=S n +2(n ∈N *),①∴b n =S n -1+2(n ∈N *,n ≥2).②由①-②,得b n +1-b n =S n -S n -1=b n (n ∈N *,n ≥2),∴b n +1=2b n (n ∈N *,n ≥2).∵b 1=2,b 2=2b 1,∴{b n }是首项为2,公比为2的等比数列,∴b n =2n (n ∈N *).(2)由c n =a n b n =n 2n , 得T n =12+222+323+…+n -12n -1+n 2n , 12T n =122+223+324+…+n -12n +n 2n +1, 两式相减,得12T n =12+122+…+12n -n 2n +1=1-2+n 2n +1, ∴T n =2-n +22n (n ∈N *). 【思维升华】给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n . 跟踪演练1 (2018·绵阳诊断性考试)已知数列{a n }的前n 项和S n 满足:a 1a n =S 1+S n .(1)求数列{a n }的通项公式;(2)若a n >0,数列⎩⎨⎧⎭⎬⎫log 2 a n 32的前n 项和为T n ,试问当n 为何值时,T n 最小?并求出最小值. 解 (1)由已知a 1a n =S 1+S n ,①可得当n =1时,a 21=a 1+a 1,解得a 1=0或a 1=2,当n ≥2时,由已知可得a 1a n -1=S 1+S n -1,②①-②得a 1()a n -a n -1=a n .若a 1=0,则a n =0,此时数列{a n }的通项公式为a n =0.若a 1=2,则2()a n -a n -1=a n ,化简得a n =2a n -1,即此时数列{a n }是以2为首项,2为公比的等比数列,故a n =2n (n ∈N *).综上所述,数列{a n }的通项公式为a n =0或a n =2n .(2)因为a n >0,故a n =2n .设b n =log 2 a n 32,则b n =n -5,显然{b n }是等差数列, 由n -5≥0,解得n ≥5,所以当n =4或n =5时,T n 最小,最小值为T 4=T 5=5()-4+02=-10. 热点二 数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.例2 (2018·遵义联考)已知函数f (x )=ln(1+x )-x (1+λx )1+x. (1)若x ≥0时,f (x )≤0,求λ的最小值;(2)设数列{a n }的通项a n =1+12+13+…+1n ,证明:a 2n -a n +14n>ln 2. (1)解 由已知可得f (0)=0,∵f (x )=ln(1+x )-x (1+λx )1+x, ∴f ′(x )=(1-2λ)x -λx 2(1+x )2,且f ′(0)=0. ①若λ≤0,则当x >0时,f ′(x )>0,f (x )单调递增,∴f (x )≥f (0)=0,不合题意;②若0<λ<12, 则当0<x <1-2λλ时,f ′(x )>0,f (x )单调递增, ∴当0<x <1-2λλ时,f (x )>f (0)=0,不合题意; ③若λ≥12, 则当x >0时,f ′(x )<0,f (x )单调递减,当x ≥0时,f (x )≤f (0)=0,符合题意.综上,λ≥12. ∴实数λ的最小值为12. (2)证明 由于a 2n -a n +14n =1n +1+1n +2+1n +3+…+12n -1+12n +14n, 若λ=12,由(1)知,f (x )=ln(1+x )-x (2+x )2+2x, 且当x >0时,f (x )<0,即x (2+x )2+2x>ln(1+x ), 令x =1n ,则2n +12n (n +1)>ln n +1n,∴12n +12(n +1)>ln n +1n, 12(n +1)+12(n +2)>ln n +2n +1, 12(n +2)+12(n +3)>ln n +3n +2, …,12(2n -1)+14n >ln 2n 2n -1. 以上各式两边分别相加可得12n +12(n +1)+12(n +1)+12(n +2)+12(n +2)+12(n +3)+…+12(2n -1)+14n>ln n +1n +ln n +2n +1+ln n +3n +2+…+ln 2n 2n -1, 即1n +1+1n +2+1n +3+…+12n -1+12n +14n>ln n +1n ·n +2n +1·n +3n +2·…·2n 2n -1=ln 2n n =ln 2, ∴a 2n -a n +14n>ln 2. 【思维升华】解决数列与函数、不等式的综合问题要注意以下几点(1)数列是一类特殊的函数,函数定义域是正整数,在求数列最值或不等关系时要特别重视.(2)解题时准确构造函数,利用函数性质时注意限制条件.(3)不等关系证明中进行适当的放缩.跟踪演练2 (2018·南昌模拟)已知等比数列{a n }的前n 项和为S n (n ∈N *),满足S 4=2a 4-1,S 3=2a 3-1.(1)求{a n }的通项公式;(2)记b n =log 2()a n ·a n +1(n ∈N *),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2. (1)解 设{a n }的公比为q ,由S 4-S 3=a 4,S 4=2a 4-1得,2a 4-2a 3=a 4,所以a 4a 3=2,所以q =2.又因为S 3=2a 3-1, 所以a 1+2a 1+4a 1=8a 1-1,所以a 1=1,所以a n =2n -1(n ∈N *). (2)证明 由(1)知b n =log 2(a n +1·a n )=log 2(2n ×2n -1)=2n -1, 所以T n =1+(2n -1)2n =n 2, 所以1T 1+1T 2+…+1T n =112+122+…+1n 2<1+11×2+12×3+…+1(n -1)n=1+1-12+12-13+…+1n -1-1n=2-1n<2. 热点三 数列的实际应用用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列是等差模型还是等比模型,它的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.例3 科学研究证实,二氧化碳等温室气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响,环境部门对A 市每年的碳排放总量规定不能超过550万吨,否则将采取紧急限排措施.已知A 市2017年的碳排放总量为400万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放总量比上一年的碳排放总量减少10%.同时,因经济发展和人口增加等因素,每年又新增加碳排放量m 万吨(m >0).(1)求A 市2019年的碳排放总量(用含m 的式子表示);(2)若A 市永远不需要采取紧急限排措施,求m 的取值范围.解 设2018年的碳排放总量为a 1,2019年的碳排放总量为a 2,…,(1)由已知,a 1=400×0.9+m ,a 2=0.9×()400×0.9+m +m=400×0.92+0.9m +m =324+1.9m .(2)a 3=0.9×()400×0.92+0.9m +m +m=400×0.93+0.92m +0.9m +m ,…,a n =400×0.9n +0.9n -1m +0.9n -2m +…+0.9m +m =400×0.9n+m 1-0.9n 1-0.9=400×0.9n +10m ()1-0.9n =()400-10m ×0.9n +10m .由已知∀n ∈N *,a n ≤550,(1)当400-10m =0,即m =40时,显然满足题意;(2)当400-10m >0,即m <40时,由指数函数的性质可得()400-10m ×0.9+10m ≤550,解得m ≤190.