好教育泄露天机2018高考押题卷 文科数学(一)(教师版)
- 格式:doc
- 大小:919.28 KB
- 文档页数:7
2018全国卷Ⅰ高考压轴卷文科数学本试卷共23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若集合{}1,2lg<=⎭⎬⎫⎩⎨⎧-==x x N x x y x M ,则=⋂N C M R (A ))2,0( (B )(]2,0 (C )[)2,1 (D )()+∞,0 2. 若a R ∈,则“1=a ”是“()10a a -=”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件3. 若复数z 满足(1﹣i )z=2+3i (i 为虚数单位),则复数z 对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4. 已知数列{}n a 的前n 项和22n S n n =+,则数列11{}n n a a +⋅的前6项和为( )A .215 B .415 C.511D .1011 5. 在区间[-1,1]上任选两个数x y 和,则221x y +≥的概率为( ) A .14π-B .128π- C. 18π- D .124π- 6. 过直线23y x =+上的点作圆2246120x y x y +-++=的切线,则切线长的最小值为( )A.[] 7. 已知1x ,2x (12x x <)是函数x x x f ln 11)(--=的两个零点, 若()1,1a x ∈,()21,b x ∈,则A .()0f a <,()0f b <B .()0f a <,()0f b >C .()0f a >,()0f b >D .()0f a >,()0f b <8. F 1,F 2分别是双曲线)0,0(12222>>=-b a by a x 的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为 (A )2 (B )3 (C )5 (D )79. 若程序框图如图所示,则该程序运行后输出k 的值是( )A .5B .6 C.7 D .810. 在ABC △中,60A ∠=,3AB AC ==,D 是ABC △所在平面上的一点. 若3BC DC =,则DB AD ⋅=A. 1-B. 2-C. 5D.9211. 有人发现,多看手机容易使人变冷漠,下表是一个调查机构对此现象的调查结果:附:K 2=附表:P(K 2≥k 0) 0.050 0.010 k 03.841 6.635则认为多看手机与人冷漠有关系的把握大约为A. %99B. %5.97C. %95D. %9012. 已知函数2||33()()(3)(3)3x x f x g x b f x x x -≤⎧⎪==--⎨-->⎪⎩,,函数,,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则实数b 的取值范围是( )A. 11(,)4-+∞ B. 11(3,)4--C. 11(,)4-∞-D. (3,0)-二、填空题:本题共4小题,每小题5分,共20分。
2018届高三好教育云平台2月份内部特供卷高三文科数学(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}0,1,2,3,4,5A =,{}220B x x x =--≤,则A B = ( ) A .{}1,2 B .{}0,1,2 C .{}1,0,1- D .{}0,1【答案】B2.已知复数132i z =+,22i z =-,则12z z ⋅的虚部为( ) A .1 B .i - C .1- D .i【答案】A 3.已知函数()42xx af x +=是奇函数,则()f a 的值为( ) A .52-B .52C .32-D .32【答案】C4.计算=++⨯25.0log 10log 24log 9log 5532( ) A .0 B .2 C .4 D .6【答案】D5.执行如图所示的程序框图,输出S ,则2log (1)S +=( ) A .9B .10C .11D .12【答案】B6.对于平面α和直线a ,b ,c ,命题:p 若a b ∥,b c ∥,则a c ∥;命题:q 若a α∥,b α∥,则a b ∥.则下列命题为真命题的是( ) A .q p ∧ B .q p ∨⌝C .q p ⌝∧D .)(q p ∨⌝【答案】C7.已知变量,x y 满足约束条件1031010x y x y x y +--+--⎧⎪⎨⎪⎩≤≥≤,则2z x y =+的最大值为( )A .1B .2C .3D .4【答案】B8.设离心率为21的椭圆12222=+b y a x 的右焦点与双曲线1322=-y x 的右焦点重合,则椭圆方程为( )A .13422=+y x B .16822=+y x C .1161222=+y x D .1121622=+y x 【答案】D9.函数()sin()(||)2f x A x ωφφπ=+<的图象如图所示,则下列说法正确的是( )第9题图此卷只装订不密封班级 姓名 准考证号 考场号 座位号好教育云平台 内部特供卷 第3页(共10页) 好教育云平台 内部特供卷 第4页(共10页)A .在区间71366ππ⎡⎤⎢⎥⎣⎦,上单调递减B .在区间7131212ππ⎡⎤⎢⎥⎣⎦,上单调递增C .在区间7131212ππ⎡⎤⎢⎥⎣⎦,上单调递减D .在区间71366ππ⎡⎤⎢⎥⎣⎦,上单调递增【答案】B10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则此几何体的体积为( ) A .43B .2C .4D .23【答案】A11.已知球面上有A 、B 、C 三点,且AB =AC =2,BC =2,球心到平面ABC 的距离为3,则球的体积为( ) A .43π B .323πC D .643π【答案】B12.如图所示,设曲线1y x=上的点与x 轴上的点顺次构成等腰直角三角形11OB A ,122,A B A ,直角顶点在曲线1y x =上,n A 的横坐标为n a ,记12()n n n b n a a *+=∈+N ,则数列{}n b 的前120项之和为( ) A .10B .20C .100D .200【答案】A第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.平面向量a ,b ,满足()7a b b +⋅= ,a = ,2b = ,则向量a 与b夹角为 . 【答案】6π14.已知55sin =α,1010cos -=β,且02αβπ<<<<π,则()=-αβsin .【答案】1027 15.在(内随机地取一个数k ,则事件“直线y kx k =+与圆()2211x y -+=有公共点”发生的概率为 .【答案】3116.已知函数)(x g 对任意的x ∈R ,有2()()g x gx x -+=.设函数2()()2x f x g x =-,且()f x 在区间[)0,+∞上单调递增.若()(2)0f a f a +-≤,则实数a 的取值范围为 . 【答案】1a ≤三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 已知等差数列{}n a 的前n 项和为n S ,且满足73=a ,999=S . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若()2n n n a b n *=∈N ,求数列{}n b 的前n 项和n T . 1B xyo1A 2A 2B 1B 第12题图【答案】(Ⅰ)由题意得:⎪⎩⎪⎨⎧=⨯+=+9928997211d a d a ,解得⎩⎨⎧==231d a , 故{}n a 的通项公式为12+=n a n ,n *∈N . (Ⅱ)由(Ⅰ)得:212n nn b +=, n n n T 21229272523432++++++=① 143221221227252321+++-++++=n n n n n T ② ①-②得:1432212)21212121(22321++-+++++=n n n n T 125225++-=n n ,故nn n T 2525+-=. 18.(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是菱形,PD AC ⊥.(Ⅰ)证明:直线AC ⊥平面PBD ;(Ⅱ)若1DP DA DB ===,PB =ABCD P -的体积. 【答案】(Ⅰ)连接AC 交BD 与E ,是菱形四边形ABCD ,BD AC ⊥∴,而PD AC ⊥,BD ⊂平面PBD ,PD ⊂平面PBD ,PD BD D = ,∴直线AC ⊥平面PBD .(Ⅱ)由(Ⅰ)得AC ⊥平面PBD , 易得2P ABCD A PBD C PBD C PBD V V V V ----=+=,在PBD △中,1BD =,1PD =,PB =23PDB π∠=,所以1211sin 23PBD S π=⨯⨯⨯=△ 而CE ⊥平面PBD ,所以EC 即为C 到平面PBD 的高, 在菱形ABCD中,CE AE ===, 故1138C PBD PBD V S EC -=⋅=△,所以14P ABCD V -=. 19.(本小题满分12分)六安市某棚户区改造,四边形ABPC 为拟定拆迁的棚户区,测得3BPC π∠=,23BAC π∠=,4=AC 千米,2=AB 千米,工程规划用地近似为图中四边形ABPC 的外接圆内部区域.(Ⅰ)求四边形ABPC 的外接圆半径R ;(Ⅱ)求该棚户区即四边形ABPC 的面积的最大值.【答案】(Ⅰ)由题得:在ABC △中,4AC =,2AB =,23BAC π∠=由余弦定理得:BC ==由正弦定理得:2sin BC R BAC ==∠所以R =(Ⅱ)由(Ⅰ)得,72=BC ,由余弦定理得:2222cos BC PB PC PB PC BPC =+-⋅⋅∠,PABCD第18题图第19题图好教育云平台 内部特供卷 第7页(共10页) 好教育云平台 内部特供卷 第8页(共10页)即22282PB PC PB PC PB PC +⋅=+⋅≥,所以28PB PC ⋅≤(当且仅当PB PC =时等号成立), 而11sin sin 22APBC ABC PBC S S S AB AC BAC PB PC BPC =+=⋅⋅∠+⋅⋅∠△△,故4APBC S PB PC =⋅≤ 答:四边形ABPC 的面积的最大值为39. 20.(本小题满分12分)已知经过抛物线2:4C y x =的焦点F 的直线l 与抛物线C 相交于两点()11,A x y ,()22,y x B ,直线AO ,BO 分别交直线1:-=x m 于点M ,N .