高一数学必修一第三单元测试_3
- 格式:doc
- 大小:63.50 KB
- 文档页数:5
综合测试(3)一、选择题(共12道,每题5分,共计60分)1.乘积22221111(1)(1)(1)(1)23910---- 等于 A.125 B.21 C.2011 D.107 2.等差数列}{n a 中,1697=+a a ,且14=a ,则12a 的值是A.15B.30C.31D.643.已知*)n a n N =∈,则1210a a a +++ 的值为111 D.2 4.等差数列}{n a 中,2≥n ,公差0<d ,前n 项和是n S ,则有A.n n na S ≤B.1na S n ≥C.n n na S na <<1D.1na S na n n << 5.设}{n a 是正项等比数列,}{n b 是等差数列,且76b a =,则有 A.10493b b a a +≥+ B.10493b b a a +>+ C.10493b b a a +≤+D.10493b b a a +<+6.如果数列}{n a 的前n 项和)23(21nn n n S -=,那么这个数列 A.是等差数列但不是等比数列 B.是等比数列不是等差数列C.既是等差数列又是等比数列D.既不是等差数列又不是等比数列7.若等差数列}{n a 的前n 项和n S 满足8765S S S S >=<,则下列结论错误的是 A.0<d B.07=a C.59S S >D.6S 与7S 是n S 的最大值8.若}{n a 是等差数列,首项000242324231<⋅>+>a a a a a ,,,则使前n 项和S n >0成立的最大自然数n 是A.48B.47C.45D.469.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件10.某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按照这样的规律下去,6小时后细胞的存活数为A.67B.71C.65D.3011.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案则第n 个图案中有白色地面砖的块数是A.42n +B.42n -C.24n +D.33n + 12.将正奇数按下表排成5列:第1列 第2列 第3列 第4列 第5列第1个第2个第3个…………第n 个第1行 1 3 5 7 第2行 15 13 11 9第3行 17 19 21 23 …… …… 27 25 则2006将在A.第250行,第2列B.第250行,第3列C.第251行,第3列D.第251行,第4列 二、填空题(共4道,每题4分,计16分)13.数列}{n a 满足112(0),2121(1).2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩且167a =,则20a = .14.数列1,211+,3211++,…,n++++ 3211,…的前n 项和S n = .15.已知整数对序列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为 .16.假设你在某公司打工,老板给你两个加薪方案:(1)每年年末....加1千元;(2)每半年结束.....时加3百元.如果每个人的加薪方案只选一种,你在该公司干了满3年,那么按方案(1)或(2)加薪的总数..将分别是 元或 元. 三、解答题:(第17、18、19、20、21小题每小题12分, 第22小题14分,6个小题共74分)17.已知}{n a 是等差数列,其公差0≠d ,且2a 是1a 与4a 的等比中项.(1)求1a 与d 的关系式;(2)若}{n a 的部分项依次组成的数列1k a ,2k a ,3k a ,…,n k a ,…是等比数列,其中11=k ,32=k ,试求数列}{n k 的通项公式.18.已知数列}{n a 的前n 项和n n S n 102+-=. (1)证明}{n a 是等差数列; (2)求数列|}{|n a 的前n 项和n T .19.设数列}{n a :1,(1+2),(1+2+22),…,(1+2+22+…+12n -),….(1)求}{n a 的前n 项和n A ;(2)设)(n A n b n n +⋅=,求数列}{n b 的前n 项和n B .20. 从社会效益和经济效益出发,某地投入资金进行生态环境建设, 并以此发展旅游产业。
第3章 函数概念与性质 章末测试(基础)一.单选题(每题只有一个选项为正确答案,每题5分,8题共40分) 1.已知1232x f x ⎛⎫-=+ ⎪⎝⎭,则(6)f 的值为( )A .15B .7C .31D .172.下列四组函数中,()f x 与()g x 表示同一函数是( ) A .()1f x x =-,()211x g x x -=+B .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩C .()1f x =,()()01g x x =+D .()f x =()2g x =3.函数()12f x x -的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞U4.已知幂函数()f x 的图象过点(2,2),则(8)f 的值为( )A B C .D .5.下列函数中,在区间(0,1) ) A .2y x = B .3y x =- C .1y x=D .24y x =-+6.设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则()2f -,()f π,()3f -的大小关系是( )A .()()()32f f f π>->-B .()()()23f f f π>->-C .()()()32f f f π<-<-D .()()()23f f f π<-<-7.函数211()()1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是( )A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞8.若定义在R 的奇函数()f x 在(),0-∞单调递减,且()20f =,则满足()()210x f x ++≥的x 的取值范围是( )A .[][)3,21,--⋃+∞B .[][]5,32,1--⋃--C .[][)3,21,--⋃-+∞D .[][]3,21,1--⋃-二.多选题(每题至少两个选项为正确答案,少选且正确得2分,每题5分,4题共20分) 9.已知2(21)4f x x -=,则下列结论正确的是 A .(3)9f =B .(3)4f -=C .2()f x x =D .2()(1)f x x =+10.(新教材人教版必修第一册))设f (x )为偶函数,且在区间(-∞,0)内单调递增,f (-2)=0,则下列区间中使得xf (x )<0的有( ) A .(-1,1) B .(0,2) C .(-2,0)D .(2,4)11.已知函数()f x 是偶函数,()1f x +是奇函数,当[]2,3x ∈时,()12f x x =--,则下列选项正确的是( ) A .()f x 在()3,2--上为减函数 B .()f x 的最大值是1 C .()f x 的图象关于直线2x =-对称D .()f x 在()4,3--上()0f x <12.已知()f x 为奇函数,且()1f x +为偶函数,若()10f =,则( ) A .()30f = B .()()35f f = C .(3)(1)f x f x +=-D .(2)(1)1f x f x +++=三.填空题(每题5分,4题共20分)13.已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.14.函数2()21xxf x ax =+-是偶函数,则实数a =__________. 15. 11,1,()3,1x a x x f x a x ⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩满足:对任意12x x ≠都有()()12120f x f x x x -<-成立,a 的取值范围________. 16.(新教材人教版必修第一册))函数y =的定义域为R ,则a ∈ _______.四.解答题(第17题10分,其余每题12分,7题共70分)17.已知()f x 是定义在R 上的奇函数,当时0x <时,2()21f x x x =+- (1)求()f x 解析式(2)画出函数图像,并写出单调区间(无需证明)18.已知f (x )=12x +(x ∈R ,x ≠-2),g (x )=x 2+1(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (3))的值;(3)作出f (x ),g (x )的图象,并求函数的值域.19.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在上()1,1-是增函数: (3)解关于x 的不等式()()10f x f x -+<.20.函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =.(1)确定()f x 的解析式;(2)判断()f x 在(2,2)-上的单调性,并证明你的结论; (3)解关于t 的不等式(1)()0f t f t -+<.21.已知函数()f x 的定义域为()0,∞+,且对任意的正实数x 、y 都有()()()f xy f x f y =+,且当1x >时,()0f x >,()41f =.(1)求证:()10f =; (2)求116f ⎛⎫ ⎪⎝⎭;(3)解不等式()()31f x f x +-≤.22.已知()f x 是定义在[2,2]-上的奇函数,且当[)2,0x ∈-时,()2f x x x =-.(1)求函数()f x 在[2,2]-上的解析式.(2)若()229m x m f a --≥对所有[2,2]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.第3章 函数概念与性质 章末测试(基础)五.单选题(每题只有一个选项为正确答案,每题5分,8题共40分) 1.已知1232x f x ⎛⎫-=+ ⎪⎝⎭,则(6)f 的值为( )A .15B .7C .31D .17【答案】C 【解析】令12xt =-,则22x t =+,所以()()222347f t t t =++=+即()47f x x =+, 所以()646731f =⨯+=.故选:C .2.下列四组函数中,()f x 与()g x 表示同一函数是( ) A .()1f x x =-,()211x g x x -=+B .()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩C .()1f x =,()()01g x x =+D .()f x =()2g x =【答案】B【解析】两个函数如果是同一函数,则两个函数的定义域和对应法则应相同,A 选项中,()f x 定义域为R ,()g x 的定义域为(,1)(1,)-∞-⋃-+∞,所以二者不是同一函数,所以A 错误;B 选项中,1,1()11,1x x f x x x x +≥-⎧=+=⎨--<-⎩,与()g x 定义域相同,都是R ,对应法则也相同,所以二者是同一函数,所以B 正确;C 选项中,()f x 定义域为R ,()g x 的定义域为(,1)(1,)-∞-⋃-+∞,所以二者不是同一函数, 所以C 错误;D 选项中,()f x 定义域为R ,()g x 的定义域为[0,)+∞,所以二者不是同一函数,所以D 错误.故选:B3.函数()12f x x -的定义域为( ) A .[)0,2B .()2,+∞C .()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭D .()(),22,-∞+∞U【答案】C【解析】由21020x x -≥⎧⎨-≠⎩,解得x ≥12且x ≠2.∴函数()12f x x -的定义域为()1,22,2⎡⎫⋃+∞⎪⎢⎣⎭. 故选:C .4.已知幂函数()f x 的图象过点),则(8)f 的值为( )A B C .D .【答案】A【解析】令()af x x =,由图象过)∴2a=,可得12a =-故12()f x x -=∴12(8)8f -==故选:A5.下列函数中,在区间(0,1)上是增函数的是( ) A .2y x = B .3y x =- C .1y x= D .24y x =-+【答案】A【解析】对于A ,2y x =是过原点,经过一、三象限的一条直线,在R 上为增函数,所以A 正确,对于B ,3y x =-是一次函数,且10-<,所以R 上为减函数,所以B 错误,对于C ,1y x=是反比例函数,图像在一、三象限的双曲线,在(0,1)上是减函数,所以C 错误,对于D ,24y x =-+是二次函数,对称轴为y 轴,开口向下的抛物线,在(0,1)上是减函数,所以D 错误, 故选:A6.设偶函数()f x 的定义域为R ,当[)0,x ∈+∞时,()f x 是增函数,则()2f -,()f π,()3f -的大小关系是( )A .()()()32f f f π>->-B .()()()23f f f π>->-C .()()()32f f f π<-<-D .()()()23f f f π<-<- 【答案】A【解析】因为函数()f x 是偶函数, 所以()(3),(2)(2)3,f f f f =-=- 因为[)0,x ∈+∞时,()f x 是增函数, 所以()()()32f f f π>>, 所以()()()32f f f π>->-. 故选:A7.函数211()()1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是( )A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞【答案】A【解析】对任意*x ∈N ,()3f x ≥恒成立,即21131x ax x ++≥+恒成立,即知83a x x ⎛⎫≥-++ ⎪⎝⎭.设8()g x x x =+,*x ∈N ,则(2)6g =,17(3)3g =.∵(2)(3)g g >,∴min 17()3g x =,∴8833x x ⎛⎫-++≤- ⎪⎝⎭,∴83a ≥-,故a 的取值范围是8,3⎡⎫-+∞⎪⎢⎣⎭.故选:A.8.若定义在R 的奇函数()f x 在(),0-∞单调递减,且()20f =,则满足()()210x f x ++≥的x 的取值范围是( )A .[][)3,21,--⋃+∞B .[][]5,32,1--⋃--C .[][)3,21,--⋃-+∞D .[][]3,21,1--⋃-【答案】D【解析】根据题意,画出函数示意图:当2x <-时,210x -≤+≤,即32x -≤<-; 当2x >-时,012x ≤+≤,即11x -≤≤; 当2x =-时,显然成立, 综上[][]3,21,1x ∈--⋃-. 故选:D六.多选题(每题至少两个选项为正确答案,少选且正确得2分,每题5分,4题共20分) 9.已知2(21)4f x x -=,则下列结论正确的是 A .(3)9f = B .(3)4f -= C .2()f x x = D .2()(1)f x x =+【答案】BD【解析】令1212t t x x +=-⇒=,∴221()4()(1)2t f t t +==+. ∴2(3)16,(3)4,()(1)f f f x x =-==+. 故选:BD.10.(新教材人教版必修第一册))设f (x )为偶函数,且在区间(-∞,0)内单调递增,f (-2)=0,则下列区间中使得xf (x )<0的有( ) A .(-1,1) B .(0,2) C .(-2,0) D .(2,4)【答案】CD【解析】根据题意,偶函数f (x )在(-∞,0)上单调递增,又f (-2)=0,则函数f (x )在(0,+∞)上单调递减,且f (-2)=f (2)=0,函数f (x )的草图如图 又由xf (x )<0⇒0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩由图可得-2<x <0或x >2即不等式的解集为(-2,0)∪(2,+∞). 故选:CD11.已知函数()f x 是偶函数,()1f x +是奇函数,当[]2,3x ∈时,()12f x x =--,则下列选项正确的是( ) A .()f x 在()3,2--上为减函数 B .()f x 的最大值是1 C .()f x 的图象关于直线2x =-对称 D .()f x 在()4,3--上()0f x <【答案】BCD【解析】因为当[]2,3x ∈时,()[]121230,1f x x x x =--=-+=-∈,则函数()f x 在[]2,3x ∈上递减, 又函数()f x 是偶函数,所以()f x 在()3,2--上为增函数;故A 错; 因为函数()f x 是偶函数,()1f x +是奇函数,所以()()f x f x -=,()()11f x f x -+=-+,则()()11f x f x -=-+,所以()()2=-+f x f x ,则()()()24f x f x f x +=-+=-,即()()4f x f x +=, 所以()f x 以4为周期;则()()()222f x f x f x +=-=-,所以()f x 关于直线2x =对称, 因此当[]1,2x ∈时,()[]0,1f x ∈;当[]0,1x ∈时,[]22,3x +∈,则()212211f x x x x +=-+-=-=-,又()()2=-+f x f x ,所以()[]11,0f x x =-∈-;因为偶函数关于y 轴对称,所以当[]1,0x ∈-时,()[]1,0f x ∈-; 综上,当[]13,x ∈-时,()[]1,1f x ∈-;又()f x 是以4为周期的函数,所以x R ∀∈,()[]1,1f x ∈-,则()max 1f x =,故B 正确; 因为()()()222f x f x f x +=-=-+,函数()f x 为偶函数,所以()()22f x f x +=--,因此()()22f x f x -+=--,所以()f x 的图象关于直线2x =-对称;即C 正确; 因为()0,1x ∈时,()10f x x =-<显然恒成立,函数()f x 是以4为周期的函数, 所以()f x 在()4,3--上也满足()0f x <恒成立;故D 正确; 故选:BCD.12.