综合得m <40;(3)当400-10m <0,即m >40时,由指数函数的性质可得10m ≤550,解得m ≤55,综合得40<m ≤55.综上可得所求m 的范围是(]0,55.【思维升华】常见数列应用题模型的求解方法(1)产值模型:原来产值的基础数为N ,平均增长率为p ,对于时间n 的总产值y =N (1+p )n .(2)银行储蓄复利公式:按复利计算利息的一种储蓄,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+r )n .(3)银行储蓄单利公式:利息按单利计算,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+nr ).(4)分期付款模型:a 为贷款总额,r 为年利率,b 为等额还款数,则b =r (1+r )n a (1+r )n -1. 跟踪演练3 (2018·上海崇明区模拟)2016 年崇明区政府投资 8 千万元启动休闲体育新乡村旅游项目.规划从 2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均在上一年的基础上增长50%.记 2016 年为第 1 年,f (n )为第 1 年至此后第 n (n ∈N *)年的累计利润(注:含第 n 年,累计利润=累计净收入-累计投入,单位:千万元),且当 f (n )为正值时,认为该项目赢利. ⎝⎛⎭⎫参考数值:⎝⎛⎭⎫327≈17,⎝⎛⎭⎫328≈25,ln 3≈1.1,ln 2≈0.7 (1)试求 f (n )的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.解 (1)由题意知,第1年至此后第n (n ∈N *)年的累计投入为8+2(n -1)=2n +6(千万元),第1年至此后第n (n ∈N *)年的累计净收入为12+12×⎝⎛⎭⎫321+12×⎝⎛⎭⎫322+…+12×⎝⎛⎭⎫32n -1 =12⎣⎡⎦⎤1-⎝⎛⎭⎫32n 1-32=⎝⎛⎭⎫32n -1(千万元).∴f (n )=⎝⎛⎭⎫32n -1-(2n +6)=⎝⎛⎭⎫32n -2n -7(千万元).(2)方法一 ∵f (n +1)-f (n )=⎣⎡⎦⎤⎝⎛⎭⎫32n +1-2(n +1)-7-⎣⎡⎦⎤⎝⎛⎭⎫32n -2n -7 =12⎣⎡⎦⎤⎝⎛⎭⎫32n -4, ∴当n ≤3时,f (n +1)-f (n )<0,故当n ≤4时,f (n )递减;当n ≥4时,f (n +1)-f (n )>0,故当n ≥4时,f (n )递增.又f (1)=-152<0, f (7)=⎝⎛⎭⎫327-21≈17-21=-4<0,f (8)=⎝⎛⎭⎫328-23≈25-23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.方法二 设f (x )=⎝⎛⎭⎫32x -2x -7(x ≥1),则f ′(x )=⎝⎛⎭⎫32x ln 32-2,令f ′(x )=0,得⎝⎛⎭⎫32x =2ln 32=2ln 3-ln 2≈21.1-0.7=5, ∴x ≈4.从而当x ∈[1,4)时,f ′(x )<0,f (x )单调递减;当x ∈(4,+∞)时,f ′(x )>0,f (x )单调递增.又f (1)=-152<0, f (7)=⎝⎛⎭⎫327-21≈17-21=-4<0,f (8)=⎝⎛⎭⎫328-23≈25-23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.真题体验1.(2018·全国Ⅰ)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________.答案 -63【试题解析】∵S n =2a n +1,当n ≥2时,S n -1=2a n -1+1,∴a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).当n =1时,a 1=S 1=2a 1+1,得a 1=-1.∴数列{a n }是首项a 1=-1,公比q =2的等比数列,∴S n =a 1(1-q n )1-q =-1(1-2n )1-2=1-2n , ∴S 6=1-26=-63.2.(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解 (1)设数列{x n }的公比为q .由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2. 所以3q 2-5q -2=0,由已知得q >0,所以q =2,x 1=1.因此数列{x n }的通项公式为x n =2n -1(n ∈N *). (2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n -2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2, 所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1 =32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12(n ∈N *). 押题预测已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数.(1)试判断数列{a n }是否为等比数列;(2)若a 2=12,a 3=1. ①求数列{a n }的通项公式及前n 项和S n 的表达式;②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2n b ,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值. 押题依据 本题综合考查数列知识,第(1)问考查反证法的数学方法及逻辑推理能力,第(2)问是高考的热点问题,即数列与不等式的完美结合,其中将求数列前n 项和的常用方法“裂项相消法”与“错位相减法”结合在一起,考查了综合分析问题、解决问题的能力.解 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3.又取n =2,得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎨⎧ a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1, 从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12,公比为2的等比数列. 综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12,n =1,2n -3,n ≥2.从而其前n 项和S n =2n -2(n ∈N *). ②由①得b n =n -2,从而c n =1(n +1)(n +2)+n ·2n -2. 记C 1=12×3+13×4+…+1(n +1)(n +2)=⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n +1-1n +2 =n 2(n +2), 记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1, 两式相减得C 2=(n -1)·2n -1+12, 从而T n =n 2(n +2)+(n -1)·2n -1+12 =n +1n +2+(n -1)·2n -1, 则不等式4n -1T n <S n +3+n +122可化为4(n +1)(n -1)(n +2)+2n +1<2n +1+n +122, 即n 2+n -90>0,因为n ∈N *且n ≠1,故n >9, 从而最小正整数n 的值是10.A 组 专题通关1.