(Ⅰ)求证:121x x =,124y y =-; (Ⅱ)求线段MN 长的最小值.OABNM【答案】(Ⅰ)易知)0,1(F ,设:1AB x y λ=+,则214x y y xλ=+⎧⎪⎨=⎪⎩得2440y x λ--=,124y y ∴=-,()22212121214416y y y y x x ∴=⋅==;(Ⅱ)设211(,)4y A y ,222(,)4y B y ,所以14AO k y =,24BO k y =, 所以AO 的方程是:14y x y =, 由141y x y x ⎧=⎪⎨⎪=-⎩,14M y y ∴=-, 同理由241y x y x ⎧=⎪⎨⎪=-⎩,24N y y ∴=-,1244||||||M N MN y y y y ∴=-=---12124||y y y y -= ①, 且由(Ⅰ)知124y y =-,124y y λ+=,12||y y ∴-==代入①得到:12||MN y y =-=4MN ≥,仅当0λ=时,||MN 取最小值4,综上所述:MN 的最小值是4. 21.(本小题满分12分)已知函数x xx a x f ln )1()(--=,其中a ∈R .(Ⅰ)若1a =,求曲线()y f x =在点()()1,1P f 处的切线方程; (Ⅱ)若对任意1x ≥,都有()0f x ≥恒成立,求实数a 的取值范围.【答案】(Ⅰ)当1a =时,1()()ln f x x x x=--,(1)0f =,所以211()1f x x x'=+-,(1)1f '=,即曲线()y f x =在点()()1,1P f 处的切线方程为1y x =-;(Ⅱ)()22ax x af x x-+'=, 若0a ≤,则当1x >时,10x x->,ln 0x >,()0f x ∴<,不满足题意;若0a >,则当2140a∆=-≤,即12a ≥时,()0f x '≥恒成立f x ∴在[1,)+∞上单调递增,而10f =,所以当1x ≥时,()0f x ≥,满足题意, 当0∆>,即102a <<时,()0f x '=,有两个不等实根设为1x ,2x ,且12x x <, 则121x x =,1210x x a+=>,1201x x ∴<<<,当21x x <<时,()0f x '<,故()f x 在()21,x 上单调递减,而()10f =, 当2(1,)x x ∈时,()0f x <,不满足题意.综上所述,12a ≥.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(选修4-4:坐标系与参数方程)(本小题满分10分)在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为4cos ρθ=; (Ⅰ)求直线l 的直角坐标方程和曲线C 的直角坐标方程; (Ⅱ)若直线l 与曲线C 交点分别为A ,B ,点(1,0)P ,求11PA PB+的值. 【答案】(Ⅰ):10l x y +-=,曲线22:40C x y x +-=,(Ⅱ)法1:将122x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线C的方程,得23=0t +-,12||t t ∴-==1212||11||||||3t t PA PB t t -∴+==法2:设圆心与x 轴交于O 、D ,则||||||||133PA PB OP PD =⋅=⨯=,而||||||PA PB AB +==11||||||||||||PA PB PA PB PA PB +∴+==. 23.(选修4-5:不等式选讲)(本小题满分10分) 设函数()221f x x x =--+. (Ⅰ)解不等式()0f x ≤;(Ⅱ)x ∀∈R ,()224f x m m -≤恒成立,求实数m 的取值范围. 【答案】(Ⅰ)()0f x ≤,即221x x -+≤, 即2244441x x x x -+++≤,23830x x +-≥,解得13x ≥或3x -≤,所以不等式()0f x ≤的解集为133x x x ⎧⎫-⎨⎬⎩⎭≥或≤.(Ⅱ)()=221f x x x --+=13,2131,223,2x x x x x x ⎧+<-⎪⎪⎪-+-⎨⎪-->⎪⎪⎩≤≤,故()f x 的最大值为1522f ⎛⎫-= ⎪⎝⎭,因为对于x ∀∈R ,使()224f x m m -≤恒成立.所以25242m m +≥,即24850m m +-≥,解得12m ≥或52m -≤,∴51,,22m ⎛⎤⎡⎫∈-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U .【安徽省皖西高中教学联盟2018届三上学期期末质量检测数学文试题用稿】。
陕西省西安市2018届高三高考押题卷文科数学本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d ,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481πB .6π C .481D .616.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( ) A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e xf x x x =-,关于()f x 的性质,有以下四个推断:①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数; ③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( )A .()0,2B .()1,6C .(D .()0,612.已知正方体1111ABCD A BC D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A BC D -在棱上的交点,则下列说法错误的是( ) A .HF //BEB .BM =C .∠MBND .△MBN 的面积是4第Ⅱ卷本卷包括必考题和选考题两部分。
绝密 ★ 启用前2018年好教育云平台最新高考信息卷文 科 数 学(一)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1,2,3A =,{}34xB x =>,则AB =( )A .{1,2}B .{2,3}C .{1,3}D .{1,2,3}【答案】B【解析】{}1,2,3A =,{}34xB x =>()3log 4,=+∞,{}2,3AB ∴=,选B .2.设3iiz +=,i 是虚数单位,则z 的虚部为( ) A .1B .1-C .3D .3-【答案】D 【解析】因为3iiz +=13i =-,z ∴的虚部为3-,选D . 3.某校连续12天对同学们的着装进行检查,着装不合格的人数用茎叶图表示,如图,则该组数据的中位数是( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号123000113254578A .24B .26C .27D .32【答案】C 【解析】中位数是24+30=272,选C . 4.将函数sin 24y x π⎛⎫=-⎪⎝⎭的图象向左平移6π个单位后,得到函数()f x 的图象,则12f π⎛⎫= ⎪⎝⎭( ) ABCD【答案】D【解析】()sin 264f x x ⎛⎫ππ⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,ππππsin 2sin 1212644f ⎛⎫π⎛⎫⎛⎫∴=+-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,选D .5.已知等差数列{}n a 的前n 项和为n S ,若33a =,414S =.则{}n a 的公差为( ) A .1 B .1-C .2D .2-【答案】B【解析】由题意得1123 1443142a d a d +=+⨯=⎧⎪⎨⎪⎩⨯,151a d =⎧∴⎨=-⎩,选B . 6.圆222430x y x y +-++=的圆心到直线10x ay -+=的距离为2,则a =( ) A .1- B .0 C .1 D .2【答案】B【解析】因为()()22122x y -+-=2,0a ∴=,选B .7.若a ,b ,c ,满足23a =,25log b =,32c =,则( )A .c a b <<B .b c a <<C .a b c <<D .c b a <<【答案】A【解析】由题意得22log 3log 5a b =<=,32log 21log 3c a =<<=,c a b ∴<<,选A . 8.函数()()22cos x x f x x -=-在区间[]5,5-上的图象大致为( )A .B .C .D .【答案】D【解析】因为当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <;当352x π⎛⎫∈ ⎪⎝⎭,时,()0f x >.所以选D .9.我国南宋时期的数学家秦九部(约1202-1261)在他的著作《数书九章》中提出了多项式求值的秦九韶算法,如图所示的框图给出了利用秦九韶算法求多项式的一个实例.若输人的5n =,1v =,2x =,则程序框图计算的是( )开始结束是,,n v x1i n =-0?i ≥输出v 1i i =-1v v x =⋅+否输入A .5432222221+++++ B .5432222225+++++ C .654322222221++++++ D .43222221++++【答案】A【解析】执行循环得:4i =,121v =⨯+,3i =;2221v =++,2i =,322221v =+++,1i =;43222221v =++++,0i =;5432222221v =+++++,1i =-;结束循环,输出5432222221v =+++++,选A .10.如图,网格纸上小正方形的边长为1,图中画出的是某几何体的三视图,则该几何体的表面积为( )A .18+B .18+C .18+D .12++【答案】C【解析】几何体如图,表面积为11111134+334+334+34222222⨯⨯⨯⨯⨯⨯⨯⨯⨯18=+,选C .11.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥,SB BC =,SA AC =,且三棱锥S ABC -的体积为 ) A .1 B .2C .3D .4【答案】C【解析】取SC 中点O ,则OA OB OC OS ===,即O 为三棱锥的外接球球心,设半径为r3r ∴=,选C . 12.若1x =是函数()2ln f x ax x =+的一个极值点,则当1,e ex ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为( )A .2e 12-B .1e e-+C .2112e -- D .2e 1-【答案】A【解析】由题意得()10f '=,()12f x ax x =+',210a ∴+=,12a ∴=-,当1,1e x ⎡⎤∈⎢⎥⎣⎦时,()0f x '≥,当[]1,e x ∈时,()0f x '≤,所以()()2min 11min ,e e 1e 2f x ff ⎧⎫⎛⎫==-+⎨⎬ ⎪⎝⎭⎩⎭, 选A .第Ⅱ卷本卷包括必考题和选考题两部分。