已知()f x 为奇函数,且()1f x +为偶函数,若()10f =,则( ) A .()30f = B .()()35f f = C .(3)(1)f x f x +=- D .(2)(1)1f x f x +++=【答案】ABC【解析】因为函数()1f x +为偶函数,所以()()11f x f x +=-, 又因为f (x )是R 上的奇函数,所以()()()111f x f x f x +=-=--,所以()()()()()242f x f x f x f x f x +=-+=-+=,,所以f (x )的周期为4, 又()()()()()()103110510,f f f f f f ==-=-===Q ,,故A ,B 正确;()()()3341f x f x f x +=+-=-,∴C 正确;()()()2242f f f =-=-,同时根据奇函数的性质得()()()()22,2,2f f f f =--∴-既相等又互为相反数,故f (2)=0,所以()()2101f f +=≠,即(2)(1)1f x f x +++=对于0x =不成立,故D 不正确.故选:ABC.七.填空题(每题5分,4题共20分)13.已知函数f (x )={3x −1,x ≥12−x +3,x <1,则f (−2)=________.【答案】7【解析】因为f (x )={3x −1,x ≥12−x +3,x <1,所以f (−2)=22+3=7, 故答案为:7 14.函数2()21x xf x ax =+-是偶函数,则实数a =__________. 【答案】1【解析】因为2()(0)21xxf x ax x =+≠-,且()f x 是偶函数,则()()f x f x -=, 2222222,,20212121212121xx x x x x x x x ax ax a a a --⨯--=+--=++-=-----,即22a =,所以实数1a =. 故答案为: 1.15.11,1,()3,1x a x x f x a x ⎧⎛⎫-+<⎪ ⎪=⎝⎭⎨⎪≥⎩满足:对任意12x x ≠都有()()12120f x f x x x -<-成立,a 的取值范围________. 【答案】12,33⎛⎤⎥⎝⎦【解析】因为对任意12x x ≠都有()()12120f x f x x x -<-成立,不妨设12x x <,则有()()12f x f x >,所以()y f x =为减函数,所以需满足:1103011113a a a a ⎧-<⎪⎪⎪<<⎨⎪⎛⎫⎪-⨯+≥ ⎪⎪⎝⎭⎩,解得:1233a <≤.则a 的取值范围12,33⎛⎤⎥⎝⎦.故答案为:12,33⎛⎤⎥⎝⎦16.(新教材人教版必修第一册))函数y =的定义域为R ,则a ∈ _______. 【答案】{}|04a a ≤≤【解析】因为任意x ∈R,根式210ax ax ++≥的解集为R , 即不等式210ax ax ++≥在R 上恒成立. ①当0a =时,10≥恒成立,满足题意; ②当0a ≠时,2040a a a >⎧⎨∆=-≤⎩,解得04a <≤, 综上, {}04a a a ∈≤≤ 故答案为:{}|04a a ≤≤八.解答题(第17题1012分,7题共70分)17.已知()f x 是定义在R 上的奇函数,当时0x <时,2()21f x x x =+- (1)求()f x 解析式(2)画出函数图像,并写出单调区间(无需证明)【答案】(1)2221,0()0,021,0x x x f x x x x x ⎧+-<⎪==⎨⎪-++>⎩;(2)图见详解,单调区间为:单调递增区间为:(1,0)-,(0,1),单调递减区间为:(,1)-∞,(1,)+∞. 【解析】(1)当0x =时,(0)0f =,当0x >时,0x -<,2()()21f x f x x x =--=-++,所以2221,0()0,021,0x x x f x x x x x ⎧+-<⎪==⎨⎪-++>⎩,(2)()f x 的图像为:单调递增区间为:(1,0)-,(0,1), 单调递减区间为:(,1)-∞,(1,)+∞. 18.已知f (x )=12x +(x ∈R ,x ≠-2),g (x )=x 2+1(x ∈R ). (1)求f (2),g (2)的值; (2)求f (g (3))的值;(3)作出f (x ),g (x )的图象,并求函数的值域. 【答案】(1)14,5;(2)112;(3)图见解析,f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 【解析】(1)f (2)=122+=14,g (2)=22+1=5; (2)g (3)=32+1=10,f (g (3))=f (10)=1102+=112; (3)函数f (x )的图象如图:函数g (x )的图象如图:观察图象得f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 19.已知函数()21ax bf x x +=+是定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)确定函数()f x 的解析式;(2)用定义证明()f x 在上()1,1-是增函数: (3)解关于x 的不等式()()10f x f x -+<. 【答案】(1)()21x f x x =+;(2)证明见详解;(3)102x x ⎧⎫<<⎨⎬⎩⎭【解析】(1)∵函数()21ax bf x x +=+是定义在()1,1-上的奇函数 ∴()00f =,即01b=,∴0b = 又∵1225f ⎛⎫= ⎪⎝⎭,即21225112a b+=⎛⎫+ ⎪⎝⎭,∴1a = ∴函数()f x 的解析式为()21xf x x =+ (2)由(1)知()21xf x x =+ 令1211x x -<<<,则()()1212221211x x f x f x x x -=-++()()()()22122122121111x x x x x x +-+=++()()()()12122212111x x x x x x --=++ ∵1211x x -<<< ∴12120,1x x x x -<< ∴1210x x ->而221210,10x x +>+>∴()()120f x f x -<,即()()12f x f x < ∴()f x 在上()1,1-是增函数 (3)∵()f x 在上()1,1-是奇函数∴()()10f x f x -+<等价于()()1f x f x -<-,即()()1f x f x -<- 又由(2)知()f x 在上()1,1-是增函数∴111x x -<-<-<,即102x <<∴不等式()()10f x f x -+<的解集为102x x ⎧⎫<<⎨⎬⎩⎭. 20.函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数,且1(1)3f =. (1)确定()f x 的解析式;(2)判断()f x 在(2,2)-上的单调性,并证明你的结论; (3)解关于t 的不等式(1)()0f t f t -+<. 【答案】(1)2()4xf x x =-;(2)增函数,证明见解析;(3)1(1,)2-. 【解析】(1)根据题意,函数2()4ax bf x x -=-是定义在(2,2)-上的奇函数, 则(0)04bf -==,解可得0b =; 又由f (1)13=,则有f (1)133a ==,解可得1a =; 则2()4xf x x =-; (2)由(1)的结论,2()4xf x x =-,在区间(2,2)-上为增函数; 证明:设1222x x -<<<,则1212122212(4)()()()(4)(4)x x x x f x f x x x +--=--,又由1222x x -<<<,则12(4)0x x +>,12()0x x -<,21(4)0x ->,22(4)0x ->, 则12())0(f x f x -<,则函数()f x 在(2,2)-上为增函数;(3)根据题意,212(1)()0(1)()(1)()221t f t f t f t f t f t f t t t t -<-<⎧⎪-+<⇒-<-⇒-<-⇒-<<⎨⎪-<-⎩,解可得:112t -<<,即不等式的解集为1(1,)2-.21.已知函数()f x 的定义域为()0,∞+,且对任意的正实数x 、y 都有()()()f xy f x f y =+,且当1x >时,()0f x >,()41f =.(1)求证:()10f =; (2)求116f ⎛⎫⎪⎝⎭;(3)解不等式()()31f x f x +-≤.【答案】(1)证明见解析;(2)1216f ⎛⎫=- ⎪⎝⎭;(3){|34}x x <≤.【解析】(1)令4x =,1y =,则()()()()44141f f f f =⨯=+, ∴()10f =;(2)∵()()()()1644442f f f f =⨯=+=,()()111161601616f f f f ⎛⎫⎛⎫=⨯=+= ⎪ ⎪⎝⎭⎝⎭,∴1216f ⎛⎫=- ⎪⎝⎭;(3)设1x 、20x >且12x x >,于是120x f x ⎛⎫> ⎪⎝⎭,∴()()()11122222x x f x f x f f x f x x x ⎛⎫⎛⎫=⋅=+> ⎪⎪⎝⎭⎝⎭, ∴()f x 在()0,∞+上为增函数,又∵()()()()3314f x f x f x x f +-=-≤=⎡⎤⎣⎦, ∴()03034x x x x ⎧>⎪->⎨⎪-≤⎩,解得34x <≤, ∴原不等式的解集为{|34}x x <≤.22.已知()f x 是定义在[2,2]-上的奇函数,且当[)2,0x ∈-时,()2f x x x =-.(1)求函数()f x 在[2,2]-上的解析式.(2)若()229m x m f a --≥对所有[2,2]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.【答案】(1)()[)()()(]()222,0,00,0,2.x x x f x x x x x ⎧-∈-⎪⎪==⎨⎪--∈⎪⎩;(2)[]1,1-.【解析】(1)函数()f x 为定义域上的奇函数,所以()00f =,当(]0,2x ∈时,()()()()22f x f x x x x x ⎡⎤=--=----=--⎣⎦, 所以()[)()()(]()222,0,00,0,2.x x x f x x x x x ⎧-∈-⎪⎪==⎨⎪--∈⎪⎩(2)根据题意得,函数()f x 为减函数,所以()f x 的最小值为()26f =-,要使()229m x m f a --≥对所有[]2,2x ∈-,[]1,1a ∈-恒成立,即2629m am -≥--对所有[]1,1a ∈-恒成立,则()()221230,1230,g m m g m m ⎧-=+-≤⎪⎨=--≤⎪⎩即31,13,m m -≤≤⎧⎨-≤≤⎩ ∴11m -≤≤,∴实数m 的取值范围是[]1,1-.。
一、选择题1.2017年5月,世界排名第一的围棋选手柯洁0:3败给了人工智能“阿法狗”.为什么人类的顶尖智慧战胜不了电脑呢?这是因为围棋本身也是一个数学游戏,而且复杂度非常高.围棋棋盘横竖各有19条线,共有1919361⨯=个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与MN最接近的是( )(参考数据:lg30.48≈) A .3310B .5310C .7310D .93102.函数()212()log 23f x x x =--+单调减区间为( ) A .(,1]-∞- B .(3,1]--C .[)1,1-D .[)1-+∞, 3.若lg 2a =,lg3b =,则5log 12等于( )A .21a b a++B .21a b a+C .21a b aD .21a ba-4.形如221n+(n 是非负整数)的数称为费马数,记为F n 数学家费马根据F 0,F 1,F 2,F 3,F 4都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出F 5不是质数,请你估算F 5是( )位数(参考数据:lg2≈0.3010). A .8B .9C .10D .115.函数()f x =的定义域是( ) A .(0,2)B .[2,)+∞C .(0,)+∞D .(,2)-∞6.已知函数||()2x f x =,记131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .c a b >>7.已知函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12-B .-1C .-5D .128.函数1()1x f x a +=-恒过定点( )A .(1,1)B .(1,1)-C .(1,0)-D .(1,1)--9.若函数()()20.3log 54f x x x=+-在区间()1,1a a -+上单调递减,且lg 0.3=b ,0.32c =,则A .b a c <<B .b c a <<C .a b c <<D .c b a <<10.设()21,xf x c b a =-,且()()()f a f c f b >>,则下列说法正确的是( )A .0,0,0a b c <<<B .0,0,0a b c ≥C .22a c -<D .222c a +<11.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ). A .b a c <<B .a b c <<C .a b c >>D .a c b <<12.已知函数()()213log f x x ax a =--对任意两个不相等的实数1x 、21,2x ⎛⎫∈-∞- ⎪⎝⎭,都满足不等式()()21210f x f x x x ->-,则实数a 的取值范围是( )A .[)1,-+∞B .(],1-∞-C .11,2⎡⎤-⎢⎥⎣⎦D .11,2⎡⎫-⎪⎢⎣⎭二、填空题13.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.14.已知函数f (x )=3x +x ,g(x )=log 3x +2,h (x )=log 3x +x 的零点依次为a ,b ,c ,则a ,b ,c 的大小关系是________. 15.定义{},,max ,,x x y x y y x y≥⎧=⎨<⎩,设{}()max ,log xa f x a a x=--(),1x R a +∈>.则不等式()2f x ≥的解集是_____________. 16.若()2lg 2lg lg x y x y -=+,则2x y=______.17.72log 2338log2lg 5lg 47-+++=______.18.已知12512.51000x y ==,则11x y=_____.19.有以下结论:①将函数xy e =的图象向右平移1个单位得到1x y e -=的图象; ②函数()xf x e =与()g x lnx =的图象关于直线y =x 对称③对于函数()xf x a =(a >0,且1a ≠),一定有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭④函数()22log (2)f x x x =-+的图象恒在x 轴上方.其中正确结论的序号为_________. 20.若()34,0mnm n =≠,则4log 3=______.(用m n ,表示)三、解答题21.(1)已知12x y +=,9xy =,且x y <,求11221122x y x y-+值;(2)求值:2(lg 2)lg5lg 20+⋅.22.已知函数()2()log log 2(0,1)a a f x x x a a =-->≠. (1)当2a =时,求(2)f ; (2)求解关于x 的不等式()0f x >;(3)若[2,4],()4x f x ∀∈≥恒成立,求实数a 的取值范围. 23.(1)求函数()22log 32y x x =-+的定义域; (2)求函数221y x x =-+-,[]2,2x ∈-的值域; (3)求函数223y x x =--的单调递增区间. 24.已知函数()21log 1x f x x +=-, (1)求函数()y f x =的定义域; (2)证明:()y f x =是奇函数; (3)设()()()14h x f x f x =+,求函数()y h x =在[]3,7内的值域; 25.已知函数()f x 是定义在R 上的奇函数,当0x 时,()121xaf x =++. (1)求实数a 的值及()f x 的解析式; (2)求方程4|(1)|5f x -=的解. 26.已知函数214()log (238)f x mx x m =-+. (Ⅰ)当1m =时,求函数()f x 在1[,2]2上的值域;(Ⅱ)若函数()f x 在(4,)+∞上单调递减,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设36180310M x N ==,两边取对数,结合对数的运算性质进行整理,即可求出M N . 【详解】解:设36180310M x N ==,两边取对数36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,故选:D . 【点睛】 关键点睛:本题考查了对数的运算,关键是结合方程的思想令36180310x =,两边取对数后进行化简整理.2.B解析:B 【分析】根据复合函数的单调性可知,()()212log 23f x x x =--+的单调减区间为223t x x =--+在定义域上的单调增区间.再根据一元二次函数的单调性求单调增区间即可. 【详解】解:函数()()212log 23f x x x =--+的定义域为()3,1-令223t x x =--+,则()12log g t t =为单调递减函数,由复合函数的单调性可知:()f x 的单调递减区间为223t x x =--+在()3,1-上的单调增区间.()222314t x x x =--+=-++,对称轴为1x =-,开口向下,所以223t x x =--+的单调增区间为(]3,1--. 故选:B. 【点睛】本题考查复合函数的单调性,属于中档题. 方法点睛:(1)先求出函数的定义域; (2)判断外层函数的单调性;(3)根据复合函数同增异减的原则,判断要求的内层函数的单调性; (4)求出单调区间.3.C解析:C 【分析】利用对数的换底公式可将5log 12用a 、b 表示. 【详解】根据对数的换底公式得,5lg12lg3lg 4lg32lg 22log 12lg5lg10lg 21lg 21a ba+++====---, 故选:C . 