(2018·安徽省“皖南八校”联考)删去正整数数列1,2,3,… 中的所有完全平方数,得到一个新数列,这个数列的第2 018项是( ) A.2 062 B.2 063 C.2 064 D.2 065答案 B【试题解析】由题意可得,这些数可以写为12,2,3,22,5,6,7,8,32,…,第k 个平方数与第k +1个平方数之间有2k 个正整数,而数列12,2,3,22,5,6,7,8,32,…,452共有2 025项,去掉45个平方数后,还剩余2 025-45=1 980(个)数,所以去掉平方数后第2 018项应在2 025后的第38个数,即是原来数列的第2 063项,即为2 063.2.(2018·百校联盟联考)已知数列{a n }满足0<a n <1,a 41-8a 21+4=0,且数列⎩⎨⎧⎭⎬⎫a 2n +4a2n 是以8为公差的等差数列,设{a n }的前n 项和为S n ,则满足S n >10的n 的最小值为( ) A.60 B.61 C.121 D.122 答案 B【试题解析】由a 41-8a 21+4=0,得a 21+4a 21=8, 所以a 2n +4a 2n =8+8(n -1)=8n , 所以⎝⎛⎭⎫a n +2a n 2=a 2n +4a 2n +4=8n +4, 所以a n +2a n =22n +1,即a 2n -22n +1a n +2=0,所以a n =22n +1±22n -12=2n +1±2n -1,因为0<a n <1,所以a n =2n +1-2n -1,S n =2n +1-1, 由S n >10得2n +1>11, 所以n >60.3.(2018·商丘模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),S n 为数列{a n }的前n 项和,则( ) A.a n ≥2n +1 B.S n ≥n 2 C.a n ≥2n -1D.S n ≥2n -1答案 B【试题解析】由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…, a n -a n -1≥2,∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1), ∴a n -a 1≥2(n -1),∴a n ≥2n -1. ∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1, ∴S n ≥n2(1+2n -1)=n 2.4.(2018·河南省豫南豫北联考)数列{a n }满足a 1=65,a n =a n +1-1a n -1(n ∈N *),若对n ∈N *,都有k >1a 1+1a 2+…+1a n 成立,则最小的整数k 是( ) A.3 B.4 C.5 D.6 答案 C【试题解析】由a n =a n +1-1a n -1,得a n ()a n -1=a n +1-1,∴1a n +1-1=1a n ()a n -1=1a n -1-1a n,即1a n =1a n -1-1a n +1-1,且a n >1. ∴1a 1+1a 2+…+1a n =⎝⎛⎭⎫1a 1-1-1a 2-1+ ⎝⎛⎭⎫1a 2-1-1a 3-1+…+⎝⎛⎭⎫1a n -1-1a n +1-1 =1a 1-1-1a n +1-1, ∴1a 1+1a 2+…+1a n =5-1a n +1-1<5. 又对n ∈N *,都有k >1a 1+1a 2+…+1a n 成立,∴k ≥5.故最小的整数k 是5.5.(2018·马鞍山联考)已知f (n )表示正整数n 的所有因数中最大的奇数,例如:12的因数有1,2,3,4,6,12,则f (12)=3;21的因数有1,3,7,21,则f (21)=21,那么∑i =51100f (i )的值为( )A.2 488B.2 495C.2 498D.2 500 答案 D【试题解析】由f (n )的定义知f (n )=f (2n ),且若n 为奇数则f (n )=n , 则∑i =1100f (i )=f (1)+f (2)+…+f (100)=1+3+5+…+99+f (2)+f (4)+…+f (100) =50×()1+992+f (1)+f (2)+…+f (50) =2 500+∑i =150f (i ),∴∑i =51100f (i )=∑i =1100f (i )-∑i =150f (i )=2 500.6.对于数列{a n },定义H n =a 1+2a 2+…+2n -1a nn为{a n }的“优值”,现在已知某数列{a n }的“优值”H n =2n +1,记数列{a n -kn }的前n 项和为S n ,若S n ≤S 5对任意的n 恒成立,则实数k 的取值范围为________. 答案 ⎣⎡⎦⎤73,125【试题解析】由题意可知a 1+2a 2+…+2n -1a n n=2n +1,∴a 1+2a 2+…+2n -1a n =n ·2n +1,①a 1+2a 2+…+2n -2a n -1=(n -1)·2n ,②由①-②,得2n -1a n =n ·2n +1-(n -1)·2n (n ≥2,n ∈N *),则a n =2n +2(n ≥2),又当n =1时,a 1=4,符合上式,∴a n =2n +2(n ∈N *),∴a n -kn =(2-k )·n +2, 令b n =(2-k )·n +2,∵S n ≤S 5,∴b 5≥0,b 6≤0,解得73≤k ≤125,∴k 的取值范围是⎣⎡⎦⎤73,125.7.已知数列{a n }的前n 项和为S n ,S n =43(a n -1),则(4n -2+1)⎝⎛⎭⎫16a n +1的最小值为__________. 答案 4【试题解析】∵S n =43(a n -1),∴S n -1=43(a n -1-1)(n ≥2),∴a n =S n -S n -1=43(a n -a n -1),∴a n =4a n -1,又a 1=S 1=43(a 1-1),∴a 1=4,∴{a n }是首项为4,公比为4的等比数列, ∴a n =4n , ∴(4n -2+1)⎝⎛⎭⎫16a n +1=⎝⎛⎭⎫4n16+1⎝⎛⎭⎫164n +1 =2+4n 16+164n ≥2+2=4,当且仅当n =2时取“=”.8.已知数列{a n }的首项a 1=a ,其前n 项和为S n ,且满足S n +S n -1=4n 2(n ≥2,n ∈N *),若对任意n ∈N *,a n <a n +1恒成立,则a 的取值范围是______________. 答案 (3,5)【试题解析】由条件S n +S n -1=4n 2(n ≥2,n ∈N *), 得S n +1+S n =4(n +1)2, 两式相减,得a n +1+a n =8n +4, 故a n +2+a n +1=8n +12, 两式再相减,得a n +2-a n =8,由n =2,得a 1+a 2+a 1=16⇒a 2=16-2a , 从而a 2n =16-2a +8(n -1)=8n +8-2a ; 由n =3,得a 1+a 2+a 3+a 1+a 2=36⇒a 3=4+2a , 从而a 2n +1=4+2a +8(n -1)=8n -4+2a , 由条件得⎩⎪⎨⎪⎧a <16-2a ,8n +8-2a <8n -4+2a ,8n -4+2a <8(n +1)+8-2a ,解得3<a <5.9.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上. (1)求数列{a n }的通项公式;(2)若函数f (n )=1n +a 1+2n +a 2+3n +a 3+…+nn +a n (n ∈N *,且n >2),求函数f (n )的最小值;(3)设b n =1a n ,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的整式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,请说明理由.