2018届高三高考押题卷文科数学试卷(内部资料 注意保密)2018.05.29本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★ ★ 挑战自我★ ★ 实现梦想★ 一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{|||3}A x x =≤,{}|N x a x x B ∈<=,且,若集合{0,1,2}A B =,则实数a 的取值范围是( ).A [2,4] .B [2,4) .C (2,3] .D [2,3]2. 若在复平面内,复数2()45miz m R i+=∈-所对应的点位于第二象限,则实数m 的取值范围为( ) .A 5(,)2-+∞ .B 8(,)5+∞ .C 58(,)25- .D 85(,)52-3. 若公比为2的等比数列{}n a 的前n 项和为S n ,且25,9,a a 成等差数列,则20S =( ).A 10241⨯- .B 1041- .C 9241⨯- .D 1141-4.已知双曲线221(0)6x y m m m -=>+的虚轴长是实轴长的2倍,则双曲线的标准方程是( ) .A 22124x y -= .B 22148x y -= .C 2218y x -= .D 22128x y -= 5. 更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之.”下图是该算法的程序框图,如果输入98a =, 63b =,则输出的a 值是( ).A 35 .B 21 .C 14 .D 76. 任取[k ∈,直线:30l kx y -+=与圆224690C x y x y +--+=:相交与,M N 两点,则||MN ≥概率是( ).A 2 .B 3.C 12 .D 137. 某四棱锥的三视图所示,其中每个小格是边长为1的正方形,则该几何体的侧面积为( ).A 24+ .B 224+.C 27+ .D 227+ 8. 将函数2()2cos ()16g x x π=+-的图像向右平移4π个单位长度,再把纵坐标伸长到原来的2倍,得到函数()f x ,则下列说法正确的是( ).A 函数()f x 的最小正周期为2π .B 函数()f x 在区间75[,]124ππ上单调递增 .C 函数()f x 在区间上25[,]34ππ的最小值为.D 3x π=函数()f x 的一条对称轴 9. ()f x 是定义在R 上的奇函数,且当(0,)x ∈+∞时,2018()2018log x f x x =+,则函数()f x 的零点的个数是( ).A 1 .B 2 .C 3 .D 410. 若不等式组221(1)(2)0x yy mx x x ≥-⎧⎪≤+⎨⎪--≤⎩围成的区域的面积为1,则2z x y =-的最小值为( ) .A 43- .B 23- .C 13- .D 011. 在ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知2=c ,B A sin 3sin =,则ABC ∆面积的最大值为( ).A 23.B 3 .C 2 .D 2 12. 已知直线l 与抛物线22x py =交于,A B 两点,且OA OB ⊥,OD AB ⊥于D ,点D 坐标是(2,4),则p 的值为( ).A 2 .B 4 .C 32 .D 52二、填空题:本题共4小题,每小题5分,共20分 13.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,求以a ,b 为坐标的点P (a ,b )所形成的平面区域的面积________.14.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:则甲同学答错的题目的题号是 ,其正确的选项是 .15.设奇函数()f x 在(0,+∞)上为单调递增的,且(2)0f =,则不等式()()0f x f x x--≥的解集为 ____ ____.16.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为___ _____.三、解答题:共70分。
2018届高三好教育云平台6月份内部特供卷高三文科数学(一)解析版第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z 的共轭复数为z ,且()3i 10z +=(i 是虚数单位),则在复平面内,复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】由()3i 10z +=,可得()()()()103i 103i 103i 3i 3i 3i 91z --====-++-+, ∴3i z =+,即复数z 对应的点位于第一象限.故选A .2.已知集合{}25A x x =-<<,{B x y ==,则A B =( ) A .()2,1- B .(]0,1C .[)1,5D .()1,5【答案】C【解析】由题意得{}|25A x x =-<<,{}1B x x =≥,∴[)1,5A B =,故选C . 3.阅读如下框图,运行相应的程序,若输入n 的值为10,则输出n 的值为( )A .0B .1C .3D .4【答案】C【解析】当10n =时,不能被3整除,故9n =,不满足退出循环的条件; 当9n =时,能被3整除,故3n =,满足退出循环的条件; 故输出的3n =,故选C .4.已知函数()(),021,0g x x f x x x ⎧>=⎨+≤⎩是R 上的奇函数,则()3g =( )A .5B .5-C .7D .7-【答案】A【解析】∵函数()(),021,0g x x f x x x ⎧>=⎨+≤⎩是R 上的积函数,∴()()()33615g f =--=--+=,故选A .5.“1a =”是“直线20ax y +-=和直线70ax y a -+=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【解析】由两直线垂直的充分必要条件可得: 若直线20ax y +-=和直线70ax y a -+=互相垂直, 则()110a a ⨯+⨯-=,解得1a =或1a =-,所以“1a =”是“直线20ax y +-=和直线70ax y a -+=互相垂直”的充分不必要条件.故选A .6.已知函数()sin 2y x ϕ=+在π6x =处取得最大值,则函数()cos 2y x ϕ=+的图像( )A .关于点π,06⎛⎫⎪⎝⎭对称B .关于点π,03⎛⎫⎪⎝⎭对称C .关于直线π6x =对称 D .关于直线π3x =对称 【答案】A【解析】∵函数()sin 2y x φ=+在π6x =处取得最大值, ∴22ππ6π2k ϕ⨯+=+,k ∈Z ,解得6π2πk ϕ=+,k ∈Z ,∴cos 22πcos π26π6y x k x ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭.当π6x =时,cos 2=cos 06π6π2πy ⎛⎫=⨯+= ⎪⎝⎭, 所以π,06⎛⎫ ⎪⎝⎭是函数πcos 26y x ⎛⎫=+ ⎪⎝⎭的对称中心.故选A .7.若实数a 满足432log 1log 3aa >>,则a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .23,34⎛⎫ ⎪⎝⎭C .3,14⎛⎫⎪⎝⎭D .20,3⎛⎫ ⎪⎝⎭【答案】C【解析】根据对数函数的性质,由2log 13a>,可得213a <<,由34log 1a <,得34a >,综上314a <<,a ∴的取值范围是3,14⎛⎫⎪⎝⎭,故选C . 8.在ABC △中,角B 为3π4,BC 边上的高恰为BC 边长的一半,则cos A =( )A B C .23D 【答案】A【解析】作AH CB ⊥延长线上一点H ,AHB △为等腰直角三角形,设2BC a =,则AB =,AH a =,3CH a =,由勾股定理得AC ,由余弦定理得222cosA ==,故选A . 9.某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A .136πB .144πC .36πD .34π【答案】D【解析】由三视图可知几何体为四棱锥EABCD ﹣,直观图如图所示:其中,BE ⊥平面ABCD ,4BE =,AB AD ⊥,AB =,C 到AB 的距离为2,C 到AD 的距离为以A 为原点,以AB ,AD ,及平面ABCD 过A 的垂线为坐标轴建立空间直角坐标系A xyz ﹣,则()0,0,0A ,()B ,()C ,()4,0,0D ,()4E . 设外接球的球心为(),,M x y z ,则MA MB MC MD ME ====,∴(()(2222222222x y z x y z x y z ++=++=-+-+()(()22222244x y z x y z =-++=++-,解得2x =,2y =,2z =.∴外接球的半径r MA ===,∴外接球的表面积24π34πS r ==.故选D .10.若函数()f x x =,则函数()12log y f x x =-的零点个数是( )A .5个B .4个C .3个D .2个【答案】D【解析】如图,函数()f x 与函数()12log g x x =有2个交点,故选D .11.已知抛物线2:4C y x =的焦点为F ,准线为l ,点A l ∈,线段AF 交抛物线C 于点B ,若3FA FB =,则AF =( )A .3B .4C .6D .7 【答案】B【解析】由已知B 为AF 的三等分,作BH l ⊥于H ,如图,则2433BH FK ==,43BF BH ∴==,34AF BF ∴==,故选B .12.已知ABC △是边长为2的正三角形,点P 3CP =()PC PA PB ⋅+的取值范围是( )A .[]0,12B .30,2⎡⎤⎢⎥⎣⎦C .[]0,6D .[]0,3【答案】A【解析】以点B 为坐标原点,BC 所在直线为x 轴,过点B 与BC 垂直的直线为y 轴,建立平面直角坐标系,则()0,0B ,,()2,0C ,设(),P x y 3CP =所以P 点轨迹为()2223x y -+=,则(1PA =-- (2PB =-,(PC =- 则()6PC PA PB⎛⋅+=π66cos θ⎛⎫-≤+≤A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.计算:7log 38log 327-=________.【答案】43-【解析】由对数的运算法则有:773log 3log 358254log 327log 27333-=-=-=-.14.若x ,y 满足约束条件001x y x y y ⎧-≤+≥≤⎪⎨⎪⎩,则12y z x +=+的最大值为________.【答案】2【解析】作出实数x ,y 满足约束条件001x y x y y ⎧-≤+≥≤⎪⎨⎪⎩,对应的平面区域如图z 的几何意义是区域内的点到定点()2,1P --的斜率.由图象知AP 连线的斜率最大,由10y x y =+=⎧⎨⎩解得()1,1A -,直线过A 时,直线斜率最大, 此时PA 的斜率()()11212k --==---,12y z x +=+的最大值为2.故答案为2. 15__________.