【点睛】关键点点睛:该题考查的是有关对数的运算,解答本题的关键是熟记换底公式以及对数的运算性质,利用运算性质化简、运算,其中lg5lg10lg 2=-是题目的一个难点和易错点.4.C解析:C 【分析】根据所给定义表示出9.632951010F =⨯,进而即可判断出其位数. 【详解】 根据题意,53223232lg232lg2320.30109.6320.6329521212101010101010F ⨯=+=+≈==≈==⨯,因为0.63211010<<,所以5F 的位数是10.故选:C 【点睛】关键点睛:解答本题的关键是转化成对数运算,即3232lg 2210=.5.A解析:A 【分析】根据函数的形式,直接列解析式有意义的不等式,求出函数的定义域. 【详解】由题意得,函数的定义域需满足02>0x x >⎧⎨-⎩,解得:02x <<所以函数的定义域是()0,2. 故选:A . 【点睛】方法点睛:常见的具体函数求定义域:(1)偶次根号下的被开方数大于等于0;(2)分母不为0;(3)对数函数中真数大于0.6.A解析:A 【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.7.A解析:A 【分析】根据分段函数解析式,依次计算255log 122f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,23log 2f ⎛⎫ ⎪⎝⎭,即可得选项.【详解】因为函数222,1()log (1),1x x f x x x ⎧-≤=⎨->⎩,所以2253log log 2122f ⎛⎫=<= ⎪⎝⎭,23log 2531222222f f⎡⎤⎛⎫∴=-=-=- ⎪⎢⎥⎝⎭⎣⎦. 故选:A. 【点睛】本题考查根据分段函数求解函数值,关键在于根据解析式分段求解,由内到外,准确认清自变量的所在的范围和适用的解析式.8.C解析:C 【分析】根据指数函数性质求定点. 【详解】因为01a =,所以()011f a -=-=0,因此过定点()1,0-,选C.【点睛】本题考查指数函数性质以及定点问题,考查基本分析求解能力,属于基础题.9.A解析:A 【分析】求出原函数的定义域,再求出内函数二次函数的增区间,由题意列关于a 的不等式组,求得a 的范围,结合b=1g0.3<0,c=20.3>1得答案. 【详解】由5+4x-x 2>0,可得-1<x <5, 函数t=5+4x-x 2的增区间为(-1,2),要使f(x)=log 0.3(5+4x−x 2)在区间(a-1,a+1)上单调递减,则1112a a -≥-⎧⎨+≤⎩ ,即0≤a≤1. 而b=1g0.3<0,c=20.3>1, ∴b <a <c . 故选A . 【点睛】本题主要考查了复合函数的单调性以及单调区间的求法.对应复合函数的单调性,一要注意先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”,是中档题.10.D解析:D 【详解】分析:先画出函数()21xf x =-的图像,根据c b a >>且()()()f a f c f b >>得到a <0,b >0,c >0,再找正确的选项. 详解:作出函数()21xf x =-的图像,因为c b a >>且()()()f a f c f b >>, 所以a <0, c >0,因为()()f a f c >,所以2121,1221,222acacac->-∴->-∴+<.故答案为D.点睛:(1)本题主要考查图像的作法,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合思想方法.(2)解答本题的关键是通过图像分析出a <0,b >0,c >0.11.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.12.C解析:C 【分析】由题意可知,函数()()213log f x x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递增,利用复合函数的单调性可知,内层函数2u x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且0>u 对任意的1,2x ⎛⎫∈-∞- ⎪⎝⎭恒成立,进而可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】因为()()21210f x f x x x ->-,所以()()213f x log x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上是增函数, 令2u x ax a =--,而13log y u =是减函数,所以2u x ax a =--在1,2⎛⎫-∞-⎪⎝⎭上单调递减,且20u x ax a =-->在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以212211022a a a ⎧≥-⎪⎪⎨⎛⎫⎛⎫⎪----≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,解题时还应注意真数要恒为正数,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤, 故答案为:31,2⎛⎤⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.14.【解析】画出函数的图象如图所示:观察图象可知函数的零点依次是点的横坐标由图像可知故答案为点睛:函数的零点与方程根的分布问题解题时常用数形结合思想对于方程的根可分别画出与的图象则两个函数图象的交点的横解析:a b c << 【解析】画出函数3x y =,3log y x =,y x =-,2y =-的图象,如图所示:观察图象可知,函数()3x f x x =+,3()log 2g x x =+,3()log h x x x =+的零点依次是点A ,B ,C 的横坐标,由图像可知a b c <<. 故答案为a b c <<点睛:函数的零点与方程根的分布问题,解题时常用数形结合思想,对于方程()()0f x g x -=的根,可分别画出()f x 与()g x 的图象,则两个函数图象的交点的横坐标即为方程()()0f x g x -=的根.15.【分析】利用分段函数列出不等式求解即可【详解】解:在上为单调递增函数又当时当时不等式或解得或故答案为:【点睛】本题考查分段函数的应用函数值的求法考查转化思想以及计算能力 解析:21(0,][log (2),)a a a ++∞ 【分析】利用分段函数列出不等式求解即可. 【详解】解:()log log xxa a a a x a a x ---=-+,1a >,()log xa g x a a x =-+在()0,∞+上为单调递增函数,又1(1)log 10a g a a =-+=, 当()0,1x ∈时,log 0xa a a x -+<,当()1,x ∈+∞时,log 0xa a a x -+>,,1()log ,01x a a a x f x x x ⎧->∴=⎨-<<⎩不等式()2f x ≥,21x a a x ⎧-≥∴⎨>⎩或log 201a x x -≥⎧⎨<<⎩,解得log (2)a x a ≥+或210x a <≤, 故答案为:21(0,][log (2),)a a a ++∞. 【点睛】本题考查分段函数的应用,函数值的求法,考查转化思想以及计算能力.16.16【分析】由通过对数运算得出由此再求的值要注意定义域【详解】∵∴解得∴故答案为:16【点睛】本题主要考查对数的运算还考查了运算求解能力属于基础题解析:16 【分析】由()2lg 2lg lg x y x y -=+,通过对数运算得出4x y =,由此再求2x y的值.要注意定义域. 【详解】∵()2lg 2lg lg x y x y -=+,∴2(2)2000x y xy x y x y ⎧-=⎪->⎪⎨>⎪⎪>⎩,解得4x y =,∴42216x y==.故答案为:16 【点睛】本题主要考查对数的运算,还考查了运算求解能力,属于基础题.17.【分析】根据指数幂运算法则和对数运算法则化简可得【详解】故答案为:【点睛】此题考查指数对数的综合运算关键在于熟练掌握运算法则和相关公式准确化简求值解析:32【分析】根据指数幂运算法则和对数运算法则化简可得. 【详解】72log 2338log 2lg 5lg 47-+++()732log 232332log 32lg52lg 27=-++++34222=-+++32=故答案为:32【点睛】此题考查指数对数的综合运算,关键在于熟练掌握运算法则和相关公式,准确化简求值.18.【分析】根据指数与对数之间的关系求出利用对数的换底公式即可求得答案【详解】∵∴∴∴故答案为:【点睛】本题考查了指数与对数之间的关系掌握对数换底公式:是解本题的关键属于基础题解析:13【分析】根据指数与对数之间的关系,求出,x y ,利用对数的换底公式,即可求得答案. 【详解】∵12512.51000x y ==, ∴12512.51000100011log 1000,log 1000log 125log 12.5x y ====,∴1000100011log 125,log 12.5x y ==, ∴1000111log 103x y -==. 故答案为:13. 【点睛】本题考查了指数与对数之间的关系.掌握对数换底公式:log log log c a c bb a=是解本题的关键.属于基础题.19.②③④【分析】①根据图象的平移规律直接判断选项;②根据指对函数的对称性直接判断;③根据指数函数的图象特点判断选项;④先求的范围再和0比较大小【详解】①根据平移规律可知的图象向右平移1个单位得到的图象解析:②③④ 【分析】①根据图象的平移规律,直接判断选项;②根据指对函数的对称性,直接判断;③根据指数函数的图象特点,判断选项;④先求22x x -+的范围,再和0比较大小. 【详解】①根据平移规律可知xy e =的图象向右平移1个单位得到1x y e-=的图象,所以①不正确;②根据两个函数的对称性可知函数()xf x e =与()g x lnx =的图象关于直线y =x 对称,正确;③如下图,设1a >,122x xf +⎛⎫ ⎪⎝⎭对应的是曲线上横坐标为122x x +的点C 的纵坐标,()()122f x f x +是线段AB 的中点D 的纵坐标,由图象可知()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,同理,当01a <<时,结论一样,故③正确;④2217721244x x x ⎛⎫-+=-+≥> ⎪⎝⎭根据函数的单调性可知()222log 2log 10x x -+>=,所以函数()22log (2)f x x x =-+的图象恒在x 轴上方,故④正确. 故答案为:②③④ 【点睛】思路点睛:1.图象平移规律是“左+右-”,相对于自变量x 来说,2.本题不易判断的就是③,首先理解122x x f +⎛⎫⎪⎝⎭和()()122f x f x +的意义,再结合图象判断正误. 20.【分析】利用换底公式化简即可【详解】设则故故答案为:【点睛】本题主要考查了指对数的互化以及换底公式的运用属于中档题 解析:nm【分析】利用换底公式化简即可. 【详解】设()34,0m na m n ==≠,则34log ,log m a n a ==,故344341log 3log log log 31log 4log log a a a a na m a====. 故答案为:n m【点睛】本题主要考查了指对数的互化以及换底公式的运用,属于中档题.三、解答题21.(1)3-2)1. 【分析】(1)求出x y -的值,再化简11221122x y x y-+即得解;(2)利用对数的运算法则化简求解. 【详解】(1)因为222()()41249108x y x y xy -=+-=-⨯=,又x y <,所以x y -=-所以1111222221122()3x y x y x y x y--====--+. (2)原式22(lg 2)lg5(1lg 2)(lg 2)lg5lg 2lg5=+⋅+=+⋅+lg2(lg2lg5)lg5lg2lg51=++=+=.【点睛】关键点点睛:解答指数对数运算题的关键是通过观察式子的特点,再熟练利用指数对数的运算法则和性质求解.22.(1)2-;(2)当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭,当01a <<时;()210,,a a ⎛⎫+∞⎪⎝⎭(3)(31,2⎫⎤⎪⎦⎪⎣⎭.【分析】(1)将2a =直接代入解析式计算即可.(2)将()2()log log 20a a f x x x =-->整理为()()log 2log 10a a x x -+>,解得log 1<-a x 或log 2a x >,再对a 讨论即可解不等式.(3)将问题转化为min ()4f x ≥,分别分1a >和01a <<讨论,求()f x 最小值,令其大于4,即可求解.【详解】(1)当2a =时,()()222log log 2f x x x =--()21122f ∴=--=-(2)由()0f x >得:()()()2log log 2log 2log 10a a a a x x x x --=-+>log 1a x ∴<-或log 2a x >当1a >时,解不等式可得:10x a <<或2x a > 当01a <<时,解不等式可得:1x a>或20x a <<综上所述:当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭;当01a <<时,()0f x >的解集为()210,,aa ⎛⎫+∞ ⎪⎝⎭(3)由()4f x ≥得:()()()2log log 6log 3log 20a a a a x x x x --=-+≥log 2a x ∴≤-或log 3a x ≥①当1a >时,()max log log 4a a x =,()min log log 2a a x =2log 42loga a a -∴≤-=或3log 23log a a a ≥=,解得:1a <≤②当01a <<时,()max log log 2a a x =,()min log log 4a a x =2log 22log a a a -∴≤-=或3log 43log a a a ≥=,解得:12a ≤<综上所述:a 的取值范围为(3,11,22⎫⎤⎪⎦⎪⎣⎭【点睛】本题主要考查了复合函数的单调性、考查函数的最值和恒成立问题、考查分类讨论的思想,属于中档题.23.(1)()(),12,-∞⋃+∞;(2)[]9,0-;(3)[]1,1-,[)3,+∞. 【分析】(1)解不等式2320x x -+>可求得函数()22log 32y x x =-+的定义域;(2)利用二次函数的基本性质可求得函数221y x x =-+-,[]2,2x ∈-的值域;(3)将函数223y x x =--的解析式表示为分段函数,利用二次函数的基本性质可求得原函数的单调递增区间. 【详解】(1)对于函数()22log 32y x x =-+,有2320x x -+>,解得1x <或2x >. 因此,函数()22log 32y x x =-+的定义域为()(),12,-∞⋃+∞;(2)当[]2,2x ∈-时,()[]222119,0y x x x =-+-=--∈-,因此,函数221y x x =-+-,[]2,2x ∈-的值域为[]9,0-;(3)解不等式2230x x -->,解得1x <-或3x >,所以,222223,12323,1323,3x x x y x x x x x x x x ⎧--<-⎪=--=-++-≤≤⎨⎪-->⎩.二次函数223y x x =--的图象开口向上,对称轴为直线1x =. 当1x <-时,函数223y x x =--单调递减;当13x -≤≤时,函数2y x 2x 3=-++在区间[]1,1-上单调递增,在区间[]1,3上单调递减;当3x >时,函数223y x x =--单调递增.综上所述,函数223y x x =--的单调递增区间为[]1,1-,[)3,+∞.【点睛】本题考查与二次函数相关问题的求解,考查了对数型复合函数的定义域、二次函数的值域以及含绝对值的二次函数单调区间的求解,考查计算能力,属于中等题. 24.(1)见解析;(2)见解析;(3)[]4,5 【分析】 (1)由不等式101x x +>-即可求出()f x 的定义域; (2)证明()()f x f x -=-可得()f x 为奇函数;(3)先求出()f x 在[]3,7上的值域,令()t f x =,求()14h t t t=+的值域. 【详解】 (1)由101x x +>-得:1x >或1x <-, ()f x ∴的定义域为()(),11,-∞-+∞;(2)()()222111log log log 111x x x f x f x x x x -+-+-===-=---+-, ()f x ∴为奇函数;(3)()22log 11f x x ⎛⎫=+ ⎪-⎝⎭在[]3,7上单调递减,令()t f x =,则24log ,13t ⎡⎤∈⎢⎥⎣⎦, 而()14h t t t=+在10,2⎛⎤ ⎥⎝⎦单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,又()2411log 15,4342h h h h ⎛⎫⎛⎫⎛⎫<=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴函数()h x 在[]3,7内的值域为[]4,5.【点睛】本题主要考查了对数型函数的定义域,奇偶性,考查了复合函数的单调性,值域求解,属于中档题.25.(1) 2a =-,()2121x x f x -=+;(2) 212log 3x =+或212log 3x =-【分析】(1)根据奇函数(0)0f =求解a ,再根据奇函数的性质求解()f x 的解析式即可.(2)根据(1)可得()2121x x f x -=+为奇函数,可先求解4|()|5f t =的根,再求解4|(1)|5f x -=即可.【详解】(1)因为()f x 是定义在R 上的奇函数,且当0x ≥时,()121xaf x =++,故0(0)1021a f =+=+,即102a +=,解得2a =-.故当0x ≥时,()22112121xx x f x -=-=++. 所以当0x < 时, ()()211221211221x x x x xxf x f x -----=--=-=-=+++. 故()2121x x f x -=+(2) 先求解4|()|5f t =,此时()214215t t f t -==±+.当()()214421521215t t t t -=⇒+=-+,即29t =解得22log 92log 3t ==. 因为()2121x x f x -=+为奇函数,故当214215t t -=-+时, 22log 3t =-.故4|(1)|5f x -=的解为212log 3x -=或212log 3x -=-, 解得212log 3x =+或212log 3x =- 【点睛】本题主要考查了根据奇函数求解参数的值以及解析式的方法,同时也考查了根据函数性质求解绝对值方程的问题,属于中档题. 26.(Ⅰ)114455log 10,log 8⎡⎤⎢⎥⎣⎦(Ⅱ)3,10⎡⎫+∞⎪⎢⎣⎭【分析】(Ⅰ)把1m =代入,可得()122()log 238f x x x =-+,令2238y x x =-+,求出其在1[,2]2上的值域,利用对数函数的单调性即可求解. (Ⅱ)根据对数函数的单调性可得2()238g x mx x m =-+在(4,)+∞上单调递增,再利用二次函数的图像与性质可得0,34,4(4)0,m m g >⎧⎪⎪≤⎨⎪≥⎪⎩解不等式组即可求解. 【详解】(Ⅰ)当1m =时,()122()log 238f x x x =-+, 此时函数()f x 的定义域为1,22⎡⎤⎢⎥⎣⎦.因为函数2238y x x =-+的最小值为242835588⨯⨯-=. 最大值为22232810⨯-⨯+=,故函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的值域为114455log 10,log 8⎡⎤⎢⎥⎣⎦;(Ⅱ)因为函数14log y x =在(0,)+∞上单调递减,故2()238g x mx x m =-+在(4,)+∞上单调递增,则0,34,4(4)0,m m g >⎧⎪⎪≤⎨⎪≥⎪⎩ 解得310m ≥,综上所述,实数m 的取值范围3,10⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题主要考查了利用对数函数的单调性求值域、利用对数型函数的单调区间求参数的取值范围以及二次函数的图像与性质,属于中档题.。