解 (1)点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,∴数列{a n }是以1为首项,1为公差的等差数列, ∴a n =1+(n -1)·1=n (n ∈N *). (2)∵f (n )=1n +1+2n +2+…+n 2n ,∴f (n +1)=1n +2+2n +3+…+n -12n +n2n +1+n +12n +2,∴f (n +1)-f (n )=-⎝⎛⎭⎫1n +1+1n +2+…+12n +n 2n +1+n +12n +2>12+n 2n +1-nn +1=12+n (n +1)-n (2n +1)(2n +1)(n +1)=12-n 22n 2+3n +1 =12-12+3n +1n2>0, ∴f (n +1)-f (n )>0,∴f (n )是单调递增的, 故f (n )的最小值是f (3)=2320.(3)∵b n =1n ⇒S n =1+12+13+…+1n ,∴S n -S n -1=1n (n ≥2),即nS n -(n -1)S n -1=S n -1+1,∴(n -1)S n -1-(n -2)S n -2=S n -2+1,…,2S 2-S 1=S 1+1, ∴nS n -S 1=S 1+S 2+…+S n -1+n -1, ∴S 1+S 2+…+S n -1=nS n -n =(S n -1)·n (n ≥2),∴g (n )=n .10.(2016·四川)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n 3n -1.(1)解 由已知S n +1=qS n +1,得S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立. 所以,数列{a n }是首项为1,公比为q 的等比数列. 从而a n =q n -1.由2a 2,a 3,a 2+2成等差数列, 可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2.所以a n =2n -1(n ∈N *).(2)证明 由(1)可知,a n =q n -1.所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q2(n-1).由e 2=1+q 2=53,解得q =43.因为1+q 2(k-1)>q 2(k-1),所以1+q 2(k-1)>q k -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1. 故e 1+e 2+…+e n >4n -3n3n -1.B 组 能力提高11.若数列{a n }满足a n +12n +5-a n2n +3=1,且a 1=5,则数列{a n }的前100项中,能被5整除的项数为( )A.42B.40C.30D.20 答案 B【试题解析】∵数列{a n }满足a n +12n +5-a n2n +3=1,即a n +12(n +1)+3-a n 2n +3=1,且a 12×1+3=1,∴数列⎩⎨⎧⎭⎬⎫a n 2n +3是以1为首项,1为公差的等差数列,∴a n2n +3=n , ∴a n =2n 2+3n ,由题意可知,∴每10项中有4项能被5整除,∴数列{a n }的前100项中,能被5整除的项数为40.12.(2018·江西省重点中学协作体联考)设x =1是函数f (x )=a n +1x 3-a n x 2-a n +2x +1(n ∈N *)的极值点,数列{a n }满足 a 1=1,a 2=2,b n =log 2a n +1,若[x ]表示不超过x 的最大整数,则⎣⎡⎦⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019等于( ) A.2 017 B.2 018 C.2 019 D.2 020答案 A【试题解析】由题意可得f ′(x )=3a n +1x 2-2a n x -a n +2, ∵x =1是函数f (x )的极值点, ∴f ′(1)=3a n +1-2a n -a n +2=0, 即a n +2-3a n +1+2a n =0. ∴a n +2-a n +1=2()a n +1-a n ,∵a 2-a 1=1,∴a 3-a 2=2×1=2,a 4-a 3=2×2=22,…,a n -a n -1=2n -2,以上各式累加可得a n =2n -1.∴b n =log 2a n +1=log 22n =n . ∴2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=2 018⎝⎛⎭⎫11×2+12×3+…+12 018×2 019=2 018⎝⎛⎭⎫1-12 019=2 018-2 0182 019=2 017+12 019. ∴⎣⎡⎦⎤2 018b 1b 2+2 018b 2b 3+…+ 2 018b 2 018b 2 019=2 017.13.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *). (1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n . (1)证明 ∵S n -n =2(a n -2), 当n ≥2时,S n -1-(n -1)=2(a n -1-2), 两式相减,得a n -1=2a n -2a n -1, ∴a n =2a n -1-1,∴a n -1=2(a n -1-1), ∴a n -1a n -1-1=2(n ≥2)(常数).又当n =1时,a 1-1=2(a 1-2), 得a 1=3,a 1-1=2,∴数列{a n -1}是以2为首项,2为公比的等比数列. (2)解 由(1)知,a n -1=2×2n -1=2n ,∴a n =2n +1, 又b n =a n ·log 2(a n -1), ∴b n =n (2n +1),∴T n =b 1+b 2+b 3+…+b n=(1×2+2×22+3×23+…+n ×2n )+(1+2+3+…+n ), 设A n =1×2+2×22+3×23+…+(n -1)×2n -1+n ×2n ,则2A n =1×22+2×23+…+(n -1)×2n +n ×2n +1,两式相减,得-A n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1,∴A n =(n -1)×2n +1+2.又1+2+3+…+n =n (n +1)2,∴T n =(n -1)×2n +1+2+n (n +1)2(n ∈N *).14.已知数列{a n }满足a 1=2,a n +1=2(S n +n +1)(n ∈N *),令b n =a n +1. (1)求证:{b n }是等比数列;(2)记数列{nb n }的前n 项和为T n ,求T n ;(3)求证:12-12×3n <1a 1+1a 2+1a 3+…+1a n <1116. (1)证明 a 1=2,a 2=2(2+2)=8, a n +1=2(S n +n +1)(n ∈N *), a n =2(S n -1+n )(n ≥2),两式相减,得a n +1=3a n +2(n ≥2). 经检验,当n =1时上式也成立, 即a n +1=3a n +2(n ≥1). 所以a n +1+1=3(a n +1), 即b n +1=3b n ,且b 1=3.故{b n }是首项为3,公比为3的等比数列. (2)解 由(1)得b n =3n ,nb n =n ·3n . T n =1×3+2×32+3×33+…+n ×3n , 3T n =1×32+2×33+3×34+…+n ×3n +1,两式相减,得-2T n =3+32+33+…+3n -n ×3n +1=3(1-3n )1-3-n ×3n +1,化简得T n =⎝⎛⎭⎫32n -34×3n +34. (3)证明 由1a k =13k -1>13k ,得1a 1+1a 2+1a 3+…+1a n >13+132+…+13n =13⎝⎛⎭⎫1-13n 1-13=12-12×13n .又1a k =13k -1=3k +1-1(3k -1)(3k +1-1)<3k +1(3k -1)(3k +1-1)=32⎝⎛⎭⎫13k -1-13k +1-1, 所以1a 1+1a 2+1a 3+…+1a n <12+32⎣⎡⎝⎛⎭⎫132-1-133-1+⎝⎛⎭⎫133-1-134-1+…+⎦⎤⎝⎛⎭⎫13n -1-13n +1-1 =12+32⎝⎛⎭⎫132-1-13n +1-1 =12+316-32×13n +1-1<1116, 故12-12×3n <1a 1+1a 2+1a 3+…+1a n <1116.。