【答案】10【解析】,解得tan 3α=-,()()()22231321013⨯--+-=⨯=+-. 16.已知双曲线C 的中心为坐标原点,点()2,0F 是双曲线C 的一个焦点,过点F 作渐近线的垂线l ,垂足为M ,直线l 交y 轴于点E ,若3F M M E =,则双曲线C 的方程为__________.【答案】221y x x-= 【解析】设双曲线C 的方程为22221x y a b -=,由已知得,由点到直线的距离公式可3FM ME =及勾股定理可得OE =,又因为FE与渐近线垂直,a b=,结合224a b =-,可得23b =,21a =, ∴双曲线C 的方程为2213y x -=,故答案为2213y x -=. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 的前n 项和是n S ,且()*21n n S a n =-∈N . (1)求数列{}n a 的通项公式;(2)令2log n n b a =,求数列(){}21nn b -前2n 项的和T .【答案】(1)12n n a -=;(2)()21T n n =-.【解析】(1)由112121n n n n S a S a --=-=-⎧⎨⎩得()*12,1n n a a n n -=∈≥N ,∴{}n a 是等比数列,令1n =得11a =,所以12n n a -=.(2)122log log 21n n n b a n -===-,于是数列{}n b 是首项为0,公差为1的等差数列.()()()22222222222212342122143221n n n n T b b b b b b b b b b bb --=-+-+--+=-+-+-()()()1431543212n n n nn +-⨯=+++-==-,所以()21T n n =-.18.(12分)2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:[)20,30,[)30,40,[)40,50,[)50,60,[)60,70,[]70,80,得到如图所示的频率分布直方图.问:(1)求这80名群众年龄的中位数;(2)若用分层抽样的方法从年龄在[)2040,中的群众随机抽取6名,并从这6名群众中选派3人外出宣传黔东南,求选派的3名群众年龄在[)3040,的概率.【答案】(1)55;(2)15.【解析】(1)设80名群众年龄的中位数为x ,则()0.005100.010100.020100.030500.5x ⨯+⨯+⨯+⨯-=,解得55x =, 即80名群众年龄的中位数55.(2)由已知得,年龄在[)20,30中的群众有0.0051080=4⨯⨯人,年龄在[)30,40的群众有0.011080=8⨯⨯人,按分层抽样的方法随机抽取年龄在[)20,30的群众46248⨯=+人,记为1,2;随机抽取年龄在[)30,40的群众86=448⨯+人,记为a ,b ,c ,d .则基本事件有:(),,a b c ,(),,a b d ,(),,1a b ,(),,2a b ,(),,a c d ,(),,1a c ,(),,2a c ,(),,1a d ,(),,2a d ,(),,b c d ,(),,1b c ,(),,2b c ,(),,1b d ,(),,2b d ,(),,1c d ,(),,2c d ,(),1,2a ,(),1,2b ,(),1,2c ,(),1,2d 共20个,参加座谈的导游中有3名群众年龄都在[)30,40的基本事件有:(),,a b c ,(),,a b d ,(),,a c d ,(),,b c d 共4个,设事件A 为“从这6名群众中选派3人外出宣传黔东南,选派的3名群众年龄都在[)30,40”,则()41205p A ==. 19.(12分)如图,已知四棱锥P ABCD -的底面为菱形,且60ABC ∠=︒,E 是DP 中点.(1)证明:PB ∥平面ACE ;(2)若AP PB ==2AB PC ==,求三棱锥C PAE -的体积.【答案】(1)见解析;(2 【解析】(1)如图,连接BD ,BDAC F =,连接EF ,∵四棱锥P ABCD -的底面为菱形, ∴F 为BD 中点,又∵E 是DP 中点,∴在BDP △中,EF 是中位线,EF PB ∴∥,又∵EF ⊂平面ACE ,而PB ⊄平面ACE ,PB ∴∥平面ACE .(2)如图,取AB 的中点Q ,连接PQ ,CQ ,∵ABCD 为菱形,且60ABC ∠=︒,ABC ∴△为正三角形,CQ AB ∴⊥,AP PB ==,2AB PC ==,CQ ∴=PAB △为等腰直角三角形, 即90APB ∠=︒,PQ AB ⊥,且1PQ =,222PQ CQ CP ∴+=,PQ CQ ∴⊥, 又AB CQ Q =,PQ ∴⊥平面ABCD ,1111121222326C PAE E ACPD ACP P ACDV V V V----∴====⋅⋅⋅=.20.(12分)已知动点(),M x y=(1)求动点M的轨迹E的方程;(2)设过点()1,0N-的直线l与曲线E交于A,B两点,点A关于x轴的对称点为C(点C与点B不重合),证明:直线BC恒过定点,并求该定点的坐标.【答案】(1)22+12xy=;(2)见解析.【解析】(1)由已知,动点M到点()1,0P-,()1,0Q的距离之和为且PQ<M的轨迹为椭圆,而a=1c=,所以1b=,所以,动点M的轨迹E的方程为2212xy+=.(2)设()11,A x y,()22,B x y,则()11,C x y-,由已知得直线l的斜率存在,设斜率为k,则直线l的方程为()1y k x=+,由()22112y k xxy=++=⎧⎪⎨⎪⎩得()2222124220k x k x k+++-=,所以2122412kx xk+=-+,21222212kx xk-=+,直线BC的方程为()212221y yy y x xx x+-=--,所以2112212121y y x y x yy xx x x x++=---,令0y=,则()()()()12121212122121121222222kx x k x x x x x xx y x yxy y k x x k x x+++++====-+++++,所以直线BC与x轴交于定点()2,0D-.21.(12分)已知函数()lnf x x=,()()1g x a x=-,(1)当2a =时,求函数()()()h x f x g x =-的单调递减区间;(2)若1x >时,关于x 的不等式()()f x g x <恒成立,求实数a 的取值范围;(3)若数列{}n a 满足11n n a a +=+,33a =,记{}n a 的前n 项和为n S ,求证:()ln 1234...n n S ⨯⨯⨯⨯⨯<.【答案】(1)1,2⎛⎫+∞ ⎪⎝⎭;(2)[)1,+∞;(3)证明见解析. 【解析】(1)由2a =,得()()()ln 22h x f x g x x x =-=-+,()0x >.所以()1122x h x x x'-=-=, 令()0h x '<,解得12x >或0x <(舍去), 所以函数()()()h x f x g x =-的单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭. (2)由()()f x g x <得,()1ln 0a x x -->,当0a ≤时,因为1x >,所以()1ln 0a x x -->显然不成立,因此0a >. 令()()1ln F x a x x =--,则()11a x a F x a x x ⎛⎫- ⎪⎝⎭=-'=,令()0F x '=,得1x a=. ①当1a ≥时,101a<≤,()0F x '>,∴()()10F x F >=,所以()1ln a x x ->, 即有()()f x g x <.因此1a ≥时,()()f x g x <在()1,+∞上恒成立.②当01a <<时,11a >,()F x 在11,a ⎛⎫ ⎪⎝⎭上为减函数,在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数, ∴()()min 10F x F <=,不满足题意.综上,不等式()()f x g x <在()1,+∞上恒成立时,实数a 的取值范围是[)1,+∞.(3)由131,3n n a a a +=+=知数列{}n a 是33a =,1d =的等差数列,所以()33n a a n d n =+-=,所以()()1122n n n a a n n S ++==,又ln x x <在()1,+∞上恒成立.所以ln 22<,ln 33<,ln 44<,⋅⋅⋅,ln n n <.将以上各式左右两边分别相加,得ln 2ln 3ln 4ln 234n n +++⋅⋅⋅+<+++⋅⋅⋅+.因为ln101=<所以()ln 1234n n S ⨯⨯⨯⨯⋅⋅⋅⨯<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,抛物线C 的方程为24y x =.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是2cos sin x t y t αα=+=⎧⎨⎩(t 为参数),l 与C 交于A ,B两点,AB =,求l 的倾斜角.【答案】(1)2sin 4cos 0ρθθ-=;(2)π4α=或3π4α=. 【解析】(1)∵cos sin x y ρθρθ==⎧⎨⎩,代入24y x =,∴2sin 4cos 0ρθθ-=. (2)不妨设点A ,B 对应的参数分别是1t ,2t ,把直线l 的参数方程代入抛物线方程得:22sin 4cos 80t t αα-⋅-=,∴12212224cos sin 8sin 1616sin 0t t t t ααα∆α+⎧⎪⎪⎪⎨=-==+>⎪⎪⎪⎩,则122sin AB t t α=-==∴sin α=,∴π4α=或3π4α=. 23.(10分)【选修4-5:不等式选讲】 已知函数()32f x a x x =--+.(1)若2a =,解不等式()3f x ≤;(2)若存在实数a ,使得不等式()122f x a x ≥-++成立,求实数a 的取值范围.【答案】(1)3742x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)52a ≥-. 【解析】解:(1)2a =时,()3223f x x x -=-+≤,233223x x x ⎧≥⎪⎨⎪---≤⎩或2232323x x x ⎧-<<⎪⎨⎪---≤⎩或22323x x x ≤-⎧⎨-++≤⎩, 解得3742x -≤≤. (2)存在实数a ,使得不等式()122f x a x ≥-++成立,即3361x a x a --+≥-, 由绝对值不等式的性质可得()3363366x a x x a x a --+---=+≤, 即有()f x 的最大值为6a +, ∴61a a +≥-,即61a a +≥-或61a a +≤-,解得52a ≥-.。
