光学设计实例-双胶合透镜、非球面单透镜、激光扩束镜

  • 格式:ppt
  • 大小:658.50 KB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
实例4 激光扩束镜的设计
设计要求
• • • • • • 扩束倍率:60 入射口径:0.5-1mm 出射口径:30-60mm 工作波长:1053nm 检验波长:632.8nm 像质要求:波像差</8(=1053nm)
结构型式
• • • • 由聚焦镜组+准直镜组构成 重点校正准直镜组的像差,因为其口径大 主要是球差与小视场彗差 准直镜组为双分离结构
8次系数,所得结果存在高级彗差,再改初值(半径和Conic)产生反向初级彗差与
之平衡,再重复上述过程。
4
优化实例(3) :优化结果
5
优化实例(3)
6
优化实例(3)
7
优化实例(3)
8
主要内容
• 光学设计软件ZEMAX简介 • 优化实例
1-单透镜 2-双胶合透镜 3-非球面单透镜 4-激光扩束镜 5-显微镜物镜 6-双高斯照相物镜
光学设计
——光学设计实例
优化实例(2)
双胶合物镜
•总 不等于零,不能校正场曲; •在玻璃组合合适时,可校正色差。 取f’=100, D/f’=1:5, 2 =±3°,平行光入射; 取各种玻璃组合(可以查“光学设计手册”)如: BK7/SF2, SF5, SF1, SF10, SF4 都可以用程序得到对 0°视场校正良好的结果(取波长为F,d,C),但3° 视场一般有较大彗差,不能校正。将光阑位置作为变量时,一般仍然如此。 (初始半径可取(60,-60,∞)。 将Merit Function 中视场0°的Operand完全除去,即仅考虑3°视场的像差, 可以得到校正子午彗差的解(理论上看3°视场的像质与球差、彗差都有关,而 0°仅与球差有关,原则上可以随3°视场的校正而同时校正),此时再回复原 来二个视场的Merit Function,此解所保持最优,如所附。 这里玻璃组合为BK7/SF5(K9/ZF2),本可取Glass,Model,Vary ,将玻璃作为变 数优化,但得不到真正好的解,不如一一改玻璃,反而容易得到优化的解。
11
实例4 激光扩束镜的设计
消色差设计结果
工作波长1053nm下的像质
来自百度文库
12
实例4 激光扩束镜的设计
补偿镜设计结果
工作波长1053nm下的像质
13
实例4 激光扩束镜的设计
补偿镜设计结果
检验波长632.8nm下的像质
14
径初值为出发点,另外Merit Function 中取带(Ring)改为15-20,自动优化可以得
到好的结果(文件Asph6)。 实际上,非球面高次项并非必须,如文件Asph3,只取6次项和8次项,残余像差
也小些,这个结果是采用下列逐步接近的过程作出,①校正S1,S2决定半径和
Conic系数,仍用Default merit function (Ring=3)但将孔径取很小值;② 半径和 Conic系数固定不变,孔径增大,用6次方系数校正;③ 孔径增至1:1,优化6次、
2
3
优化实例(2) --优化结果
3
优化实例(3)
非球面单透镜:f’=60,D/f’=1:1, 2 =±1°
利用非球面可以准确校正球差,透镜弯曲可校正彗差, 形成大孔径小视场光学系统。 简单采用Default merit Function做优化,一般得不到结果,为此先通过AnalysisAberration coefficients-Seidel coefficients, 即初级像差计算得到适当的校正S2的半
• 公差计算
9
实例4 激光扩束镜的设计
目的 工作波长与检验波长不同时,如何设计补偿光路以完 成系统检验。 方法
1)消色差设计:使光学系统在工作波长与检验波长下的位置重合 优点:最佳选择,但有时不一定能设计出来,或使系统复杂化。 2)加平行平板:在工作波长下完成设计后,在两个镜组之间加入一 块适当厚度的平板,使其在检验波长下的像质优于衍射极限。 优点:结构简单,易操作。 因为平板可以放在任何地方,检验光路的像质与平板距前 后镜组的距离无关。 3)加补偿透镜:在工作波长下完成设计后,在准直(大口径)镜组 外侧加入一块适当结构的透镜,使其在检验波长下的像质优于衍 射极限。 不足:透补偿镜与准直镜组的距离、同心度会影响检验光路的 像质。 4)检验合格后,拿掉补偿镜即达到在工作波长满足要求的光学系统。