第三章综合测试答案解析一、1.【答案】C【解析】()10f <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>, 21113=log =02424f ⎛⎫+- ⎪⎝⎭,()1102f f ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭. 3.【答案】C 【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C .4.【答案】C【解析】设()()=2x f x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A .6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B .7.【答案】C【解析】α ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b - <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C .9.【答案】A【解析】()()23=15log f x x x --+- 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C 【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C .11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t-+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=e x x f x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln 2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解; 在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,.14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<.15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a .【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x .三、17.【答案】(1)由题意得()50.16010= 1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,> (2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-;当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,;函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,.③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x ≥,所以101e x ⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫ ⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,.(2)由()()=0f x g x -,得3e 2=0e x x --. 当0x ≤时,方程无解;当0x >时,3e 2=0ex x --,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x +-.因为e 0x >,所以e =3x ,即=ln3x .故满足方程()()=0f x g x -的x 的值为ln3. 20.【答案】(1)()08A ,,()46B ,, ∴线段AB 的方程是()1=8042y x x -+≤≤. 将()46B ,,()2010C ,的坐标代入y b +,得b b ⎧⎪⎨+⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤. 综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪+⎪-+⎪⎩,≤≤,,≤≤,,≤≤ (2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9+,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标,时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时. 因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --.可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>, ∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285,符合要求. 故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,. (2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x x f x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x x a a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得 ()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<< 故实数a的取值范围为(13--,.。
第3章 圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .87.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433B.233C .3D .24.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a=________.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.第3章 圆锥曲线的方程单元测试卷(解析版)[时间:120分钟 满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为( )A .4 B .-4C .-14D.14答案 C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为( )A.x 23+y 2=1B.x 23+y 22=1C.x 29+y 28=1D.y 29+x 28=1答案 C解析 因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为( )A .1 B .-1C .1或-1 D .1或-1或0答案 C解析 由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为( )A.52 B.5C.52D .5答案 B解析 由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =c a=5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是( )答案 B解析 方程ax 2-by 2=ab变形为x 2b -y 2a =1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a=1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a=1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a=1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2 B .4C .6 D .8答案 B解析 由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取A (4p ,22),D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是( )A .3 B .2C.3 D.2答案 B解析 如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =c a=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3) B .(1,4)C .(2,3) D .(2,4)答案 D解析 如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0),则{y 12=4x 1,y 22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为( )A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=1(0<θ<π2)D.x 2cos 2θ-y 2sin 2θ=1(0<θ<π2)答案 AD解析 对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=1(0<θ<π2),焦点为(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=1(0<θ<π2),双曲线的右焦点为F (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为( )A.2-1 B.22C.2D.2+1答案 ABD解析 若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca=2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是( )A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案 CD解析 设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取P (142,32),因为PF 1→ ·PF 2→=(-2-142,-32)·(2-142,-32)=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是( )A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案 ABD解析 设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =y x +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以yx +1·yx -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m=1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案 38解析 由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y 24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案 2 255解析 抛物线y 2=2px (p >0)的准线方程为x =-p2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案 0或2或4解析 设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2=(x +c )2+b 2(1-x 2a 2)=a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案 52解析 利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a2-y 2b 2=1的渐近线方程为y =±b ax .由{y =bax ,x -3y +m =0,得A(am 3b -a ,bm3b -a).由{y =-bax ,x -3y +m =0,得B (-am a +3b ,bma +3b).所以AB 的中点C 的坐标为(a 2m9b 2-a 2,3b 2m 9b 2-a 2).设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a=52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析 如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|), 即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2).联立{x 2+y 24=1,y =kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2kk 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析 设A (x 1,y 1),B (x 2,y 2),(1)由{y =x +m ,y 2=8x ,得x 2+(2m -8)x +m 2=0,∴{Δ=(2m -8)2-4m 2>0,x 1+x 2=8-2m ,x 1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析 (1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),由{y =k (x -t ),y =14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,故{y 02=-x 02t +1,x 0t -y 0=0,解得{x 0=2t 1+t 2,y 0=2t 21+t 2.因此,点B 的坐标为(2t 1+t 2,2t 21+t 2).(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA → ·MB →取得最大值时,求△MAB 的面积.解析 (1)由已知a =2,ca =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA → ·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).由{x =ty +1,x 24+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA → ·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2tt 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA → ·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA → ·MB →的最大值为152.联立{x =1,x 24+y 22=1,解得{x =1,y =62或{x =1,y =-62,不妨令A (1,62),B (1,-62),∴|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析 (1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),由{y =kx +m ,x 22+y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk 1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→ ·B A 2→=0.