2018年高考押题猜题试卷文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}1,3,5,6,9U =,{}3,6,9A =,则图中阴影部分表示的集合是( )A .{1,3,5}B .{1,5,6}C .{6,9}D .{1,5}2z 的共轭复数z =( )ABC D3.已知焦点在y轴上的双曲线的渐近线方程为2y x =±,则该双曲线的离心率为( )AB .32 C或32 D .24.已知空间几何体的三视图如图所示,则该几何体的体积是() A .43 B .83 C .4 D .8 5.已知函数()()sin f x x ωϕ=+,x ∈R (其中0ω>,ππω-<<)的部分图象,如图所示,那么()f x 的解析式为() ABCD6.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法错误的是( ) A .此人第二天走了九十六里路 B .此人第一天走的路程比后五天走的路程多六里 C .此人第三天走的路程占全程的18 D .此人后三天共走了42里路 7.已知x ,y 满足约束条件010 220x y x y x y -+--⎧⎪⎨⎪+⎩≤≥≥,则2z x y =++的最大值是( ) A .3 B .5 C .6 D .7此卷只装订不密封班级姓名准考证号考场号座位号82a b ==,()()22a b a b +⋅-=-,则a b 与的夹角为( )A .30︒B .45︒C .60︒D .120︒9.已知定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,()f x x =,则函数()()4log g x f x x =-的零点个数是( )A .0B .2C .4D .610.在锐角ABC △中,角A ,B ,C 对应的边分别是a ,b ,c ,向量()sin ,tan a C A =,()tan ,sin b A A =,且cos cos a b A C ⋅=+,则)A .)1B .(12,2+C .(1++D .11.若直线y x b =+与曲线3y =b 的取值范围是()A .1⎡-+⎣ BC .1,1⎡-+⎣ D .1⎡⎤-⎣⎦12.在一次体育兴趣小组的聚会中,要安排6人的座位,使他们在如图所示的6个椅子中就坐,且相邻座位(如1与2,2与3)上的人要有共同的体育兴趣爱好.现已知这6人的体育兴趣爱好如下表所示,且小林坐在1号位置上,则4号位置上坐的是( )A .小方B .小张C .小周D .小马第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.函数()1sin f x x x +-=在()0,2π上的单调情况是_______________.14.如图是某算法的程序框图,则程序运行后输出的结果是__________. 15.已知函数()()sin π01f x x x =<<,若a b ≠,且()()f a f b =,则41a b +的最小值为_____________. 16.如图,在四面体ABCD 中,点1B ,1C ,1D 分别在棱AB ,AC ,AD 上,且平面111B C D ∥平面BCD ,1A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD =,对于函数()V f x =,则下列结论正确的是__________. ①当23x =时,函数()f x 取到最大值; ②函数()f x 在2,13⎛⎫ ⎪⎝⎭上是减函数; ③函数()f x 的图像关于直线12x =对称; ④不存在0x ,使得()014A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积). 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分. 17.各项均为正数的等比数列{}n a ,前n 项和为n S ,且满足322a a -=,37S =. (1)求数列{}n a 的通项公式; (2)若()2111log n n b n a +=+⋅,求数列{}n b 的前n 项和n T .18.据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)若销售金额(单位:万元)不低于平均值x 的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.19.已知三棱锥A BCD -中,ABC △是等腰直角三角形,且AC BC ⊥,2BC =,AD ⊥平面BCD ,1AD =.(1)求证:平面ABC ⊥平面ACD ;(2)若E 为AB 中点,求点A 到平面CED 的距离.20.已知椭圆E 的中心在原点,焦点在x 轴,焦距为2倍.(1)求椭圆E 的标准方程;(2)设()2,0P ,过椭圆E 左焦点F 的直线l 交E 于A 、B 两点,若对满足条件的任意直线l ,不等式PA PB λ⋅≤(λ∈R )恒成立,求λ的最小值.21.已知二次函数()f x 的最小值为4-,且关于x 的不等式()0f x ≤的解集为{}13x x x ∈R -≤≤,. (1)求函数()f x 的解析式; (2(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分) 22.已知直线l 的参数方程为cos 1sin x t y t αα==+⎧⎨⎩(0πα<≤,t 为参数),曲线C 的极坐标方 (1)将曲线C 的极坐标方程化为直坐标方程,并说明曲线C 的形状; (2)若直线l 经过点()1,0,求直线l 被曲线C 截得的线段AB 的长. 23.已知0a >,0b >,函数()f x x a x b =++-的最小值为4. (1)求a b +的值; (2)求221149a b +的最小值.2018年高考押题猜题试卷文科数学答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】∵{}1,3,5,6,9U =,{}3,6,9A =,∴{}1,5U A =ð,∴图中阴影部分表示的集合是{}1,5U A =ð,故选D .2.【答案】C 【解析】(11i z --=+z故选C .3.【答案】A【解析】因为焦点在y轴上的双曲线的渐近线方程为y x =22225455b a c a ==-,2295a c =,295e =,5e =,故选A .4.【答案】B【解析】几何体为四棱锥,高为2,底面为正方形面积为22=4⨯,1824=33V ∴=⨯⨯,选B .5.【答案】A【解析】周期2ππ42π2T ω==⨯=,∴1ω=,()()sin f x x ϕ=+,∵()0sin 1f ϕ==,π2ϕ=,A .6.【答案】C【解析】由题意可知,每天走的路程里数构成以12为公比的等比数列,由6378S =求得首项,再由等比数列的通项公式求第二天的,第三天的,后三天的路程,即可得到答案.7.【答案】C【解析】绘制不等式组表达的平面区域如图所示,则目标函数22z x y x y =++=++,结合目标函数的几何意义可知目标函数在点()2,2C 处取得最大值:max 2226z =++=. 本题选择C 选项. 8.【答案】C 【解析】由()()22a b a b +⋅-=-2222a a b b +⋅-=-, 22cos ,22a a b a b b +<>-=-,又2a b ==,∴44cos ,82a b +<>-=-, 1cos ,2a b <>=,∵两向量夹角的范围为[]0180︒︒,,∴a 与b 的夹角为60︒.故选:C . 9.【答案】D 【解析】由题意,偶函数()f x 的周期为2,作出函数()f x 象,如图所示,观察图象可知,两个函数的交点个数为6个,所以函数()()4log g x f x x =-的零点个数是6. 10.【答案】B 【解析】cos cos a b A C ⋅=+,()()cos cos cos sin sin sin A C A A A C ∴+=⋅+, 22cos sin cos cos sin sin A A A C A C ∴-=-+,()cos2cos cos A A C B ∴=-+=,2B A ∴=, 因为ABC △是锐角三角形,所以π02C <<,π022B A <=<,πππ32B A A ∴--=-<,π6A ∴>,ππ64A ∴<<,由正弦定理,可得:ππ64A <<,cos A <<,此卷只装订不密封班级姓名准考证号考场号座位号sin sin sin 3sin 2sin cos 2cos sin 22sin cos sin sin sin c bC BA AA A A A A Aa A A A+++++===24cos 2cos 1A A =+-,214cos 2cos 12A A ∴+<+-<+.本题选择B 选项.11.【答案】D【解析】将曲线的方程3y =()()22234x y -+-=()13,04y x ≤≤≤≤,即表示以()2,3A 为圆心,以2为半径的一个半圆,如图所示:由圆心到直线y x b =+的距离等于半径2,可∴1b =+或1b =-D .12.【答案】A【解析】重新整理:篮球:小林,小马; 网球:小林,小张;羽毛球:小林,小李; 足球:小方,小张;排球:小方,小李; 跆拳道:小方,小周;棒球:小马,小李; 击剑:小周,小张乒乓球:小马; 自行车:小周由于小周的自行车与小马的乒乓球没有共同兴趣爱好者,所以小周两边一事实上是跆拳道与击剑的,小马两边只能是棒球与篮球的.即小马与小林一定相邻,所以1号位是小林,2号位一定是小马,3号位就是棒球的小李.小周与小张及小方一定相邻,所以小周坐5号位.从3号位角度,4号位只能是排球和羽毛球(小林,不可能),所以是排球小方.6号位小张.选A .第Ⅱ卷 二、填空题:本大题共4小题,每小题5分. 13.【答案】单调递增 【解析】在()0,2π上有()1cos 0f x x ='->,所以()f x 在()0,2π单调递增,故答案为单调递增. 14.【答案】10 【解析】当0s =,1n =时,()01109s =+-+=<,则112n =+=;当0s =,2n =时,()201239s =+-+=<,则213n =+=;当3s =,3n =时,()331359s =+-+=<,则314n =+=;当5s=,4n =时,()4514109s =+-+=>,此时运算程序结束,输出10s =,应填答案10. 15.【答案】9 【解析】画出了函数图象,()()f a f b =,故得到a 和b 是关于轴对称的,1a b +=;45549b a a b +++=≥.等号成立的条件为2a b =.故答案为9. 16.【答案】①②④ 【解析】令1A BCD V -=,1AD x AD =11A A h x h =-,所以()()21f x x x =-,()01x <<,()()()()221123f x x x x x x '=-+-=-,则()f x 在20,3⎛⎫ ⎪⎝⎭单调递增,2,13⎛⎫ ⎪⎝⎭单②④. 三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.【答案】(1)12n n a -=;(2)1n nT n =+.