(人教版初中数学)22.2.1配方法(2)
- 格式:doc
- 大小:136.50 KB
- 文档页数:3
人教版数学九年级上册22.2.1《配方法》说课稿2一. 教材分析《配方法》是人教版数学九年级上册第22.2.1节的内容,本节课的主要内容是让学生掌握配方法的原理和应用。
配方法是解一元二次方程的一种重要方法,它能把一般形式的一元二次方程转化为完全平方式,从而使方程的解法更加简单。
在初中数学中,配方法不仅是一元二次方程解法的基础,也是后续学习二次函数、一元二次不等式等知识的基础。
二. 学情分析九年级的学生已经学习过一元二次方程的基本概念和解法,对二次项、一次项、常数项有一定的了解。
但是,学生对于配方法的原理和推导过程可能还不太理解,对于如何运用配方法解决实际问题可能还存在困难。
因此,在教学过程中,我需要引导学生从已有的知识出发,逐步理解和掌握配方法,并能够运用配方法解决实际问题。
三. 说教学目标1.知识与技能目标:让学生掌握配方法的原理和步骤,能够运用配方法解一元二次方程。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生体验数学的乐趣,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:配方法的原理和步骤,如何运用配方法解一元二次方程。
2.教学难点:配方法的推导过程,如何灵活运用配方法解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等,引导学生自主探究和合作交流。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,为学生提供丰富的学习资源。
六. 说教学过程1.导入新课:通过复习一元二次方程的基本概念和解法,引出配方法的概念和作用。
2.自主探究:让学生自主探究配方法的原理和步骤,引导学生发现配方法的规律。
3.合作交流:让学生分组讨论,分享各自的方法和经验,互相学习和借鉴。
4.讲解示范:通过讲解和示范,让学生理解和掌握配方法的具体操作步骤。
5.练习巩固:布置一些练习题,让学生运用配方法解一元二次方程,巩固所学知识。
63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日63中学导学案年级:八年级学科:数学姓名:_________ ____年____月___日1.式子44x +配成完全平方式,应加上( D )A. 4xB. ±4xC. 4x 2D. ±4x 22.用配方法解方程2250x x --=时,原方程应变形为( B )A .()216x +=B .()216x -=C .()229x +=D .()229x -=3.+-px x 2_________=(x -_________)2.4.x ab x -2+_________=(x -_________)2.5.方程2x 2+5x-3=0的解为6.解方程x 2-2x -1=0.7.解方程y 2-6y +6=0.8.解方程3x 2-4x =2.(完成时间:45分钟,满分:100分)一、选择题(每题5分,共25分)1.方程x 2-3x +2=0的解是 ( )A .1和2B .-1和-2C .1和-2D .-1和22.用配方法解方程x 2+2x =8的解为 ( )A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=23.用配方法解方程01322=--x x 应该先变形为 ( ) A .98)31(2=-x B .98)31(2-=-x C .910)31(2=-x D .0)32(2=-x 4.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).A .-2B .-4C .-6D .2或65.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为() A .12 B .15 C .12或15 D .不能确定二、填空题(每题5分,共25分)6.x x 232-+_________=(x -_________)2.7.方程x 2-6x +8=0的解是8.方程042=-x x 的解是______________.9.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.10.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______.三、解答题(每题10分,共50分)11.x 2+4x -3=0.12.x (x +4)=21.13.-2x 2+2x +1=0.14.2x -1=-2x 215.x 2+2mx =n .(n +m 2≥0).。
人教版数学九年级上册22.2.2《配方法》教学设计1一. 教材分析《配方法》是人教版数学九年级上册第22章第2节的内容,这部分内容是在学生已经掌握了整式的加减、乘除,以及完全平方公式的基础上进行学习的。
配方法是一种解决问题的方法,通过构造完全平方公式,将问题转化为学生已经掌握的知识点,从而解决问题。
配方法在解决二次方程、二次不等式以及函数图像的平移等问题中有着广泛的应用。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和运用整式的加减、乘除以及完全平方公式。
但是,对于配方法的原理和应用,他们可能还不太清楚。
因此,在教学过程中,需要通过具体例子让学生理解配方法的原理,并通过练习让学生掌握配方法的应用。
三. 教学目标1.知识与技能:让学生掌握配方法的原理,并能够运用配方法解决相关问题。
2.过程与方法:通过具体例子,让学生理解配方法的过程,并能够独立完成配方法的操作。
3.情感态度与价值观:培养学生对数学的兴趣,提高学生解决问题的能力。
四. 教学重难点1.配方法的原理理解2.配方法在解决实际问题中的应用五. 教学方法采用讲解法、示范法、练习法、讨论法等教学方法,通过具体例子引导学生理解配方法,并通过练习让学生巩固所学知识。
六. 教学准备1.教学PPT七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何解决这类问题。
例如,解决方程x^2 -5x + 6 = 0。
2.呈现(15分钟)讲解配方法的原理,并通过PPT展示配方法的具体步骤。
配方法的步骤如下:(1)将方程写成完全平方的形式;(2)根据完全平方公式,构造出两个相同的因式;(3)将方程转化为两个因式的乘积等于0的形式;(4)根据乘积等于0的性质,解出方程的解。
3.操练(15分钟)让学生独立完成配方法的操作,教师巡回指导。
4.巩固(10分钟)让学生解答一些相关的练习题,检验学生对配方法的理解和掌握程度。
5.拓展(10分钟)讲解配方法在解决二次方程、二次不等式以及函数图像的平移等问题中的应用。
人教版数学九年级上册22.2.2《配方法》教案1一. 教材分析《配方法》是初中数学九年级上册的教学内容,主要目的是让学生掌握配方法的基本原理和应用。
配方法是一种解决二次方程问题的方法,通过将二次方程转化为完全平方形式,从而简化问题的求解过程。
本节课的内容是在学生已经掌握了二次方程的基本概念和求解方法的基础上进行讲解的,为后续学习更复杂的二次方程问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了二次方程的基本概念和求解方法,具备了一定的数学基础。
但是,对于配方法的理解和应用还需要进一步的引导和培养。
学生的学习兴趣和学习积极性较高,对于新的学习内容有一定的好奇心和求知欲。
三. 教学目标1.让学生掌握配方法的基本原理和应用。
2.培养学生解决二次方程问题的能力。
3.培养学生的逻辑思维能力和创新思维能力。
四. 教学重难点1.配方法的基本原理的理解和应用。
2.配方法在解决二次方程问题中的应用。
五. 教学方法采用问题驱动的教学方法,通过引导学生自主探究和合作交流,让学生在解决实际问题的过程中掌握配方法的基本原理和应用。
同时,运用案例教学法,结合具体的例子进行讲解,使学生更好地理解和掌握配方法。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备教学课件和教学素材。
七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题,例如:已知一个二次方程的解为x1=3和x2=4,求原方程。
让学生尝试解决这个问题,引发学生对配方法的好奇心和兴趣。
呈现(10分钟)讲解配方法的基本原理和步骤。
通过具体的例子进行讲解,让学生理解和掌握配方法的基本原理和应用。
同时,引导学生进行思考和讨论,巩固学生的理解。
操练(10分钟)让学生进行配方法的练习。
提供一些配方法的练习题,让学生独立完成。
在学生完成练习的过程中,进行巡视指导和解答学生的疑问。
巩固(10分钟)通过一些综合性的题目,让学生应用配方法解决实际问题。
引导学生进行合作交流,共同解决问题,巩固学生对配方法的理解和应用。