又AA 2→ =(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =k (x -23),过定点(23,0).综上,直线l 过定点(23,0).1.过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A.(14,94)B.(23,1)C.(12,23)D.(0,12)答案 C解析 由题意知B (c ,b 2a ),∴k =b 2ac +a =a -c a=1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b=1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是( )A .m -a B.12(m -a )C .m 2-a 2D.m -a答案 A解析 不妨取P 在双曲线的右支上,则{|PF 1|+|PF 2|=2m ,|PF 1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为( )A.433 B.233C .3 D .2答案 A解析 利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.由{r 1+r 2=2a 1,r 1-r 2=2a 2,得{r 1=a 1+a 2,r 2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r2=41+(r 2r 1)2-r2r 1=4(r 2r 1-12)2 +34,当r 2r 1=12时,m max =163,∴(r 1c )max =433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案 D解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A =2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为( )A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1D.x 22-y 24=1答案 AB解析 因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab=2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c =3.又c 2=a 2+b 2=3,所以{a =2,b =1或{a =1,b =2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是( )A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案 BD解析 ∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则P (-c ,b 2a),∵k PO =kA 2B 1,∴b 2a-c =b-a ,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则( )A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案 BD解析 mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案 2+1思路分析 根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析 ∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴C (a2,-a ),F (a2+b ,b ).又∵点C ,F 在抛物线y 2=2px (p >0)上,∴{a 2=pa ,b 2=2p (a 2+b ),解得ba=2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案 x 2+32y 2=1思路分析 根据题意,求出点B 的坐标代入椭圆方程求解.解析 设点B 的坐标为(x 0,y 0).∵x 2+y 2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→ =3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B 的坐标为(-51-b 23,-b 23).将B (-51-b 23,-b 23)代入x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案 ±1解析 设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2).由{y 2=4x ,y =k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即Q (-1+2k 2,2k).又|FQ |=2,F (1,0),∴(-1+2k 2-1)2 +(2k)2=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析 方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M点坐标为(c ,23b ).在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设M (c ,23b ),代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析 (1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),联立{y =k (x -1),y 2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3=k(x 1+x 22-1)=-2kk2=-2k.即直线PE 的方程为y +2k =-1k (x -k 2-2k 2).令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC → ·DB → +AD → ·CB →=8,求k 的值.解析 (1)设F (-c ,0),由ca=33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b3.于是26b 3=433,解得b =2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组{y =k (x +1),x 23+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k 2.因为A (-3,0),B (3,0),所以AC → ·DB → +AD → ·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k 2.由已知得6+2k 2+122+3k 2=8,解得k =±2.14.已知抛物线C 的顶点在原点O ,焦点与椭圆x 225+y 29=1的右焦点重合.(1)求抛物线C 的方程;(2)在抛物线C 的对称轴上是否存在定点M ,使过点M 的动直线与抛物线C 相交于P ,Q 两点时,有∠POQ =π2.若存在,求出M 的坐标;若不存在,请说明理由.解析 (1)椭圆x 225+y 29=1的右焦点为(4,0),所以抛物线C 的方程为y 2=16x .(2)设点M (a ,0)(a ≠0)满足题设,当PQ 的斜率存在时,PQ 的方程为y =k (x -a ),则联立{y 2=16x ,y =k (x -a )⇒k 2x 2-2(ak 2+8)x +a 2k 2=0,则x 1+x 2=2(ak 2+8)k 2,x 1x 2=a 2.设P (x 1,y 1),Q (x 2,y 2),则由∠POQ =π2,得x 1x 2+y 1y 2=0.从而x 1x 2+k 2(x 1-a )(x 2-a )=0⇒a 2-16a =0⇒a =16,若PQ 的方程为x =a ,代入抛物线方程得y =±4a ,当∠POQ =π2时,a =4a ,即a =16,所以存在满足条件的点M (16,0).15.如图所示,已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为其长、短轴的一个端点,F 1,F 2分别是其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且AB → 与OM→是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围.解析 (1)设M (x M ,y M ),∵F 1(-c ,0),∴x M =-c ,y M =b 2a ,∴k OM =-b 2ac .由题意知k AB =-b a,∵OM → 与AB →是共线向量,∴-b 2ac =-ba,∴b =c ,∴a =2c ,∴e =22.(2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,则r 1+r 2=2a .又|F 1F 2|=2c ,∴由余弦定理,得cos θ=r 12+r 22-4c 22r 1r 2=(r 1+r 2)2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2(r 1+r 22)2-1=0,当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈(0,π2]..。
一、选择题1.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<2.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<3.设函数21,2()7,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1304.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭5.已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52- B .32- C .32D .526.已知函数(1)f x +为偶函数,()f x 在区间[1,)+∞上单调递增,则满足不等式(21)(3)f x f x ->的x 的解集是( )A .31,5⎛⎫- ⎪⎝⎭B .3(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭D .11,5⎛⎫- ⎪⎝⎭7.设函数()f x 的定义域为R ,()()112f x f x +=,当(]0,1x ∈时,()()1f x x x =-.若存在[),x m ∈+∞,使得()364f x =有解,则实数m 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .3,2⎛⎤-∞ ⎥⎝⎦C .9,4⎛⎤-∞ ⎥⎝⎦D .11,4⎛⎤-∞ ⎥⎝⎦8.已知函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数,且11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦,则(1)f 的值为( ) A .1B .2C .3D .49.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-⋃+∞10.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-111.函数f (x )的值域为( ) A .[-43,43] B .[-43,0] C .[0,1]D .[0,43] 12.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341D .412313.已知函数1212log ,18()2,12x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,若()()()f a f b a b =<,则b a -的取值范围为( ) A .30,2⎛⎤ ⎥⎝⎦B .70,4⎛⎤ ⎥⎝⎦C .90,8⎛⎤ ⎥⎝⎦D .150,8⎛⎤⎥⎝⎦14.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则()()()()2132020f f f f +++=( )A .50B .0C .2D .-2018 15.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( )A .2x y =B .2yx C .2log y x =D .21y x =+二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.18.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________19.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.20.已知函数2()2f x x x =-,()2(0)g x ax a =+>,若对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,则实数a 的取值范围是_____.21.函数()21log f x x=-___________.22.以下结论正确的是____________(1)如果函数()y f x =在区间(,)a b 上是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点;(2)命题:0,1xp x e ∀>>都有,则00:0,1x p x e⌝∃≤≤使得;(3)空集是任何集合的真子集; (4)“a b >”是“22a b >的充分不必要条件” (5)已知函数(23)43,1(),1xa x a x f x a x +-+≥⎧=⎨<⎩在定义域上是增函数,则实数a 的取值范围是(1,2]23.设f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +2x +m ,则f (﹣1)=_______. 24.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___. 25.定义在()0,∞+上的函数()f x ,满足对于任意正实数x ,y 恒有()()()f xy f x f y =+,且()31f =,如果对任意的1x ,()20,x ∈+∞,当12x x ≠时,都有()()()12120x x f x f x -⋅->⎡⎤⎣⎦,则不等式()()82f x f x +-<的解集是_________.26.已知定义在R 上的偶函数满足:(4)()(2)f x f x f +=+,且当[0,2]x ∈时,()y f x =单调递减,给出以下四个命题:①(2)0f =;②4x =-为函数()y f x =图象的一条对称轴; ③()y f x =在[8,10]单调递增;④若方程()f x m =在[6,2]--上的两根为1x 、2x ,则128.x x +=- 以上命题中所有正确命题的序号为___________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果. 【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.2.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 3.D解析:D【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.4.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.5.C解析:C【分析】根据函数为奇函数可知1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,然后根据0x >时()f x 的解析式可求解出12f ⎛⎫⎪⎝⎭的值,则12f ⎛⎫- ⎪⎝⎭的值可求. 【详解】因为()f x 为奇函数,所以1122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, 又因为1132222f ⎛⎫=-=- ⎪⎝⎭,所以113222f f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, 故选:C. 【点睛】关键点点睛:解答本题的关键是利用奇偶性的定义将计算12f ⎛⎫- ⎪⎝⎭的值转化为计算12f ⎛⎫⎪⎝⎭的值,从而根据已知条件完成求解.6.A解析:A 【分析】根据题意,分析可得()f x 的图象关于直线1x =对称,结合函数的单调性可得(21)(3)f x f x ->等价于|22||31|x x ->-,两边平方解得x 的取值范围,即可得答案.【详解】因为函数(1)f x +为偶函数,所以(1)y f x =+的图象关于直线0x =对称, 因为(1)y f x =+的图象向右平移1个单位得到()y f x =的图象, 则()y f x =的图象关于直线1x =对称, 又因为()f x 在区间[1,)+∞上单调递增, 所以()f x 在区间(],1-∞上单调递减,所以()f x 的函数值越大,自变量与1的距离越大, ()f x 的函数值越小,自变量与1的距离越小,所以不等式(21)(3)f x f x ->等价于|22||31|x x ->-, 两边平方()()()()2222315310x x x x ->-⇒-+<, 解得315x -<<, 即不等式的解集为31,5⎛⎫- ⎪⎝⎭. 故选:A . 