第2讲数列求和及综合应用年份卷别考查内容及考题位置命题分析2018卷Ⅰa n与S n关系的应用·T14等差数列、等比数列的前n项和是高考考查的重点.若以解答题的形式考查,数列往往与解三角形在17题的位置上交替考查,试题难度中等;若以客观题考查,难度中等的题目较多,但有时也出现在第12题或16题位置上,难度偏大,复习时应引起关注.卷Ⅱ等差数列前n项和的最值问题·T172017卷Ⅱ裂项相消法求和·T152016卷Ⅱ等差数列的基本运算、数列求和·T17卷Ⅲ等比数列的通项公式、a n与S n的关系·T17数列求和问题(综合型)[典型例题]命题角度一公式法求和等差、等比数列的前n项和(1)等差数列:S n=na1+n(n-1)2d(d为公差)或S n=n(a1+a n)2.(2)等比数列:S n=⎩⎪⎨⎪⎧na1,q=1,a1(1-q n)1-q=a1-a n q1-q,q≠1其中(q为公比).4类特殊数列的前n项和(1)1+2+3+…+n=12n(n+1).(2)1+3+5+…+(2n-1)=n2.(3)12+22+32+…+n2=16n(n+1)(2n+1).(4)13+23+33+…+n3=14n2(n+1)2.已知数列{a n}满足a1=1,a n+1=3a n2a n+3,n∈N*.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n为等差数列;(2)设T 2n =1a 1a 2-1a 2a 3+1a 3a 4-1a 4a 5+…+1a 2n -1a 2n -1a 2n a 2n +1,求T 2n .【解】 (1)证明:由a n +1=3a n 2a n +3,得1a n +1=2a n +33a n =1a n +23, 所以1a n +1-1a n =23. 又a 1=1,则1a 1=1,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为23的等差数列.(2)设b n =1a 2n -1a 2n -1a 2n a 2n +1=⎝⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n,由(1)得,数列⎩⎨⎧⎭⎬⎫1a n 是公差为23的等差数列,所以1a 2n -1-1a 2n +1=-43,即b n =⎝ ⎛⎭⎪⎫1a 2n -1-1a 2n +11a 2n =-43×1a 2n ,所以b n +1-b n =-43⎝ ⎛⎭⎪⎫1a 2n +2-1a 2n =-43×43=-169. 又b 1=-43×1a 2=-43×⎝ ⎛⎭⎪⎫1a 1+23=-209,所以数列{b n }是首项为-209,公差为-169的等差数列,所以T 2n =b 1+b 2+…+b n =-209n +n (n -1)2×⎝ ⎛⎭⎪⎫-169=-49(2n 2+3n ).求解此类题需过“三关”:第一关,定义关,即会利用等差数列或等比数列的定义,判断所给的数列是等差数列还是等比数列;第二关,应用关,即会应用等差(比)数列的前n 项和公式来求解,需掌握等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2或S n =na 1+n (n -1)2d ;等比数列{a n }的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1;第三关,运算关,认真运算,此类题将迎刃而解. 命题角度二 分组转化法求和将一个数列分成若干个简单数列(如等差数列、等比数列、常数列等),然后分别求和.也可先根据通项公式的特征,将其分解为可以直接求和的一些数列的和,再分组求和,即把一个通项拆成几个通项求和的形式,方便求和.已知等差数列{a n }的首项为a ,公差为d ,n ∈N *,且不等式ax 2-3x +2<0的解集为(1,d ).(1)求数列{a n }的通项公式a n ;(2)若b n =3an +a n -1,n ∈N *,求数列{b n }的前n 项和T n .【解】 (1)易知a ≠0,由题设可知⎩⎪⎨⎪⎧1+d =3a,1·d =2a ,解得⎩⎪⎨⎪⎧a =1,d =2.故数列{a n }的通项公式为a n =1+(n -1)·2=2n -1. (2)由(1)知b n =32n -1+2n -1-1,则T n =(3+1)+(33+3)+…+(32n -1+2n -1)-n=(31+33+…+32n -1)+(1+3+…+2n -1)-n=31(1-9n)1-9+(1+2n -1)n2-n=38(9n -1)+n 2-n .(1)在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 进行讨论.最后再验证是否可以合并为一个表达式.(2)分组求和的策略:①根据等差、等比数列分组.②根据正号、负号分组. 命题角度三 裂项相消法求和把数列的通项公式拆成两项之差的形式,求和时正负项相消,只剩下首尾若干项,达到化简求和的目的. 常见的裂项式有:1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,1n (n +1)(n +2)=12⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2),1n +1+n=n +1-n 等.(2018·唐山模拟)已知数列{a n }满足:1a 1+2a 2+…+n a n =38(32n -1),n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =log 3a nn,求1b 1b 2+1b 2b 3+…+1b n b n +1.【解】 (1)1a 1=38(32-1)=3,当n ≥2时,因为n a n =⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n a n -⎝ ⎛⎭⎪⎫1a 1+2a 2+…+n -1a n -1=38(32n -1)-38(32n -2-1)=32n -1.当n =1,n a n=32n -1也成立,所以a n =n32n -1.(2)b n =log 3a n n=-(2n -1), 因为1b n b n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以1b 1b 2+1b 2b 3+…+1b n b n +1=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1.(1)裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 命题角度四 错位相减法求和已知数列{a n }是等差数列,数列{b n }是等比数列,求数列{a n b n }的前n 项和S n 时,先令S n 乘以等比数列{b n }的公比,再错开位置,把两个等式相减,从而求出S n .(2018·石家庄质量检测(一))已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 【解】 (1)由a n +1=n +1n a n +n +12n ,可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,累加可得(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,即b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,所以b n =2-12n -1.