【解析】(1)设等比数列{}n a 的公比为q ,由3232 7a a S ==⎧⎨⎩-得()21121217a q a q a q q -=+=⎧⎪⎨⎪⎩+,解得2q =或15q =-,∵数列{}n a 为正项数列,∴2q =,代入2112a q a q -=,得11a =,∴12n n a -=.(2)()2111log n nn a b +=+⋅()()21log 21n n n n =+=+,此时()11111n b n n n n ==-++, ∴121111112231n n T b b b n n =++⋯+=-+-+⋯+-+1111nn n =-=++.18.【答案】(1)推断该地区110家微商中有55家优秀;(2)35.【解析】(1)6家微商一周的销售金额分别为8,14,17,23,26,35, 故销售金额的平均值为1814172326352056x =+++++=()..由题意知优秀微商有3家,故优秀的概率为12,由此可推断该地区110家微商中有55家优秀.(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,有15种, 设“恰有1家是优秀微商”为事件A ,则事件A 包含的基本事件个数为9种,所以()93155P A ==.即恰有1家是优秀微商的概率为35.19.【答案】(1)见解析; (2)5d =.【解析】(1)证明:因为AD ⊥平面BCD ,BC ⊂平面BCD ,所以AD BC ⊥,又因为AC BC ⊥,AC AD A =,所以BC ⊥平面ACD ,BC ⊂平面ABC ,所以平面ABC ⊥平面ACD .(2)由已知可得CD =,取CD 中点为F ,连结EF,由于12ED EC AB ===以ECD △为等腰三角形,从而2EF =1)知BC ⊥平面ACD ,所以E 到平面ACD 的距离为1令A 到平面CED 的距离为d ,有5d =. 20.【答案】(1(2)172. 【解析】(1)依题意,a =,1c =, 解得22a =,21b =,∴椭圆E 的标准方程为2212x y +=. (2)设11,A x y (),22,B x y (), 则()()()()112212122,2,22x y x y x x P PB y y A ⋅⋅=--=-+-, 当直线l 垂直于x 轴时,121x x ==-,12y y =-且2112y =, 此时()13,PA y =-,()()213,3,PB y y =-=--, 所以()2211732PA PB y ⋅=--=; 当直线l 不垂直于x 轴时,设直线():1l y k x =+, 由()22122y k x x y ⎧=+⎪⎨+=⎪⎩,整理得()2222124220k x k x k +++-=, 所以2122412k x x k +=-+,21222212k x x k -=+, 所以()()()2121212241+1PA PB x x x x k x x ⋅=-++++()()()2221212=124k x x k x x k ++-+++()()2222222224=1241212k k k k k k k -+⋅--⋅++++()2221721713172122221k k k +==-<++, 要使不等式PA PB λ⋅≤(λ∈R )恒成立,只需()max 172PA PB λ⋅=≥,即λ的最小值为172. 21.【答案】(1)()223f x x x =--; (2)1个. 【解析】(1)∵()f x 是二次函数,且关于x 的不等式()0f x ≤的解集为()()()21323f x a x x ax ax a =+-=--,且0a >. ∴()()min 144f x f a ==-=-,1a =.故函数()f x 的解析式为()223f x x x =--.(2)∵()()22334ln 4ln 20x x g x x x x x x x --=-=--->, ∴()()()2213341x x g x x x x --=+='-,令()0g x '=,得11x =,23x =. 当x 变化时,()g x ',()g x 的取值变化情况如下:又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点,故()g x 在()3,+∞上仅有1个零点.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1)详见解析; (2)8.【解析】(1可得22sin 4cos ρθρθ=,即24y x =, ∴曲线C 表示的是焦点为()1,0,准线为1x =-的抛物线.(2)将()1,0代入cos 1sin x t y t αα==+⎧⎨⎩,得1cos 01sin t t αα==+⎧⎨⎩,∴tan 1α=-,∵0πα<≤,∴lt 为参数).将直线l 的参数方程代入24y x =得220t ++=,由直线参数方程的几何意义可知,128AB t t =-===.23.【答案】(1)4a b +=;(2)最小值为1613.【解析】(1()()0x a x b +-<时等号成立, 又0a >,0b >,所以a b a b +=+, 所以()f x 的最小值为a b +,所以4a b +=.(2)由(1)知4a b +=,4b a =-,所以()2222111144949a b a a +=+-2138163699a a =-+=2131616361313a ⎛⎫-+ ⎪⎝⎭, 故当1613a =,3613b =时,221149a b +的最小值为1613.。
山东省2018届高三高考押题数学试题(文)2018.5一、选择题:本大题共10个小题,每小题5分,共50分. ★★★★★1.设复数()(),2,1zz a bi a b R i P a b i=+∈=-+,若成立,则点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限复数的考察主要分为以下几点:希望同学们好好掌握,以不变应万变!考试方向: ①复数的概念及化简:例:复数2 ()1miz m R i+=∈+是纯虚数,则m =( ) A .2- B . 1- C .1 D .2②复数的模长:例.复数)()2(2为虚数单位i ii z -=,则=||z(A)5 (B) 41 (C)6 (D) 5③共轭复数:设z 的共轭复数是z ,若z+z =4,z ·z =8,则zz等于 (A)i(B)-i(C)±1(D)±i④复数相等:已知2a ib i i+=+(,)a b R ∈,其中i 为虚数单位,则a b +=( ) (A )-1 (B )1 (C )2 (D )3⑤复平面:复数z=(为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限 易错点:没看到题目要求1、A ;①A ②A ③D ④B ⑤B★★★★★2.已知集合{}{}R x y y N x x x M x ∈==≥=,2,2,则MN = ( )A .)(1,0 B .]1,0[ C .)1,0[ D .]1,0( 集合的考察主要是分两大类:①集合的概念:设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于②集合的运算:设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C ABA .[-1,0]B .[-1,0]∪[)4,+∞ C .[-1,0]∪()4,+∞ D .()(,0)0,-∞⋃+∞ 易错点:不注意集合中的元素2、D ①()0,1②D ★★★★★3.下列命题中,真命题是A .00,||0x R x ∃∈≤B .2,2xx R x ∀∈> C .a -b =0的充要条件是1ab= D .若p ∧q 为假,则p ∨q 为假(p ,q 是两个命题) 逻辑结构用语主要考察以下几个方面: ①充要条件的判定: 给定两个命题,的必要而不充分条件,则( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 ②四种命题:下列命题中,正确的是( )A .命题“”的否定是“”B .命题“为真”是命题“为真”的必要不充分条件C .“若,则”的否命题为真D .若实数,则满足的概率为③特称命题:命题“∀x ∈[0,+∞),30x x +≥”的否定是( )A .∀x ∈(-∞,0),30x x +<B .∀x ∈(-∞,0),30x x +≥22ii-+i 2,0x x x ∀∈-≤R 2,0x x x ∃∈-≥R q p ∧p q ∨22am bm ≤a b ≤[],1,1x y ∈-221x y +≥4πC .∃0x ∈[0,+∞),30x x +<D .∃0x ∈[0,+∞),30x x +≥ ④真假命题的判定:.已知命题:p x R ∃∈,使5sin ;2x =命题:q x R ∀∈,都有210.x x ++> 给出下列结论:① 命题“q p ∧”是真命题 ② 命题“q p ⌝∧”是假命题 ③ 命题“q p ∨⌝”是真命题 ④ 命题“q p ⌝∨⌝”是假命题其中正确的是 A .① ② ③ B .③ ④ C .② ④ D .② ③ 易错点:否命题与命题的否定区别;3、A ;①A ②C ③C ④D★★★★4.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表: 由附表:()()()()()22n ad bc K a b c d a c b d -=++++算得,()2250040270301609.96720030070430K ⨯⨯-⨯=≈⨯⨯⨯ 参照附表,得到的正确结论是A.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”C.有99%以上的把握认为“需要志愿者提供帮助与性别有关”D.有99%以上的把握认为“需要志愿者提供帮助与性别无关”此题主要考察独立性检验:对付此类问题主要明白2K 的计算方式,并会根据计算结果在附表中读取信息即可!★★★★★5.若变量x ,y 满足约束条件0,0,4312,x y x y ≥⎧⎪≥⎨⎪+≤⎩则31y z x +=+的取值范围是( )A. (34,7)B. [23,5 ]C. [23,7]D. [34,7]此类题目主要考察不等式的线性规划,主要分三类题目:①简单的三个不等式的组合,并且所求均为一次函数形式,可用方程组进行求解若变量y x ,满足约束条件13215x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则3log (2)w x y =+的最大值是②对于三个以上的不等式的组合,一定先作图在进行求解:一般来说斜率正上小下大,斜率负上大下小.若实数满足,且的最小值为,则实数的值为③对于所求为二次函数的形式(一般为圆),考虑点到直线的距离,0022Ax By Cd A B++=+已知,x y 满足不等式组242y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则22222z x y x y =++-+的最小值为A.95B.2C.3D.2 易错点:①计算失误②直线非一般式③找点不准确;5、D ①2②94③B ,x y 20x y y x y x b-≥≥≥-+2z x y =+3b★★★★★6.