【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.7.D解析:D 【分析】 根据()()112f x f x +=,可知()()112f x f x =-,可得函数解析式并画出函数图象,由图象可得m 的取值范围. 【详解】 根据()()112f x f x +=,可知()()112f x f x =-, 又当(]0,1x ∈时,()()110,4f x x x ⎡⎤=-∈⎢⎥⎣⎦,所以(]1,2x ∈时,(]10,1x -∈,()()111(1)(1)20,228f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]2,3x ∈时,(]11,2x -∈,()()111(1)(2)30,4416f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦, (]3,4x ∈时,(]12,3x -∈,()()111(1)(3)40,2832f x f x x x ⎡⎤=-=--∈⎢⎥⎣⎦,即3()64f x <恒成立, 可画出函数图象,当(]2,3x ∈时,13(2)(3)464x x --=,解得94x =或114x =, 故若存在[),x m ∈+∞,使得()364f x =有解,则实数114m ≤,故选:D.8.A解析:A 【分析】采用赋值法,在11()()2f x f f x x ⎡⎤+=⎢⎥⎣⎦中,分别令1x =和1x a =+,联立两个式子,根据函数的单调性可解. 【详解】解:根据题意知,设(1)0f a =≠, 令1x =,则[]1(1)(1)12f f f +=,则()112af a +=,()112f a a+=, 令1x a =+,则11(1))21(1f a f f a a ⎡⎤+++=⎢⎥⎣⎦+, 所以()11121f a f a a ⎛⎫+== ⎪+⎝⎭, 又因为函数()f x 是定义在1,2⎛⎫+∞ ⎪⎝⎭上的单调函数, 所以11121a a +=+,2210a a --=,所以1a =或12a =-(舍去),()11f =.故选:A. 【点睛】思路点睛:抽象函数求函数值问题一般是换元法或者赋值法,再结合函数的性质解方程即可.9.C解析:C 【分析】先求得()f x 的值域,根据题意可得()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,分0,0a a ><两种情况讨论,根据()g x 的单调性及集合的包含关系,即可求得答案.【详解】因为2()(2)2,[0,2]f x x x =--+∈,所以min max ()(0)1()(2)2f x f f x f ==⎧⎨==⎩,即()f x 的值域为[1,2],因为对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,所以()f x 的值域为[1,2]是()g x 在[1,1]-上值域的子集,当0a >时,()g x 在[1,1]-上为增函数,所以(1)()(1)g g x g -≤≤,所以()[1,1]g x a a ∈---,所以1112a a --≤⎧⎨-≥⎩,解得3a ≥,当0a <时,()g x 在[1,1]-上为减函数,所以(1)()(1)g g x g ≤≤-,所以()[1,1]g x a a ∈---所以1112a a -≤⎧⎨--≥⎩,解得3a ≤-,综上实数a 的取值范围是(,3][3,)-∞-+∞,故选:C 【点睛】解题的关键是将题干条件转化为两函数值域的包含关系问题,再求解,考查分析理解的能力,属中档题.10.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.11.C解析:C 【解析】令cos ,[0,π]x θθ=∈,则sin 1()()cos 2f xg θθθ-==-的几何意义是单位圆(在x 轴及其上方)上的动点(cos ,sin )M θθ与点(2,1)A 连线的斜率k ,由图象,得01k ≤≤,即函数()f x 的值域为[0,1],故选C.点睛:本题考查利用三角代换、直线的斜率公式求函数的值域,解决本题的关键有两个,21x -sin 1cos 2θθ--的形式联想到过两点的直线的斜率公式,充分体现了代数、三角函数、解析几何间的有机结合.12.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.13.B解析:B 【分析】根据分段函数的单调性以及()()()f a f b a b =<,可得11,128a b ≤<≤≤且122log 2b a +=,令122log 2b a k +==,则24k <≤,然后用k 表示,a b ,再作差,构造函数,并利用单调性可求得结果. 【详解】因为函数()f x 在1[,1)8上递减,在[1,2]上递增,又()()()f a f b a b =<,所以11,128a b ≤<≤≤,且122log 2b a +=,令122log 2b a k +==,则24k <≤, 所以212k a -⎛⎫= ⎪⎝⎭,2log b k =,所以221log 2k b a k -⎛⎫-=- ⎪⎝⎭,设函数221()log 2x g x x -⎛⎫=- ⎪⎝⎭,(2,4]x ∈,∵()g x 在(]2,4上单调递增, ∴(2)()(4)g g x g <≤,即70()4g x <≤, ∴70,4b a ⎛⎤-∈ ⎥⎝⎦,故选:B . 【点睛】关键点点睛:根据分段函数的单调性以及()()()f a f b a b =<得到11,128a b ≤<≤≤,且122log 2b a +=是解题关键.属于中档题.14.B解析:B 【分析】由奇函数和(1)(1)f x f x +=-得出函数为周期函数,周期为4,然后计算出(3),(2),(4)f f f 后可得结论.【详解】由函数()f x 是定义域为(,)-∞+∞的奇函数,所以()()f x f x =--,且(0)0f =, 又由(1)(1)f x f x -=+,即(2)()()f x f x f x +=-=-,进而可得()(4)f x f x =+,所以函数()f x 是以4为周期的周期函数,又由(1)2f =,可得(3)(1)(1)2f f f =-=-=-,(2)(0)0f f ==,(4)(0)0f f ==, 则(1)(2)(3)(4)0f f f f +++=, 所以(1)(2)(3)(2020)505[(1)(2)(3)(4)]0f f f f f f f f ++++=⨯+++=.故选:B . 【点睛】关键点睛:本题考查利用函数的周期性求函数值,解决本题的关键是由函数是奇函数以及(1)(1)f x f x -=+得出函数是周期为4的周期函数,进而可求出结果.15.D解析:D【解析】根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T=,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,所以()f x 在[0,2]上单调递减,而()10f =, 由偶函数得当(1,1)x ∈-时,()0f x >; 又()()()4f x f x f x +=-=可得周期4T =,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >; 于是()0f x >的解集为(2019,2021). 故答案为:(2019,2021) 【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解.18.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立,即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦. 故答案为:31,22⎡⎤-⎢⎥⎣⎦.【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.19.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩.【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可. 【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+, 又因为函数()f x 是定义域为R 的奇函数, 所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值; (2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.20.【分析】由题可知在区间上函数的值域为值域的子集从而求出实数的取值范围【详解】函数的图象开口向上对称轴为时的最小值为最大值为的值域为为一次项系数为正的一次函数在上单调递增时的最小值为最大值为的值域为对 解析:[3,)+∞【分析】由题可知,在区间[]1,2-上函数1()f x 的值域为2()g x 值域的子集,从而求出实数a 的取值范围. 【详解】函数()22f x x x =-的图象开口向上,对称轴为1x =,∴[]11,2x ∈-时,()f x 的最小值为(1)1f =-,最大值为(1)3f -=,1()f x 的值域为[1,3]-.()2(0)g x ax a =+>为一次项系数为正的一次函数,在[]1,2-上单调递增,∴[]11,2x ∈-时,()g x 的最小值为(1)2g a -=-+,最大值为(2)22g a =+,2()g x 的值域为[2,22]a a -++.对任意1[1,2]x ∈-,总存在2[1,2]x ∈-,使得()()12f x g x =,∴在区间[]1,2-上,函数1()f x 的值域为2()g x 值域的子集,∴212230a a a -+≤-⎧⎪+≥⎨⎪>⎩解得3a ≥ 故答案为:[3,)+∞. 【点睛】本题考查函数的值域,考查分析解决问题的能力,解题的关键是对“任意”、“存在”的正确理解,确定两个函数值域之间的关系.21.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题 解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可. 【详解】 因为()f x =所以21log 00x x ->⎧⎨>⎩,即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2), 故答案为:(0,2) 【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.22.(1)(5)【分析】利用零点存在定理可判断命题(1)的正误根据全称命题的否定可判断命题(2)的正误根据集合的包含关系可判断命题(3)的正误根据充分必要条件可判断命题(4)的正误根据函数的单调性求出参解析:(1)(5). 【分析】利用零点存在定理可判断命题(1)的正误,根据全称命题的否定可判断命题(2)的正误,根据集合的包含关系可判断命题(3)的正误,根据充分必要条件可判断命题(4)的正误,根据函数()y f x =的单调性求出参数a 的取值范围,可判断出命题(5)的正误. 【详解】对于命题(1),由零点存在定理可知,该命题正确;对于命题(2),由全称命题的否定可知,该命题不正确,应该是00:0,1x p x e ⌝∃>≤使得;;对于命题(3),空集是任何非空集合的真子集,但不是空集本身的真子集,该命题错误; 对于命题(4),取2a =,3b =-,则a b >,但22a b <,所以,“a b >”不是“22a b >”的充分不必要条件,该命题错误;对于命题(5),由于函数()y f x =在R 上是增函数,则()1230123143a a a a a ⎧+>⎪>⎨⎪≤+⨯-+⎩,解得12a <≤,该命题正确. 故答案为(1)(2)(5). 【点睛】本题考查命题真假的判断,考查零点存在定理、全称命题的否定、集合的包含关系、充分不必要条件的判断以及分段函数单调性,解题时应充分利用这些基础知识,意在考查学生对这些基础知识的掌握,属于中等题.23.【分析】由函数是上的奇函数求得得到当时函数再由即可求解【详解】由题意因为函数是上的奇函数则解得即当时函数又由故答案为:【点睛】本题主要考查了函数的奇偶性的应用以及函数值的求解其中解答中熟练应用函数的 解析:3-【分析】由函数()f x 是R 上的奇函数,求得1m =-,得到当0x ≥时,函数()221x f x x =+-,再由()()11f f -=-,即可求解. 【详解】由题意,因为函数()f x 是R 上的奇函数,则()002200f m =+⨯+=,解得1m =-,即当0x ≥时,函数()221xf x x =+-,又由()()111(2211)3f f -=-=-+⨯-=-.故答案为:3-. 【点睛】本题主要考查了函数的奇偶性的应用,以及函数值的求解,其中解答中熟练应用函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.24.-1【解析】试题解析:-1 【解析】 试题因为2()y f x x =+是奇函数且(1)1f =,所以,则,所以.考点:函数的奇偶性.25.【分析】由对任意的当时都有可知该函数是单调增函数再结合定义域且将转化为两函数值的大小比较问题最终列出关于的不等式求解【详解】解:因为对于任意正实数恒有且可化为:因为对任意的当时都有故在上单调递增所以 解析:()8,9【分析】由“对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->”可知该函数是单调增函数,再结合“定义域、()()()f xy f x f y =+,且(3)1f =,将()(8)2f x f x +-<转化为两函数值的大小比较问题,最终列出关于x 的不等式求解.【详解】解:因为对于任意正实数x ,y 恒有()()()f xy f x f y =+,且(3)1f =, ()(8)2f x f x +-<可化为:[(8)](3)(3)(9)f x x f f f -<+=.因为对任意的1x ,2(0,)x ∈+∞,当12x x ≠时,都有1212()[()()]0x x f x f x -->,故()f x 在(0,)+∞上单调递增,所以080(8)9x x x x >⎧⎪->⎨⎪-<⎩,解得89x <<.故答案为:(8,9). 【点睛】本题考查抽象函数的性质,此例主要是利用单调性研究不等式问题的解,属于中档题.26.①②④【分析】先求出从而得到为周期函数再根据函数为偶函数可逐项判断命题的正误【详解】令得故又函数是偶函数故;根据①可得则函数的周期是4由于偶函数的图象关于轴对称故也是函数图象的一条对称轴;根据函数的解析:①②④ 【分析】先求出()20f =,从而得到()f x 为周期函数,再根据函数为偶函数可逐项判断命题的正误. 【详解】令2x =-,得()()()222f f f =-+,故()20f =. 又函数()f x 是偶函数,故()20f =;根据①可得()()4f x f x +=,则函数()f x 的周期是4,由于偶函数的图象关于y 轴对称,故4x =-也是函数()y f x =图象的一条对称轴; 根据函数的周期性可知,函数()f x 在[]8,10上单调递减,③不正确; 由于函数()f x 的图象关于直线4x =-对称,故如果方程()f x m =在区间[]6,2-- [-6,-2]上的两根为12,x x ,则1242x x +=-,即128x x +=-.故正确命题的序号为①②④. 故答案为:①②④.. 【点睛】本题考查函数的奇偶性、周期性和单调性,注意偶函数在对称两侧区间上的单调性相反,具有周期性的偶函数的图象的对称轴有无数条,本题属于基础题.。
一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2- B .ln 2C .0D .12.已知函数()1f x +是偶函数,当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=- ⎪⎝⎭,()2b f =,()3c f =,则a 、b 、c 的大小关系为( ) A .b a c << B .c b a << C .b c a <<D .a b c <<3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<-D .(4)(0)(4)f f f <<-5.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-16.函数()21x f x x-=的图象大致为( )A .B .C .D .7.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x ⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭8.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来分析函数的图像的特征,如函数()1sin 2f x x x =-的图像大致是( ) A . B .C .D .9.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( )A .12B .1-C .±1D .12±10.已知函数2log (1),1,()1,1,x x f x x +≥⎧=⎨<⎩则满足(21)(31)f x f x +<-的实数x 的取值范围是( ) A .2,3⎛⎫+∞⎪⎝⎭B .(2,)+∞C .2,23⎛⎫⎪⎝⎭D .()1,211.已知()f x 是R 上的奇函数,且对x ∈R ,有()()2f x f x +=-,当()0,1x ∈时,()21x f x =-,则()2log 41f =( )A .40B .2516C .2341 D .412312.已知函数()||f x x x =,当[,2]x t t ∈+时,恒有不等式(2)4()f x t f x +>成立,则实数t 的取值范围是( ) A .(2,)+∞B .[2,)+∞C .(,2)-∞D .(,2]-∞13.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C .(,3⎤-∞⎦D .)3,⎡+∞⎣14.下列各组函数表示同一函数的是( ) A .2()f x x =与2()()f x x =B .,0(),0x x f x x x ≥⎧=⎨-<⎩与()||g t t =C .