(2)由(1)可知a n =2n -n2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1①,12T n =121+222+323+…+n2n ②, ①-②得12T n =120+121+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-n +22n ,所以T n =4-n +22n -1.易知数列{2n }的前n 项和为n (n +1), 所以S n =n (n +1)-4+n +22n -1.(1)求解此类题需掌握三个技巧:一是巧分拆,即把数列的通项转化为等差数列、等比数列的通项的和,并求出等比数列的公比;二是构差式,求出前n 项和的表达式,然后乘以等比数列的公比,两式作差;三是得结论,即根据差式的特征进行准确求和.(2)运用错位相减法求和时应注意三点:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错开位置;三是相减时一定要注意最后一项的符号,学生常在此步出错,一定要小心.命题角度五 并项求和并项求和法:把数列的一些项合并成我们熟悉的等差数列或等比数列来求和. 数列{a n }满足a n +1=⎝ ⎛⎭⎪⎫2⎪⎪⎪⎪⎪⎪sinn π2-1a n +2n ,n ∈N *,则数列{a n }的前100项和为( ) A .5 050 B .5 100 C .9 800D .9 850【解析】 设k ∈N *,当n =2k 时,a 2k +1=-a 2k +4k ,即a 2k +1+a 2k =4k ,① 当n =2k -1时,a 2k =a 2k -1+4k -2,② 联立①②可得,a 2k +1+a 2k -1=2, 所以数列{a n }的前100项和S n =a 1+a 2+a 3+a 4+…+a 99+a 100=(a 1+a 3+…+a 99)+(a 2+a 4+…+a 100)=(a 1+a 3+…+a 99)+[(-a 3+4)+(-a 5+4×2)+(-a 7+4×3)+…+(-a 101+4×50)] =25×2+[-(a 3+a 5+…+a 101)+4×(1+2+3+…+50)]=25×2-25×2+4×50(1+50)2=5 100. 故选B. 【答案】 B(1)将一个数列分成若干段,然后各段分别利用等差(比)数列的前n 项和的公式及错位相减法进行求和.利用并项求和法求解问题的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n”.(2)运用分类讨论法求数列的前n 项和的突破口:一是对分类讨论的“度”的把控,如本题,因为⎪⎪⎪⎪⎪⎪sinn π2可以等于1,也可以等于0,因此分类的“度”可定位到“n 分为奇数与偶数”,有些含绝对值的数列,其分类的“度”需在零点处下功夫;二是对各类分法做到不重不漏,解题的思路就能顺畅.[对点训练](2018·郑州模拟)在等差数列{a n }中,已知a 3=5,且a 1,a 2,a 5为递增的等比数列.(1)求数列{a n }的通项公式;n2(2)若数列{b n }的通项公式b n =⎩⎪⎨⎪⎧a n +12,n =2k -1,2n 2-1,n =2k(k ∈N *),求数列{b n }的前n 项和S n.解:(1)设等差数列{a n }的公差为d ,易知d ≠0, 由题意得,(a 3-2d )(a 3+2d )=(a 3-d )2, 即d 2-2d =0,解得d =2或d =0(舍去),所以数列{a n }的通项公式为a n =a 3+(n -3)d =2n -1. (2)当n =2k ,k ∈N *时,S n =b 1+b 2+…+b n =(b 1+b 3+…+b 2k -1)+(b 2+b 4+…+b 2k )=(a 1+a 2+…+a k )+(20+21+…+2k -1)=k (1+2k -1)2+1-2k1-2=k 2+2k-1=n 24+2n2-1; 当n =2k -1,k ∈N *时,n +1=2k ,则S n =S n +1-b n +1=(n +1)24+2n +12-1-2n +12-1=n 2+2n -34+2n -12.综上,S n=⎩⎨⎧n 24+2n2-1,n =2k ,n 2+2n -34+2n -12,n =2k -1(k ∈N *).数列与其他知识的交汇问题(综合型)[典型例题]命题角度一 数列与不等式相交汇已知等差数列{a n }的前n 项和为S n ,n ∈N *,且a 2=3,S 5=25. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1S n ·S n +1,记数列{b n }的前n 项和为T n ,证明:T n <1.【解】 (1)设等差数列{a n }的公差为d .因为a 2=3,S 5=25,所以⎩⎪⎨⎪⎧a 1+d =3,5(2a 1+4d )2=25,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1.(2)证明:由(1)知,a n =2n -1,所以S n =n (1+2n -1)2=n 2.所以b n =1n 2·(n +1)2=1n (n +1)=1n -1n +1.所以T n =b 1+b 2+b 3+…+b n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1<1.证明数列不等式的关键:一是会灵活运用等差数列与等比数列的通项公式、前n 项和公式以及裂项相消法;二是会利用放缩法证明不等式.命题角度二 数列与函数相交汇(2018·长沙模拟)设数列{a n }的前n 项和是S n ,若点A n ⎝⎛⎭⎪⎫n ,S n n在函数f (x )=-x +c 的图象上运动,其中c 是与x 无关的常数,且a 1=3.(1)求数列{a n }的通项公式;(2)记b n =aa n ,求数列{b n }的前n 项和T n 的最小值.【解】 (1)因为点A n ⎝⎛⎭⎪⎫n ,S n n在函数f (x )=-x +c 的图象上运动,所以S n n=-n +c ,所以S n =-n 2+cn .因为a 1=3,所以c =4,所以S n =-n 2+4n ,所以a n =S n -S n -1=-2n +5(n ≥2). 又a 1=3满足上式,所以a n =-2n +5(n ≥1).(2)由(1)知,b n =aa n =-2a n +5=-2(-2n +5)+5=4n -5,所以T n=n (b 1+b n )2=2n 2-3n .所以T n 的最小值是T 1=-1.数列与函数交汇问题的常见类型及解法(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.(2)已知数列条件,需构造函数,利用函数知识解决问题,解决此类问题一般要充分利用数列的范围、分式、求和方法对式子化简变形.另外,解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解.[对点训练]已知正项数列{a n },{b n }满足:对于任意的n ∈N *,都有点(n ,b n )在直线y =22(x +2)上,且b n ,a n +1,b n +1成等比数列,a 1=3.(1)求数列{a n },{b n }的通项公式;(2)设S n =1a 1+1a 2+…+1a n ,如果对任意的n ∈N *,不等式2aS n <2-b n a n恒成立,求实数a 的取值范围.解:(1)因为点(n ,b n )在直线y =22(x +2)上, 所以b n =22(n +2),即b n =(n +2)22.又因为b n ,a n +1,b n +1成等比数列, 所以a 2n +1=b n ·b n +1=(n +2)2(n +3)24,所以a n +1=(n +2)(n +3)2,所以n ≥2时,a n =(n +1)(n +2)2,a 1=3适合上式,所以a n =(n +1)(n +2)2.