执行右面的程序框图,如果输入a=3,那么输出的n 的值为 A.2 B.3 C.4 D.5程序框图的考察,主要是会读程序框图,对于循环结构的条件,以及输出结果要有准确的运算: 主要注意以下两点:①无限覆盖性②“=”为赋值号,从左向右赋值★★★★7.∆ABC 中内角A ,B ,C 的对边分别是a ,b ,c.若223sin 23sin a b bc C B -==,,则A=( )A .56πB .23πC .3πD .6π本题主要考察解三角形的知识:关于解三角形主要有以下几点:①正弦定理的应用:主要是两角一边,两边及一边对角,角边统一,外接圆 ②余弦定理的应用:主要是三边、两边及一边对角,两边及夹角③三角形面积公式:111sin sin sin 222s ac B bc A ab C === ④常用结论:sin()sin A B C +=,cos()cos A B C +=-⑤面积最值:均值不等式⑥求边长(周长)范围:化边为角,利用三角函数求值域 ★★★★8.将函数()3sin 2cos2f x x x =-的图像向左平移6π个单位得()g x ,则关于函数()g x 下列说法正确的是( )A.3π-是()g x 的一条对称轴B.(,0)6π-是()g x 的一个对称中心C. (,)26ππ-是()g x 的一个递增区间D.当12x π=时,()g x 取得最值本题主要考察三角函数的基本概念:对于上述四个选项一般采用带入法①三角函数的最值 ②三角函数的周期 ③三角函数的单调区间 ④三角函数的对称中心 ⑤三角函数的对称轴 ⑥图像的平移变换 ⑦在区间上求最值 ⑧在区间上求单调区间注意遇到三角函数一定先考虑三个统一:统一1次幂;统一角度;统一名称; ★★★★★8.在区间[-1,1]上随机取一个数k ,使直线52y kx =+与圆221x y +=相交的概率为 (A)34(B)23 (C) 12(D) 13本题主要是考察几何概率:几何概率主要是长度、面积、体积的比值,注意作图①.从集合区间[]1,4中随机抽取一个数为a ,从集合[]2,3中随机抽取一个数为b ,则b a >的概率是 A .12 B .13 C .25D .15②.在区间[0,]π上随机取一个数x ,sin x 的值介于0到21之间的概率为( ). A.31 B.π2C.21D.32 ③.在区间[2,2]-上随机地取两个实数a ,b ,则事件“直线1x y +=与圆()22()2x a y b -+-=相交”发生的概率为①A ②A ③11/20★★★9. 函数ln ||||x x y x =的图象大致是主要考察函数的图像及其辨别:方法:①奇偶性:奇函数:sinx ,tanx ,nx ,n 为奇数; 偶函数:cosx ,nx ,n 为偶数;x②带特殊点:注意观察图像的不同 本题选B定义运算,则函数的图像大致为( A )★★★10.对具有线性相关关系的变量x ,y ,测得一组数据如下表:X 2 4 5 6 8 y 20 40 60 70 80根据上表,利用最小二乘法得它们的回归直线方程为,据此模型来预测当x=20时,y 的估计值为A .210B .210.5C .211.5D .212.5 ★★★回归直线方程一定过(,)x y★★★10.已知直线m ,n 不重合,平面α,β不重合,下列命题正确的是 A.若m β⊂,n β⊂,m//α,n//α,则//αβ B.若m α⊂,m β⊂,//αβ,则m//n C.若αβ⊥,m α⊂,n β⊂,则m n ⊥D.若m α⊥,n α⊂,则m n ⊥本题主要考察空间点线面之间的关系及其判断:利用手中的笔,桌面、地面等进行判断。
绝密 ★ 启用前好教育泄露天机2018高考押题卷文 科 数 学(一)注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.复数132i z =+,121i z z +=+,则复数12z z ⋅=( ) A .47i -- B .2i --C .1+iD .14+5i【答案】A【解析】根据题意可得,21i 32i 2i z =+--=--,所以()()1232i 2i 47i z z ⋅=+⋅--=--. 2.集合{}|A x x a =<,{}3log 1B x x =<,若{}3A B x x =<,则a 的取值范围是( )A .[]0,3B .(]0,3C .(],3-∞D .(),3-∞【答案】B【解析】根据题意可得{}{}3log 103x B x x x <=<<=,因为{}3AB x x =<,所以03a <≤.3.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”(如下图),四个全等的直角三角形(朱实),可以围成一个大的正方形,中空部分为一个小正方形(黄实).若直角三角形中一条较长的直角边为8,直角三角形的面积为24,若在上面扔一颗玻璃小球,则小球落在“黄实”区域的概率为( )A .14B .13C .125D .2573【答案】C【解析】根据题意可得,另外一条直角边长为6,所以“黄实”区域的面积为()286=4-,大正方形的面积是228+6=100,所以小球落在“黄实”区域的概率是4110025=. 4.若双曲线C :()222210,0x y a b a b-=>>的焦点到渐近线的距离等于其实轴长,则双曲线C 的离心率为( ) A .2 B .3 C .5 D .22【答案】C【解析】由题意可知:2b a =,224b a =,2224c a a -=,5e =. 5.将函数215log cos π262x y ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭=对应的曲线沿着x 轴水平方向向左平移2π3个单位,得到曲线为( )A .1πcos 26y x ⎛⎫ ⎪⎝⎭=-B .1πsin 26y x ⎛⎫ ⎪⎝⎭=-C .1sin 2y x =-D .1sin2y x = 【答案】D【解析】因为215log cos π26152cos π26x y x ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭==-,所以沿着x 轴水平方向向左平移2π3个单位,得到曲线为1251151π1cos ππcos ππcos sin 236236222y x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+-=+-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.6.如图的程序框图,则输出y 的最大值是( ) A .3B .0C .15D .8此卷只装订不密封班级 姓名 准考证号 考场号 座位号【答案】C【解析】当3x =-时,3y =;当2x =-时,0y =;当1x =-时,1y =-;当0x =时,0y =;当1x =时,3y =;当2x =时,8y =;当3x =时,15y =,所以y 的最大值为15. 7.一个几何体的三视图如图所示,则该几何体的体积为( )正视图侧视图A .2π+B .1+πC .2+2πD .12π+【答案】A【解析】根据三视图可得该几何体为一个长方体和半个圆柱组合所成,21112π122π2V =⨯⨯+⨯⨯⨯=+.8.已知某函数图象如图所示,则图象所对应的函数可能是( )A .2x xy =B .22xy =-C .e xy x =-D .|2|2x y x =﹣【答案】D【解析】对于A ,函数()2x x xf =,当0x >时,0y >,0x <时,0y <,不满足题意;对于B ,当0x ≥时,()f x 递增,不满足题意;对于C ,当0x ≥时,()0f x >,不满足题意.故选D .9.在平面直角坐标系中,已知直线l的方程为:20x y --=,圆C 的方程为()222423100x y ax y a a +--++=>,动点P 在圆C 上运动,且动点P 到直线l 的最大距离为2,则圆C 的面积为( ) A .π或(201π- B .πC.(201π+D .π或(201π+【答案】B【解析】因为()()2222224231210x y ax y a x a y a +--++=-+--=,所以()()22221x a y a -+-=,圆C 的圆心为(2,1)a ,半径为a .因为点P 在圆C 上的动点,所以P 到直线l的最大距离为2a +=,当a ≥时,解得11a =-11-当0a <<1a =,符合题意,所以1a =,2S a =π=π圆. 10.已知函数()y f x =为定义域R 上的奇函数,且在R 上是单调函数,函数()()5g x f x =-;数列{}n a 为等差数列,且公差不为0,若()()190g a g a +=,则129a a a +++=( )A .45B .15C .10D .0【答案】A【解析】由函数()y f x =为定义域R 上的奇函数,且在R 上是单调函数, 可知()()5g x f x =-关于()5,0对称,且在R 上是单调函数, 由()()190g a g a +=,所以1910a a +=,即55a =, 根据等差数列的性质,1295945a a a a +++==.11.若x =()()22e x f x x ax =-的极值点,则函数()y f x =的最小值为( )A.(2e +B .0C.(2-D .e -【答案】C【解析】()()22e x f x x ax =-,∴()()()()2222e 2e 212e x x xf x x a x ax x a x a '⎡⎤=-+=+--⎣⎦-,由已知得,0f '=,∴220a +-=,解得1a =.∴()()22e x f x x x =-,∴()()22e x f x x '-=,所以函数的极值点为,当(x ∈时,()0f x '<,所以函数()y f x =是减函数,当(,x ∈-∞或)x ∈+∞时,()0f x '>,函数()y f x =是增函数.又当()(),02,+x ∈-∞∞时,220xx ->,()0f x >,当()0,2x ∈时,220x x -<,()0f x <,∴()min f x 在()0,2x ∈上,又当(x ∈时,函数()y f x =递减,当)x ∈时,函数()y f x =递增,∴()(min 2f x f==-.12.已知0b a >>,函数()2log 21log 2xf x x ⎛⎫=- ⎪⎝⎭在[],a b 上的值域为132⎡⎤-⎢⎥⎣⎦,,则a b =( ) A .14B .12C .2D【答案】D【解析】()2log 2211log log 2xf x x x x ⎛⎫=-=- ⎪⎝⎭()a x b ≤≤,又()2110ln2f x x x '=--<,所以()y f x =在[],a b 上递减,∴()()312f a f b ⎧=⎪⎨=-⎪⎩,即2213log 11log 2a ab b ⎧-=⎪⎪⎨⎪+=⎪⎩①,由1y t x =+与2log y x =的图象只有唯一交点可知方程21log t x x +=只有唯一解,经检验122a b ⎧=⎪⎨⎪=⎩是方程组①的唯一解,所以ab =第Ⅱ卷本卷包括必考题和选考题两部分。