()21f x x =-与()11g x x x =+⋅- D .()1f x x 与2()1x g x x=-15.下列函数中,在[)1,+∞上为增函数的是 A .()22y x =-B .1y x =-C .11y x =+ D .()21y x =-+二、填空题16.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.17.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________. 18.函数24xy x =+的严格增区间是_____________. 19.对于正整数k ,设函数[][]()k f x kx k x =-,其中[]a 表示不超过a 的最大整数,设24()()()g x f x f x =+,则()g x 的值域为_________.20.已知函数()f x 是定义域为R 的奇函数,当0x ≥时,()()1f x x x =-.(1)在坐标系中画出函数()f x 在R 上的完整图象; (2)求函数()f x 在R 上的解析式.21.函数()f x =___________.22.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.23.以下结论正确的是____________(1)如果函数()y f x =在区间(,)a b 上是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么,函数()y f x =在区间(,)a b 内有零点;(2)命题:0,1xp x e ∀>>都有,则00:0,1x p x e⌝∃≤≤使得;(3)空集是任何集合的真子集; (4)“a b >”是“22a b >的充分不必要条件”(5)已知函数(23)43,1(),1xa x a x f x a x +-+≥⎧=⎨<⎩在定义域上是增函数,则实数a 的取值范围是(1,2]24.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.25.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.26.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.A解析:A 【分析】推导出函数()f x 为()1,+∞上的增函数,且有()()11f x f x +=-,可得出52a f ⎛⎫= ⎪⎝⎭,进而可得出a 、b 、c 的大小关系. 【详解】当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数, 由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 【点睛】 思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.C解析:C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【详解】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.5.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.6.D解析:D【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.7.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=, 可得11()(2)(4)24f x f x f x =+=+ 当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.A解析:A 【分析】由判断函数()f x 的奇偶性以及利用导数得出区间0,3π⎛⎫⎪⎝⎭的单调性即可判断. 【详解】()()()111sin sin sin ()222f x x x x x x x f x ⎛⎫-=---=-+=--=- ⎪⎝⎭则函数()f x 在R 上为奇函数,故排除B 、D.()1cos 2f x x '=-,当0,3xπ⎛⎫∈ ⎪⎝⎭时,1cos 2x >,即0fx所以函数()f x 在区间0,3π⎛⎫⎪⎝⎭上单调递减,故排除C 故选:A 【点睛】本题主要考查了函数图像的识别,属于中档题.9.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10.B解析:B 【分析】根据函数的解析式,得出函数的单调性,把不等式(21)(32)f x f x +<-,转化为相应的不等式组,即可求解. 【详解】由题意,函数2log (1),1()1,1x x f x x +≥⎧=⎨<⎩,可得当1x <时,()1f x =,当1≥x 时,函数()f x 在[1,)+∞单调递增,且()21log 21f ==,要使得()()2131f x f x +<-,则2131311x x x +<-⎧⎨->⎩,解得2x >, 即不等式()()2131f x f x +<-的解集为()2,+∞, 故选:B. 【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下: (1)根据函数的解析式,得出函数单调性; (2)合理利用函数的单调性,得出不等式组; (3)正确求解不等式组,得到结果.11.C解析:C 【分析】由已知得(4)()f x f x +=,由对数函数性质估计出2log 41(5,6)∈,然后利用已知条件把自变量变小为2log 416(1,0)-∈-,再由奇函数定义可求得函数值. 【详解】25log 416<<,()()()()()2222f x f x f x f x f x +=-⇒++=-+=⎡⎤⎣⎦,故()()()()2222log 41log 414log 4166log 41f f f f =-=--=-.∵()26log 410,1-∈,故()26log 41264236log 412114141f --=-=-=. 故选:C . 【点睛】本题考查求函数值,方法是由已知条件得出函数的周期性,利用周期性和已知等式把函数自变量变小到(1,0)-上,然后由奇函数定义变到(0,1)上,从而由已知解析式求得函数值.12.A解析:A 【分析】根据已知函数的解析式易判断出函数的奇偶性及单调性,结合单调性可将不等式(2)4()f x t f x +>可化为22x t x +>,将恒成立问题转化为最值问题后,易得答案.【详解】 解:||y x =为偶函数,y x =为奇函数 ()||f x x x ∴=奇函数当0x 时,2()f x x =为增函数,由奇函数在对称区间上单调性相同可得函数()f x 在R 上增函数 又不等式(2)4()f x t f x +>可化为(2)|2|4||2|2|(2)x t x t x x x x f x ++>==故当[,2]x t t ∈+时,不等式(2)4()f x t f x +>恒成立,即当[,2]x t t ∈+时,不等式22x t x +>恒成立即2x t <恒成立即22t t +<解得2t >故实数t 的取值范围是(2,)+∞故选:A【点睛】本题考查的知识点是函数奇偶性与单调性的综合应用,恒成立问题,其中分析出函数的单调性并将不等式(2)4()f x t f x +>可化为22x t x +>是解答的关键.13.C解析:C【分析】先解()3f t ≤,再由t 的范围求x 的范围.【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤,0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.14.B解析:B【分析】根据同一函数的概念及判定方法,分别求得两函数的定义域与对应法则,逐项判定,即可求解.【详解】对于A 中,函数()f x =R ,函数2()f x =的定义域为[0,)+∞,两函数的定义域不同,所以不是同一函数;对于B 中,函数,0(),0x x f x x x ≥⎧=⎨-<⎩与,0(),0t t g t t t t ≥⎧==⎨-<⎩定义域与对应法则都相同,所以两函数是同一函数;对于C 中,函数()f x =210x -≥,解得1x ≤-或1≥x ,即函数()f x 的定义域为(,1][1,)-∞-+∞,函数()g x =1010x x +≥⎧⎨-≤⎩,解得11x -≤≤,即函数()g x 的定义域为[]1,1-,两函数的定义域不同,所以不是同一函数;对于D 中,函数()1f x x 的定义域为R ,函数2()1x g x x=-的定义域为(,0)(0,)-∞+∞,两函数的定义域不同,所以不是同一函数.故选:B.【点睛】本题主要考查了同一函数的概念及判定,其中解答中熟记两个函数是同一函数的判定方法是解答得关键,着重考查推理与判定能力,属于基础题.15.B解析:B【解析】对于A ,函数()22y x =-的图象是抛物线,对称轴是x =2,当x <2时是减函数,x >2时是增函数,∴不满足题意; 对于B ,函数1,111,1x x y x x x -≥⎧=-=⎨-<⎩,∴当1≥x 时,是增函数,x <1时,是减函数,∴满足题意;对于C ,函数11y x =+,当x <−1,x >−1时,函数是减函数,∴不满足题意; 对于D ,函数()21y x =-+的图象是抛物线,对称轴是x =−1,当x >−1时是减函数,x <−1时是增函数,∴不满足题意;故选B.二、填空题16.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误.【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩, ()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=, 故答案为:9.【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.17.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3- 【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-. 故答案为:(3,0)(1,3)-18.【分析】根据的解析式可得为奇函数当时不妨令x>0设根据对勾函数的性质可求得的单调减区间可得的单调增区间综合分析即可得答案【详解】因为定义域为R 所以即在R 上为奇函数根据奇函数的性质可得在y 轴两侧单调性解析:[]22-,【分析】根据()f x 的解析式,可得()f x 为奇函数,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x=+,根据对勾函数的性质,可求得()g x 的单调减区间,可得()f x 的单调增区间,综合分析,即可得答案.【详解】 因为2()4x y f x x ==+,定义域为R , 所以22()()()44x x f x f x x x ---===--++,即()f x 在R 上为奇函数, 根据奇函数的性质可得,()f x 在y 轴两侧单调性相同,当x =0时,()0y f x ==,当0x ≠时,21()44x f x x x x==++,不妨令x >0,设4()g x x x =+, 根据对勾函数的性质可得,当02x <≤上单调递减,证明如下:在(0,2]上任取12,x x ,且12x x <, 则12121212124444()()()f x f x x x x x x x x x -=+-+=-+-=1212124()x x x x x x ⎛⎫-- ⎪⎝⎭, 因为1202x x <<≤,所以1212120,40,0x x x x x x -<-<>, 所以121212124()()()0x x f x f x x x x x ⎛⎫--=-> ⎪⎝⎭,即12()()f x f x >, 所以4()g x x x=+在(0,2]上为减函数,所以21()44x f x x x x==++在(0,2]上为增函数,当0x +→时,()0f x →,0x -→,()0f x →, 又(0)0f =,所以2()4x f x x =+在[0,2]为增函数 根据奇函数的性质,可得21()44x f x x x x ==++在[2,0)-也为增函数,所以()f x 在 []22-,上为严格增函数, 故答案为:[]22-,【点睛】解题的关键是熟练掌握函数的奇偶性、单调性,并灵活应用,结合对勾函数的性质求解,考查分析理解,计算证明的能力,属中档题.19.【分析】先由题中条件得到讨论四种情况再判断的周期性即可得出结果【详解】由题意当时此时;当时此时;当时此时;当时此时;又所以是以为周期的函数因此的值域为故答案为:【点睛】关键点点睛:求解本题的关键在于 解析:{}0,1,3,4【分析】先由题中条件,得到[][][]()246g x x x x =+-,讨论10,4x ⎡⎫∈⎪⎢⎣⎭,11,42x ⎡⎫∈⎪⎢⎣⎭,13,24x ⎡⎫∈⎪⎢⎣⎭,3,14x ⎡⎫∈⎪⎢⎣⎭四种情况,再判断()g x 的周期性,即可得出结果. 【详解】由题意,[][][][][][][]()2244246g x x x x x x x x =-+-=+-, 当10,4x ⎡⎫∈⎪⎢⎣⎭时,120,2x ⎡⎫∈⎪⎢⎣⎭,[)40,1x ∈,此时()0000g x =+-=; 当11,42x ⎡⎫∈⎪⎢⎣⎭时,12,12x ⎡⎫∈⎪⎢⎣⎭,[)41,2x ∈,此时()0101g x =+-=; 当13,24x ⎡⎫∈⎪⎢⎣⎭时,321,2x ⎡⎫∈⎪⎢⎣⎭,[)42,3x ∈,此时()1203g x =+-=; 当3,14x ⎡⎫∈⎪⎢⎣⎭时,32,12x ⎡⎫∈⎪⎢⎣⎭,[)43,4x ∈,此时()1304g x =+-=; 又[][][][][][](1)224461224466g x x x x x x x +=+++-+=+++--[][][]246()x x x g x =+-=,所以()g x 是以1为周期的函数,因此()g x 的值域为{}0,1,3,4.故答案为:{}0,1,3,4【点睛】关键点点睛:求解本题的关键在于根据一个单位区间内,x 的不同取值,确定[]x ,[]2x ,[]4x 的不同取值情况,结合函数的周期性,即可求解. 20.(1)图象答案见解析;(2)【分析】(1)利用奇函数图像关于原点对称先作出当时的图像在作出它关于原点的对称图像即可;(2)先用代入法求在的解析式在合并在一起写成分段函数即可【详解】解:(1)图像如图解析:(1)图象答案见解析;(2)(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【分析】(1)利用奇函数图像关于原点对称,先作出当0x ≥时,()()1f x x x =-的图像,在作出它关于原点的对称图像即可;(2)先用代入法求()f x 在0x <的解析式,在合并在一起写成分段函数即可.【详解】解:(1) 图像如图示.(2)设0x <,则0x ->,所以()(1())(1)f x x x x x -=---=-+,又因为函数()f x 是定义域为R 的奇函数,所以()()f x f x -=-.所以当0x <,()()1f x x x =+,综上()f x 的解析式为:(1),0()(1),0x x x f x x x x -≥⎧=⎨+<⎩. 【点睛】函数奇偶性的应用:(1) 利用奇偶性求函数值;(2) 利用奇偶性画图像;(3) 利用奇偶性求函数的解析式.21.【分析】根据函数的解析式有意义列出不等式求解即可【详解】因为所以即解得所以函数的定义域为故答案为:【点睛】本题主要考查了给出函数解析式的函数的定义域问题考查了对数函数的性质属于中档题解析:(0,2)【分析】根据函数的解析式有意义列出不等式求解即可.【详解】因为()f x = 所以21log 00x x ->⎧⎨>⎩, 即2log 10x x <⎧⎨>⎩解得02x <<,所以函数的定义域为(0,2),故答案为:(0,2)【点睛】本题主要考查了给出函数解析式的函数的定义域问题,考查了对数函数的性质,属于中档题.22.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.23.(1)(5)【分析】利用零点存在定理可判断命题(1)的正误根据全称命题的否定可判断命题(2)的正误根据集合的包含关系可判断命题(3)的正误根据充分必要条件可判断命题(4)的正误根据函数的单调性求出参解析:(1)(5).【分析】利用零点存在定理可判断命题(1)的正误,根据全称命题的否定可判断命题(2)的正误,根据集合的包含关系可判断命题(3)的正误,根据充分必要条件可判断命题(4)的正误,根据函数()y f x =的单调性求出参数a 的取值范围,可判断出命题(5)的正误.【详解】对于命题(1),由零点存在定理可知,该命题正确;对于命题(2),由全称命题的否定可知,该命题不正确,应该是00:0,1x p x e ⌝∃>≤使得;;对于命题(3),空集是任何非空集合的真子集,但不是空集本身的真子集,该命题错误; 对于命题(4),取2a =,3b =-,则a b >,但22a b <,所以,“a b >”不是“22a b >”的充分不必要条件,该命题错误;对于命题(5),由于函数()y f x =在R 上是增函数,则()1230123143a a a a a ⎧+>⎪>⎨⎪≤+⨯-+⎩,解得12a <≤,该命题正确.故答案为(1)(2)(5).【点睛】本题考查命题真假的判断,考查零点存在定理、全称命题的否定、集合的包含关系、充分不必要条件的判断以及分段函数单调性,解题时应充分利用这些基础知识,意在考查学生对这些基础知识的掌握,属于中等题.24.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式.【详解】根据题意此人运动的过程分为三个时段,当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.25.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,故答案为:1【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.26.【分析】可令得出的值再代入可得答案【详解】解:令得解得故答案为【点睛】本题主要考查已知函数解析式求函数值的问题解析:15【分析】 可令1()2g x =,得出x 的值,再代入可得答案. 【详解】 解:令1()2g x =,得1122x -=,解得14x =. 221511()11164()[()]151124()416f fg -∴====. 故答案为15.【点睛】本题主要考查已知函数解析式求函数值的问题.。