(2)由(1)知,1a n=2(n +1)(n +2)=2⎝ ⎛⎭⎪⎫1n +1-1n +2,所以S n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=2⎝ ⎛⎭⎪⎫12-1n +2=n n +2. 故2aS n <2-b na n可化为:2an n +2<2-(n +2)22(n +1)(n +2)2=2-n +2n +1=nn +1, 即a <n +22(n +1)=12⎝ ⎛⎭⎪⎫1+1n +1对任意的n ∈N *恒成立,令f (n )=12⎝ ⎛⎭⎪⎫1+1n +1,显然f (n )随n 的增大而减小,且f (n )>12恒成立, 故a ≤12.综上知,实数a 的取值范围是⎝⎛⎦⎥⎤-∞,12.[A 组 夯基保分专练]一、选择题1.在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87等于( ) A.1403B .60C .80D .160解析:选C.a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a 1q 2×1-(q 3)291-q 3=q 21+q +q 2×a 1(1-q 87)1-q =47×140=80.故选C.2.已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C.由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.3.已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎨⎧⎭⎬⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )A.110B.15C.111D.211解析:选C.因为2a 1+22a 2+ (2)a n =n (n ∈N *), 所以2a 1+22a 2+…+2n -1a n -1=n -1(n ≥2),两式相减得2na n =1(n ≥2),a 1=12也满足上式,故a n =12n ,故1log 2a n log 2a n +1=1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,所以S 1·S 2·S 3·…·S 10=12×23×34×…×910×1011=111,故选C.4.(2018·太原模拟)已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( )A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:选D.因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n -1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q =6,解得b 1=1,q=2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.5.已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A .(13,+∞)B .[13,+∞)C .(23,+∞)D .[23,+∞)解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1) 2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12(1-14n )1-14=23(1-14n )<23,因此实数t 的取值范围是[23,+∞),故选D. 6.(2018·河北“五个一名校联盟”模拟)在正整数数列中,由1开始依次按如下规则,将某些数染成红色.先染1;再染两个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面最邻近的4个连续偶数10,12,14,16;再染此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,…则在这个红色子数列中,由1开始的第2 018个数是( )A .3 971B .3 972C .3 973D .3 974解析:选B.由题意可知,第1组有1个数,第2组有2个数……根据等差数列的前n 项和公式,可知前n 组共有n (n +1)2个数.由于2 016=63×(63+1)2<2 018<64×(64+1)2=2 080,因此,第2 018个数是第64组的第2个数.由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,……,第n 组最后一个数是n 2,因此,第63组最后一个数为632,632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972.故选B.二、填空题7.已知数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,则a 8=________.解析:数列{a n }的前n 项和S n 满足S n +S m =S n +m (n ,m ∈N *)且a 1=5,令m =1,则S n +1=S n +S 1=S n +5,即S n +1-S n =5,所以a n +1=5,所以a 8=5.答案:58.(2018·武汉调研)设等差数列{a n }满足a 3+a 7=36,a 4a 6=275,且a n a n +1有最小值,则这个最小值为________.解析:设等差数列{a n }的公差为d ,因为a 3+a 7=36,所以a 4+a 6=36,与a 4a 6=275,联立,解得⎩⎪⎨⎪⎧a 4=11,a 6=25或⎩⎪⎨⎪⎧a 4=25,a 6=11, 当⎩⎪⎨⎪⎧a 4=11,a 6=25时,可得⎩⎪⎨⎪⎧a 1=-10,d =7,此时a n =7n -17,a 2=-3,a 3=4,易知当n ≤2时,a n <0,当n ≥3时,a n >0,所以a 2a 3=-12为a n a n +1的最小值;当⎩⎪⎨⎪⎧a 4=25,a 6=11时,可得⎩⎪⎨⎪⎧a 1=46,d =-7,此时a n =-7n +53,a 7=4,a 8=-3,易知当n ≤7时,a n >0,当n ≥8时,a n <0,所以a 7a 8=-12为a n a n +1的最小值.综上,a n a n +1的最小值为-12. 答案:-129.(2018·昆明调研)将数列{a n }中的所有项按每一行比上一行多1项的规则排成如下数阵:a 1a 2,a 3a 4,a 5,a 6a 7,a 8,a 9,a 10……记数阵中的第1列数a 1,a 2,a 4,…构成的数列为{b n },S n 为数列{b n }的前n 项和.若S n =2b n -1,则a 56=________.解析:当n ≥2时,因为S n =2b n -1,所以S n -1=2b n -1-1,所以b n =2b n -2b n -1,所以b n =2b n -1(n ≥2且n ∈N *),因为b 1=2b 1-1,所以b 1=1,所以数列{b n }是首项为1,公比为2的等比数列,所以b n =2n -1.设a 1,a 2,a 4,a 7,a 11,…的下标1,2,4,7,11,…构成数列{c n },则c 2-c 1=1,c 3-c 2=2,c 4-c 3=3,c 5-c 4=4,…,c n -c n -1=n -1,累加得,c n -c 1=1+2+3+4+…+(n -1),所以c n =n (n -1)2+1,由c n=n (n -1)2+1=56,得n =11,所以a 56=b 11=210=1 024.答案:1 024 三、解答题10.(2018·高考天津卷)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值.解:(1)设等比数列{b n }的公比为q .由b 1=1,b 3=b 2+2,可得q 2-q -2=0. 因为q >0,可得q =2,故b n =2n -1.