第(13)~(21)题为必考题,每个试题考生都必须作答。
第(22)~(23)题为选考题,考生根据要求作答。
二、填空题:本大题共4小题,每小题5分,共20分.13.已知变量x 、y 满足203500x y x y x -≤⎧⎪-+≥⎨⎪≥⎩,则2z x y =--的最小值为_______.【答案】4-【解析】根据约束条件画出可行域,直线2z x y =--过点()1,2A 时,z 取得最小值是4-.14.在直角ABC △中,=2BAC π∠,H 是边AB 上的动点,=8AB ,=10BC ,则HB HC ⋅的最小值为___________.【答案】16-【解析】以A 为坐标原点,AB 为x 轴,AC 为y 轴,建立平面直角坐标系,则()0,0A ,()8,0B ,()0,6C ,设点(),0H x ,则[]0,8x ∈,∴()()()28,0,688x x x x x B H x H C =--=--=⋅-, ∴当4x =时,HB HC ⋅的最小值为16-.15.已知ππ,43α⎡⎤∈⎢⎥⎣⎦,,2βπ⎡⎤∈π⎢⎥⎣⎦,满足()sin sin 2sin cos αβααβ+-=,则sin 2sin()αβα-的最大值为________.【解析】因为()sin sin 2sin cos αβααβ+-=, 所以sin cos cos sin sin 2sin cos αβαβααβ+-=,所以cos sin sin cos sin αβαβα-=,即()sin sin βαα-=, 因为ππ,43α⎡⎤∈⎢⎥⎣⎦,,2βπ⎡⎤∈π⎢⎥⎣⎦,所以2βα=,则sin 2sin 22sin cos 2cos sin()sin sin αααααβααα===-,因为ππ,43α⎡⎤∈⎢⎥⎣⎦,所以2cos α⎡∈⎣,所以sin 2sin()αβα-.16.如图,在平行四边形ABCD 中,AB BD ⊥,=AB CD =BD =,沿BD 把ABD△翻折起来,且平面ABD ⊥平面BCD ,此时A ,B ,C ,D 在同一球面上,则此球的体积为___________.【答案】776π 【解析】因为AB BD ⊥,且平面ABD ⊥平面BCD ,所以AB ⊥平面BCD ,如图,三棱锥A BCD-可放在长方体中,()()()2222+237=22R +=,34777=326V ⎛⎫π=π ⎪ ⎪⎝⎭球.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(12分)设ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知()cos sin b a C C =-;(1)求角A ;(2)若10a =,2s n in i s B C =,求ABC △的面积. 【答案】(1)3π4A =;(2)1. 【解析】(1)∵,∴由正弦定理可得:sin sin cos sin sin B A C A C =-,·······1分可得:()sin sin cos cos sin sin cos sin sin A C A C A C A C A C +=+=-,·······2分 ∴cos sin sin sin A C A C =-,·······3分 由sin 0C ≠,可得:sin cos 0A A +=,·······4分 ∴tan 1A =-,·······5分 由A 为三角形内角,可得3π4A =.·······6分 (2)因为2s n in i s B C =,所以由正弦定理可得2b c =,·······7分因为2222cos a b c bc A =+-,3π4A =,可得:2c =,·······9分 所以2b =,·······10分所以1sin 12ABC S bc A ==△.·······12分18.(12分)如图所示,已知CE ⊥底面ABC ,2ABC π∠=,2AB BC CE ==, 112AA BB CE ∥∥==,D 为BC 的中点. (1)求证:1DE AC ⊥;(2)若1CE =,求三棱锥1E A DC -的体积.【答案】(1)见解析;(2)13. 【解析】(1)连接1B C ,交DE 于F , 因为CE ⊥面ABC ,11AA BB CE ∥∥,所以1BB BC ⊥,CE BC ⊥,所以1B BC △和ECD △为直角三角形, 又1=BB BC ,1==2CE BC DC , 所以1=45B CB EDC ∠∠=︒,所以90CFD ∠=︒,即1DE B C ⊥,·······3分 又已知CE ⊥底面ABC ,2ABC π∠=, 所以CE AB ⊥,AB BC ⊥,所以AB ⊥面1B BCE ,DE ⊂面1B BCE ,所以AB DE ⊥,又11A B AB ∥,所以11A B DE ⊥,·······5分 1111A B B C B =,所以DE ⊥面11A B C ,又1AC ⊂面11A B C ,所以1DE A C ⊥.·······6分 ()cos sin b a C C =-19.(12分)支付宝和微信支付是目前市场占有率较高的支付方式,某第三方调研机构对使用这两种支付方式的人数作了对比.从全国随机抽取了100个地区作为研究样本,计算了各个地区样本的使用人数,其频率分布直方图如下,(1)记A 表示事件“微信支付人数低于50千人”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为支付人数与支付方式有关;(3)根据支付人数的频率分布直方图,对两种支付方式的优劣进行比较. 附:()()()()()22n ad bc K a b c d a c b d -=++++.【答案】(1)0.62;(2)有;(3)支付宝更优.【解析】(1)根据题意,由微信支付人数的频率分布直方图可得: ()()001200140024003400405062P A =++++⨯=.......·······3分 (2)根据题意,补全列联表可得:·······5分则有()222006266383415705663510010096104K ⋅⨯-⨯=≈>⨯⨯⨯..,·······7分 故有的把握认为支付人数与支付方式有关.·······8分(3)由频率分布直方图可得,微信支付100个地区支付人数的平均数为:1(27.50.01232.50.01437.50.02442.50.034x =⨯+⨯+⨯+⨯47.50.04052.50.032+⨯+⨯57.50.02062.50.01267.50.012559.42471+⨯+⨯+⨯⨯=⨯=).;·······10分 支付宝支付100个地区支付人数的平均数为:2(37.50.00442.50.02047.50.04452.50.068x =⨯+⨯+⨯+⨯57.50.04662.50.01067.50.0085510.4752.35+⨯+⨯+⨯⨯=⨯=);比较可得:21x x <,故支付宝支付更加优于微信支付.·······12分 20.(12分)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点M 在椭圆上,有124MF MF +=,椭圆的离心率为12e =;(1)求椭圆C 的标准方程;(2)已知()4,0N ,过点N 作直线l 与椭圆交于A ,B 不同两点,线段AB 的中垂线为l ',记l '的纵截距为m ,求m 的取值范围.【答案】(1)22143x y +=;(2)1122m -<<. 【解析】(1)因为124MF MF +=,所以24a =,所以2a =,·······1分 因为12e =,所以1c =,·······2分 所以222413b a c =-=-=,·······3分所以椭圆C 的标准方程为22143x y +=.·······4分 99%(2)由题意可知直线l 的斜率存在,设l :()4y k x =-,()11,A x y ,()22,B x y ,联立直线与椭圆()221434x y y k x ⎧==-+⎪⎨⎪⎩,消去y 得()2222433264120k x k x k +-+-=,·······5分21223243k x x k +=+,2122641243k x x k -=+,·······6分 又()()()22223244364120kk k ∆=--+->,解得:1122k -<<,······7分设A ,B 的中点为()00,P x y ,则2120216243x x k x k +==+, ()00212443ky k x k =-=-+,·······8分所以l ':()001y y x x k -=--,即222121164343k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,化简得:21443k y x k k =-++,·······9分 令0x =,得2443k m k =+,11,22k ⎛⎫∈- ⎪⎝⎭,·······10分 ()222161243k m k-+'=+,当11,22k ⎛⎫∈-⎪⎝⎭时,0m '>恒成立, 所以2443k m k =+在11,22k ⎛⎫∈- ⎪⎝⎭上为增函数,所以1122m -<<.·······12分21.(12分)已知函数()=ln e x f x a x -; (1)讨论()f x 的极值点的个数;(2)若2a =,求证:()0f x <. 【答案】(1)见解析;(2)见解析.【解析】(1)根据题意可得,()()e =e 0x xa a x f x x x x-'-=>,·······1分 当0a ≤时,()0f x '<,函数()y f x =是减函数,无极值点;·······2分当0a >时,令()0f x =,得e 0x a x -=,即e xx a =,又e xy x =在()0,+∞上是增函数,且当x →+∞时,e xx →+∞,所以e xx a =在()0,+∞上存在一解,不妨设为0x , 所以函数()y f x =在()00,x 上是单调递增的,在()0,x +∞上是单调递减的. 所以函数()y f x =有一个极大值点,无极小值点;总之:当0a ≤时,无极值点; 当0a >时,函数()y f x =有一个极大值点,无极小值点.·······5分(2)()=2ln e xf x x -,()()2e =0xx f x x x-'>,由(1)可知()f x 有极大值()0f x ,且0x 满足00e 2x x =①, 又e xy x =在()0,+∞上是增函数,且02e <<,所以()00,1x ∈,·······7分 又知:()()000max 2ln e x f x f x x ==-,②·······8分 由①可得002e x x =,代入②得()()00max 022ln f x f x x x ==-,·······9分令()22ln g x x x=-,则()()2221220x g x x x x +'=+=>恒成立, 所以()g x 在()0,1上是增函数,所以()()0120g x g <=-<,即()00g x <,·······11分 所以()0f x <.·······12分请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分。