高一数学必修一第三章测试题及答案函数的应用教学文档高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】Ub={x|x1},AUb={x|0【答案】b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1x页 1 第c.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()A.18b.8c.116D.16【解析】f(3)=f(4)=(12)4=116.【答案】c5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点b.有一个零点c.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】b6.函数y=log12(x2+6x+13)的值域是()A.rb.[8,+)c.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选c.页 2 第【答案】c7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.页 3 第【答案】A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c.【答案】c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x 的取值范围是()A.110,1b.0,110(1,+)页 4 第c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a 的值是________.【答案】-1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】A={x|0【答案】415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域页5 第上的减函数知,函数f(x)的减区间就是[1,+).【答案】[1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a 的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点页 6 第为x1,x2(x1【解析】A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3. 18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】(1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,。
第三章《函数的应用》复习测试题(一)一、选择题1.(2012北京)函数的零点个数为( ).A.0B.1C.2D.3考查目的:考查函数零点的概念、函数的单调性和数形结合思想.答案:B.解析:(方法1):令得,,在平面直角坐标系中分别画出幂函数和指数函数的图象,可知它们只有一个交点,∴函数的零点只有一个.(方法2):∵函数在上单调递增,且,∴函数的零点只有一个.答案选B.2.(2010天津)函数的零点所在的一个区间是( ).A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)考查目的:考查函数零点的存在性定理.答案:B解析:∵,,∴答案选B.3.(2009福建)若函数的零点与的零点之差的绝对值不超过0.25,则可以是( ).A. B.C. D.考查目的:考查函数零点的概念和零点存在性定理.答案:A.解析:的零点为,的零点为,的零点为,的零点为.下面估算的零点. ∵,,∴的零点.依题意,函数的零点与的零点之差的绝对值不超过0.25,∴只有的零点符合题意,故答案选A.4.在研制某种新型材料过程中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( ).1.95 3.00 3.94 5.10 6.120.97 1.59 1.98 2.35 2.61A. B. C.D .考查目的:考查几类不同增长类型函数模型与实际问题的拟合程度.答案:D.解析:通过检验可知,只有函数较为接近,故答案选D.5.已知函数,,的零点分别为,,则的大小关系是( ).A. B.C. D.考查目的:考查函数零点的定义,指数函数、对数函数、幂函数、一次函数的图象,以及数形结合思想.答案:C.解析:由已知得,,在同一平面直角坐标系中,画出函数的图象,由图象可知,,故答案选C.6.(2010陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数与该班人数之间的函数关系用取整函数(表示不大于的最大整数)可以表示为( ).A. B. C.D.考查目的:考查函数的建模及其实际应用,意在考查分析问题与解决问题的能力.答案:B.解析:(方法1):当除以的余数0,1,2,3,4,5,6时,由题设知,且易验证,此时.当除以10的余数为7,8,9时,由题设知,易验证,此时.综上得,必有,故选B.(方法2):依题意知:若,则,由此检验知选项C,D错误.若,则,由此检验知选项A错误.故由排除法知,本题答案应选B.二、填空题7.(2009浙江)某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:高峰时间段用电价格表低谷时间段用电价格表高峰月用电量(单位:千瓦时)高峰电价(单位:元/千瓦时)低谷月用电量(单位:千瓦时)低谷电价(单位:元/千瓦时)50及以下的部分0.56850及以下的部分0.288超过50至200的部分0.598超过50至200的部分0.318超过200的部分0.668超过200的部分0.388若某家庭5月份的高峰时间段用电量为千瓦时,低谷时间段用电量为千瓦时,则按这种计费方式,该家庭本月应付的电费为元(用数字作答).考查目的:考查分段函数在解决实际问题中的应用.答案:.解析:该家庭本月应付电费由两部分构成:高峰部分为,低谷部分为,这两部分电费之和为(元).8.(2009山东)若函数有两个零点,则实数的取值范围是__________.考查目的:考查函数零点的定义,指数函数与一次函数的图象,数形结合的思想.答案:.解析:设函数和函数,则函数有两个零点,就是函数的图象与函数的图象有两个交点.由图象可知,当时,两个函数的图象只有一个交点,不符合题意;当时,∵函数的图象过点(0,1),而直线所过的点一定在点(0,1)的上方,∴两个函数的图象一定有两个交点,∴实数的取值范围是.9.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2014年经营总收入要达到1690万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,则2013年预计经营总收入为________万元.考查目的:考查增长率模型在实际问题中的应用和读题审题能力.答案:1300.解析:设年平均增长率为,则,∴,∴2013年预计经营总收入为×=1300(万元).10.(2010全国I理15改编)若函数有四个零点,则实数的取值范围是 .考查目的:考查函数零点的定义,函数的图象与性质、不等式的解法,和数形结合思想.答案:.解析:在平面直角坐标系内,先画函数的图象.当时,,图象的顶点为,与轴交于点(0,-1);当时,,图象的顶点为,与轴交于点(0,-1).是一条与轴平行的直线.当时,直线与函数的图象有4个交点,即当,函数有四个零点.11.为了预防流感,某段时间学校对教室用药熏消毒法进行消毒.设药物开始释放后第小时教室内每立方米空气中的含药量为毫克.已知药物释放过程中,教室内每立方米空气中的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数).函数图象如图所示.则从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式为 .考查目的:考查待定系数法求指数函数、一次函数解析式的方法,以及阅读理解能力和分类讨论思想.答案:.解析:函数图象由一条线段与一段指数函数图象组成,它们的交点为(0.1,1).当时,由(毫克)与时间(小时)成正比设,∴,解得,∴.当时,将(0.1,1)代入得,∴,,∴函数关系式为.。
高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
高一数学必修一第三单元测试第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.二次函数f (x )=2x 2+bx -3(b ∈R)的零点个数是( ) A .0 B .1 C .2 D .4解析:∵Δ=b 2+4×2×3=b 2+24>0,∴函数图象与x 轴有两个不同的交点,从而函数有2个零点. 答案:C2.函数y =1+1x的零点是( )A .(-1,0)B .-1C .1D .0解析:令1+1x=0,得x =-1,即为函数零点.答案:B3.下列给出的四个函数f (x )的图象中能使函数y =f (x )-1没有零点的是( )解析:把y =f (x )的图象向下平移1个单位后,只有C 图中图象与x 轴无交点.答案:C4.若函数y =f (x )在区间(-2,2)上的图象是连续不断的曲线,且方程f (x )=0在(-2,2)上仅有一个实数根,则f (-1)·f (1)的值( )A .大于0B .小于0C .无法判断D .等于零解析:由题意不能断定零点在区间(-1,1)内部还是外部. 答案:C5.函数f (x )=e x-1x的零点所在的区间是( )A .(0,12)B .(12,1)C .(1,32)D .(32,2)解析:f (12)=e -2<0, f (1)=e -1>0,∵f (12)·f (1)<0,∴f (x )的零点在区间(12,1)内.答案:B6.方程log 12x =2x-1的实根个数是( )A .0B .1C .2D .无穷多个解析:方程log 12x =2x -1的实根个数只有一个,可以画出f (x )=log 12x 及g (x )=2x-1的图象,两曲线仅一个交点,故应选B.答案:B7.某产品的总成本y (万元)与产量x (台)之间的函数关系式是y =0.1x 2-11x +3000,若每台产品的售价为25万元,则生产者的利润取最大值时,产量x 等于( )A.55台 B.120台C.150台 D.180台解析:设产量为x台,利润为S万元,则S=25x-y=25x-(0.1x2-11x+3000)=-0.1x2+36x-3000=-0.1(x-180)2+240,则当x=180时,生产者的利润取得最大值.答案:D8.已知α是函数f(x)的一个零点,且x1<α<x2,则( )A.f(x1)f(x2)>0 B.f(x1)f(x2)<0C.f(x1)f(x2)≥0 D.以上答案都不对解析:定理的逆定理不成立,故f(x1)f(x2)的值不确定.答案:D9.某城市为保护环境,维护水资源,鼓励职工节约用水,作出了如下规定:每月用水不超过8吨,按每吨2元收取水费,每月超过8吨,超过部分加倍收费,某职工某月缴费20元,则该职工这个月实际用水( )A.10吨 B.13吨C.11吨 D.9吨解析:设该职工该月实际用水为x吨,易知x>8.则水费y=16+2×2(x-8)=4x-16=20,∴x=9.答案:D10.某工厂6年来生产甲种产品的情况是:前3年年产量的增大速度越来越快,后3年年产量保持不变,则该厂6年来生产甲种产品的总产量C与时间t(年)的函数关系图象为( )答案:A11.函数f(x)=|x2-6x+8|-k只有两个零点,则( )A.k=0 B.k>1C.0≤k<1 D.k>1,或k=0解析:令y1=|x2-6x+8|,y2=k,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D.答案:D12.利用计算器,算出自变量和函数值的对应值如下表:那么方程2xA.(0.6,1.0) B.(1.4,1.8)C.(1.8,2.2) D.(2.6,3.0)解析:设f(x)=2x-x2,由表格观察出x=1.8时,2x>x2,即f(1.8)>0;在x=2.2时,2x<x2,即f(2.2)<0.综上知f(1.8)·f(2.2)<0,所以方程2x=x2的一个根位于区间(1.8,2.2)内.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3,则下一个有根区间是__________. 解析:设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3). 答案:(2,3)14.已知函数f (x )=ax 2-bx +1的零点为-12,13,则a =__________,b =__________.解析:由韦达定理得-12+13=b a ,且-12×13=1a .解得a =-6,b =1.答案:-6 115.以墙为一边,用篱笆围成一长方形的场地,如图1.已知篱笆的总长为定值l ,则这块场地面积y 与场地一边长x 的关系为________.解析:由题意知场地的另一边长为l -2x , 则y =x (l -2x ),且l -2x >0,即0<x <l2.答案:y =x (l -2x )(0<x <l2)16.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)解析:设过滤n 次才能达到市场要求,则2%(1-13)n≤0.1%即(23)n ≤0.12,∴n lg 23≤-1-lg2, ∴n ≥7.39,∴n =8. 答案:8三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)已知二次函数f (x )的图象过点(0,3),它的图象的对称轴为x =2,且f (x )的两个零点的平方和为10,求f (x )的解析式.解:设二次函数f (x )=ax 2+bx +c (a ≠0).由题意知:c =3,-b2a =2.设x 1,x 2是方程ax 2+bx +c =0的两根,则x 21+x 22=10,∴(x 1+x 2)2-2x 1x 2=10,∴(-b a)2-2c a=10,∴16-6a=10,∴a =1.代入-b2a =2中,得b =-4.∴f (x )=x 2-4x +3.18.(12分)求方程x 2+2x =5(x >0)的近似解(精确度0.1). 解:令f (x )=x 2+2x -5(x >0). ∵f (1)=-2,f (2)=3,∴函数f (x )的正零点在区间(1,2)内.取(1,2)中点x 1=1.5,f (1.5)>0.取(1,1.5)中点x 2=1.25,f (1.25)<0. 取(1.25,1.5)中点x 3=1.375,f (1.375)<0.取(1.375,1.5)中点x 4=1.4375,f (1.4375)<0.取(1.4375,1.5). ∵|1.5-1.4375|=0.0625<0.1,∴方程x 2+2x =5(x >0)的近似解为x =1.5(或1.4375).19.(12分)要挖一个面积为800 m 2的矩形鱼池,并在四周修出宽分别为1 m,2 m 的小路,试求鱼池与路的占地总面积的最小值.解:设所建矩形鱼池的长为x m ,则宽为800xm ,于是鱼池与路的占地面积为y =(x +2)(800x +4)=808+4x +1600x =808+4(x +400x)=808+4[(x -20x)2+40].当x =20x,即x =20时,y 取最小值为968 m 2.答:鱼池与路的占地最小面积是968 m 2.20.(12分)某农工贸集团开发的养殖业和养殖加工生产的年利润分别为P 和Q (万元),这两项利润与投入的资金x (万元)的关系是P =x 3,Q =103x ,该集团今年计划对这两项生产共投入资金60万元,其中投入养殖业为x 万元,获得总利润y (万元),写出y 关于x 的函数关系式及其定义域.解:投入养殖加工生产业为60-x 万元.由题意可得,y =P +Q =x 3+10360-x ,由60-x ≥0得x ≤60,∴0≤x ≤60,即函数的定义域是[0,60].21.(12分)已知某种产品的数量x (百件)与其成本y (千元)之间的函数关系可以近似用y =ax 2+bx +c 表示,其中a ,b ,c 为待定常数,今有实际统计数据如下表:(1)试确定成本函数y =f (x );(2)已知每件这种产品的销售价为200元,求利润函数p =p (x );(3)据利润函数p =p (x )确定盈亏转折时的产品数量.(即产品数量等于多少时,能扭亏为盈或由盈转亏) 解:(1)将表格中相关数据代入y =ax 2+bx +c , 得⎩⎪⎨⎪⎧36a +6b +c =104100a +10b +c =160,400a +20b +c =370解得a =12,b =6,c =50.所以y =f (x )=12x 2+6x +50(x ≥0).(2)p =p (x )=-12x 2+14x -50(x ≥0).(3)令p (x )=0,即-12x 2+14x -50=0,解得x =14±46,即x 1=4.2,x 2=23.8,故4.2<x <23.8时,p (x )>0;x <4.2或x >23.8时,p (x )<0, 所以当产品数量为420件时,能扭亏为盈; 当产品数量为2380件时由盈变亏.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~2003(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?解:(1)散点图如图2:(2)设f (x )=ax +b .由已知得⎩⎪⎨⎪⎧a +b =43a +b =7,解得a =32,b =52,∴f (x )=32x +52.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1;f (4)=8.5,|8.44-8.5|=0.06<0.1.∴模型f (x )=32x +52能基本反映产量变化.(3)f (7)=32×7+52=13,由题意知,2006年的年产量约为13×70%=9.1(万件),即2006年的年产量应约为9.1万件.。