所以,T n =1-2n1-2=2n-1.设等差数列{a n }的公差为d .由b 4=a 3+a 5,可得a 1+3d =4. 由b 5=a 4+2a 6, 可得3a 1+13d =16, 从而a 1=1,d =1,故a n =n . 所以,S n =n (n +1)2.(2)由(1),有T 1+T 2+…+T n =(21+22+ (2))-n =2×(1-2n)1-2-n =2n +1-n -2.由S n +(T 1+T 2+…+T n )=a n +4b n 可得n (n +1)2+2n +1-n -2=n +2n +1,整理得n 2-3n -4=0, 解得n =-1(舍),或n =4. 所以,n 的值为4.11.(2018·陕西教学质量检测(一))已知在递增的等差数列{a n }中,a 1=2,a 3是a 1和a 9的等比中项. (1)求数列{a n }的通项公式;(2)若b n =1(n +1)a n ,S n 为数列{b n }的前n 项和,求S 100的值.解:(1)设公差为d (d >0), 则a n =a 1+(n -1)d .因为a 3是a 1和a 9的等比中项, 所以a 23=a 1a 9,即(2+2d )2=2(2+8d ), 解得d =0(舍去)或d =2. 所以a n =a 1+(n -1)d =2n . (2)由(1)得b n =1(n +1)a n =12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,所以S 100=b 1+b 2+…+b 100=12×(1-12+12-13+…+1100-1101)=12×⎝ ⎛⎭⎪⎫1-1101=50101.12.(2018·兰州模拟)已知等差数列{a n }中,a 2=2,a 3+a 5=8,数列{b n }中,b 1=2,其前n 项和S n 满足:b n +1=S n +2(n ∈N *).(1)求数列{a n },{b n }的通项公式; (2)设c n =a n b n,求数列{c n }的前n 项和T n . 解:(1)设{a n }的公差为d , 因为a 2=2,a 3+a 5=8, 所以2+d +2+3d =8, 所以d =1,所以a n =n . 因为b n +1=S n +2(n ∈N *),① 所以b n =S n -1+2(n ∈N *,n ≥2).②①-②得,b n +1-b n =S n -S n -1=b n (n ∈N *,n ≥2), 所以b n +1=2b n (n ∈N *,n ≥2). 因为b 1=2,b 2=2b 1,所以{b n }为等比数列,b 1=2,q =2, 所以b n =2n. (2)因为c n =a n b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,12T n =122+223+324+…+n -12n +n2n +1, 两式相减,得12T n =12+122+…+12n -n 2n +1=1-2+n 2n +1,所以T n =2-n +22n.[B 组 大题增分专练]1.(2018·昆明模拟)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式;(2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列. 故a n -1=(-2)n,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n -1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.2.(2018·惠州第一次调研)在公差不为0的等差数列{a n }中,a 1,a 4,a 8成等比数列. (1)若数列{a n }的前10项和为45,求数列{a n }的通项公式; (2)若b n =1a n a n +1,且数列{b n }的前n 项和为T n ,若T n =19-1n +9,求数列{a n }的公差. 解:(1)设数列{a n }的公差为d (d ≠0), 由a 1,a 4,a 8成等比数列可得a 24=a 1·a 8, 即(a 1+3d )2=a 1·(a 1+7d ),得a 1=9d .由数列{a n }的前10项和为45得10a 1+45d =45, 即90d +45d =45, 所以d =13,a 1=3.故数列{a n }的通项公式为a n =3+(n -1)×13=n +83.(2)因为b n =1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,所以数列{b n }的前n 项和T n =1d [⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1a n +1]=1d ⎝ ⎛⎭⎪⎫1a 1-1a n +1,即T n =1d ⎝ ⎛⎭⎪⎫1a 1-1a 1+nd =1d ⎝ ⎛⎭⎪⎫19d -19d +nd = 1d 2⎝ ⎛⎭⎪⎫19-19+n =19-19+n , 因此1d2=1,解得d =-1或1.故数列{a n }的公差为-1或1.3.已知等差数列{a n }的首项a 1=2,前n 项和为S n ,等比数列{b n }的首项b 1=1,且a 2=b 3,S 3=6b 2,n ∈N *.(1)求数列{a n }和{b n }的通项公式;(2)数列{c n }满足c n =b n +(-1)na n ,记数列{c n }的前n 项和为T n ,求T n . 解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q . 因为a 1=2,b 1=1,且a 2=b 3,S 3=6b 2, 所以⎩⎪⎨⎪⎧2+d =q 2,3(2+2+2d )2=6q .解得⎩⎪⎨⎪⎧d =2,q =2.所以a n =2+(n -1)×2=2n ,b n =2n -1.(2)由题意:c n =b n +(-1)na n =2n -1+(-1)n2n .所以T n =(1+2+4+…+2n -1)+[-2+4-6+8-…+(-1)n2n ],①若n 为偶数:T n =1-2n1-2+{(-2+4)+(-6+8)+…+[-2(n -1)+2n ]} =2n-1+n2×2=2n+n -1.②若n 为奇数:T n =1-2n1-2+{(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n }=2n-1+2×n -12-2n =2n-n -2.所以T n =⎩⎪⎨⎪⎧2n+n -1,n 为偶数,2n -n -2,n 为奇数.4.已知数列{a n }满足a 1=3,a n +1=2a n -n +1,数列{b n }满足b 1=2,b n +1=b n +a n -n ,n ∈N *. (1)证明:{a n -n }为等比数列;(2)数列{c n }满足c n =a n -n (b n +1)(b n +1+1),求证数列{c n }的前n 项和T n <13.证明:(1)因为a n +1=2a n -n +1, 所以a n +1-(n +1)=2(a n -n ). 又a 1=3,所以a 1-1=2,所以数列{a n -n }是以2为首项,2为公比的等比数列. (2)由(1)知,a n -n =2·2n -1=2n.所以b n +1=b n +a n -n =b n +2n, 即b n +1-b n =2n.b 2-b 1=21, b 3-b 2=22, b 4-b 3=23,…b n -b n -1=2n -1.以上式子相加,得b n =2+2·(1-2n -1)1-2=2n(n ≥2).当n =1时,b 1=2,满足b n =2n, 所以b n =2n.所以c n =a n -n (b n +1)(b n +1+1)=2n(2n +1)(2n +1+1)=12n +1-12n +1+1. 所以T n =12+1-122+1+122+1-123+1+…+12n +1-12n +1+1=13-12n +1+1<13.。