全国中考数学模拟汇编二 2实数的运算
- 格式:doc
- 大小:409.00 KB
- 文档页数:11
全国中考数学模拟汇编二 2实数的运算A 组一 选择题1.(2011上海市杨浦区中考模拟)两个连续的正整数的积一定是 ( ) (A)素数; (B)合数; (C)偶数; (D)奇数. 【答案】C2.(2011上海市杨浦区中考模拟)已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是 ( )(A)a b a b +=+; (B)a b a b +=-;(C)11b b +=+;(D)11a a +=+.【答案】D ; 3、(2011双柏县中考模拟)下列运算正确的是( )A .x 2+x 3=x 5B . x ·x --1=0C .(x -2)2=x 2-4D . (x 2)3=x 6【答案】D4、(2011双柏县中考模拟)若2(2)|3|0a b -++=,则2008()a b +的值是( )A .0B .1C .-1D .2008 【答案】B5. (2011杭州市余杭中考模拟) 设02a =,2(3)b =-,c =,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是A .c a d b <<<B .b d a c <<<C .a c d b <<<D .b c a d <<<【答案】A6. (2011杭州市余杭中考模拟) 如果一个数x相乘的结果是有理数,则这个数x 的一般形式是 .(用代数式表示x【答案】x =(a为有理数)或x =(a 为有理数) 7. (2011杭州市金山学校中考模拟)方根是 ( ▲ )A. 4B. 2C. ±4D.±2 【答案】D8. (2011杭州市金山学校中考模拟)(根据初中教与学中考全程复习训练题改编)1O 1的值 ( ▲ )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间【答案】C9.(2011萧山区中考模拟)【原创】按100分制60分及格来算,满分是150分的及格分是( )A 、60分B 、72分C 、90分D 、105分 【答案】C10、 (2011萧山区中考模拟)【原创】下列哪一个数与方程1693=-x 的根最接近( )A 、2B 、3C 、4D 、5 【答案】B 11.(2011浙江金衢十一校联考)比1小2的数是 ( )A .-3B .-2C .-1D .0 【答案】C12.(南京市六合区2011年中考一模)14开平方的结果是( ▲ ) A.12- B.12C.12± D.116答案:C13.(南京市江宁区2011年中考一模)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(▲)A .3B .6C .20063 D .1003331003⨯+答案:A14. 在 ①2的平方根是 2 ;②2的平方根是± 2 ;③2的立方根是32 ;④2的立方根是±32 中,正确的结论有( ▲ )个 A .1个 B .2个 C .3个 D .4个 答案:B15、(2011黄冈张榜中学模拟)下列运算正确的是()第2题A .()b a b a +=+--B .a a a =-2333C .01=+-a a D . 323211=⎪⎭⎫⎝⎛÷- 考查内容: 答案:D16、(2011年徐汇区诊断卷)下列运算正确的是( ▲ )A .224a a a +=; B a =(a 为实数);C .a a a =÷23; D .()532a a =.考查内容: 答案:C二 填空题1.(2011上海市杨浦区中考模拟)将1132,8,(2)a b c π-=-==-从小到大排列,并用不等号连接: . 【答案】a <c <b 2、(2011双柏县中考模拟)“惠农”超市1月份的营业额为16万元,3月份的营业额为36万元,则每月的平均增长率为 。
20XX 年中考数学专题复习第二讲:实数的运算【基础知识回顾】一、实数的运算。
1、基本运算:初中阶段我们学习的基本运算有、、、、、和共六种,运算顺序是先算,再算,最后算,有括号时要先算,同一级运算,按照的顺序依次进行。
2、运算法则:加法:同号两数相加,取的符号,并把相加,异号两数相加,取的符号,并用较大的减去较小的,任何数同零相加仍得。
减法,减去一个数等于。
乘法:两数相乘,同号得,异号得,并把相乘。
除法:除以一个数等于乘以这个数的。
乘方:(-a ) 2n +1 =(-a ) 2n =3、运算定律:加法交换律:a+b=加法结合律:(a+b)+c=乘法交换律:ab=乘法结合律:(ab )c=分配律: (a+b )c=二、零指数、负整数指数幂。
0a = (a ≠0) a -p=(a ≠0) 【名师提醒:1、实数的混合运算在中考考查时经常与0指数、负指数、绝对值、锐角三角函数等放在一起,计算时要注意运算顺序和运算性质。
2、注意底数为分数的负指数运算的结果,如:(31)-1=】 三、实数的大小比较:1、比较两个有理数的大小,除可以用数轴按照的原则进行比较以外,,还有比较法、比较法等,两个负数大的反而小。
2、如果几个非负数的和为零,则这几个非负数都为。
【名师提醒:比较实数大小的方法有很多,根据题目所给的实数的类型或形可的大小,可以先确定10和65以式灵活选用。
如:比较的取值范围,然后得结论:10+265-2。
】【重点考点例析】考点一:实数的大小比较。
例1 a ,小数部分为b ,则代数式a 2-a-b 的值为.例2 已知甲、乙、丙三数,甲=5=3+,丙=1+小关系,下列何者正确?( )A .丙<乙<甲B .乙<甲<丙C .甲<乙<丙D .甲=乙=丙 对应训练1.12的负的平方根介于( )A .-5与-4之间B .-4与-3之间C .-3与-2之间D .-2与-1之间2.已知a 、b 为两个连续的整数,且a <b ,则a+b=.考点二:实数的混合运算。
实数(无理数,平方根,立方根)一.选择题1.(2020•山东省枣庄市•3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1-a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.【解答】解:A.|a|>1,故本选项错误;B.∵a<0,b>0,∴ab<0,故本选项错误;C.a+b<0,故本选项错误;D.∵a<0,∴1-a>1,故本选项正确;故选D.【点评】此题主要考查了实数与数轴,正确结合数轴分析是解题关键.2. (2020•四川省达州市•3分)下列各数中,比3大比4小的无理数是()A.3.14 B.C.D.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.解:3=,4=,A.3.14是有理数,故此选项不合题意;B.是有理数,故此选项不符合题意;C.是比3大比4小的无理数,故此选项符合题意;D.比4大的无理数,故此选项不合题意;故选:C.3. (2020•山东东营市•3分)利用科学计算器求值时,小明的按键顺序为,则计算器面板显示的结果为()A. 2-B. 2C. 2±D. 4【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】4的算术平方根42,故选:B.【点睛】本题主要考查了算术平方根的求解方法,考生需要将其与平方根进行对比掌握.4.(2020•山东聊城市•3分)在实数﹣1,﹣,0,中,最小的实数是()A.﹣1 B.C.0 D.﹣【分析】直接利用实数比较大小的方法得出答案.【解答】解:∵|﹣|>|﹣1|,∴﹣1>﹣,∴实数﹣1,﹣,0,中,﹣<﹣1<0<.故4个实数中最小的实数是:﹣.故选:D.【点评】此题主要考查了实数比较大小,正确掌握实数大小比较方法是解题关键.5. (2020•四川省凉山州•4分)下列等式成立的是()A.=±9 B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2 D.(tan45°﹣1)0=1【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得.【解答】解:A.=9,此选项计算错误;B.|﹣2|=﹣2,此选项错误;C.(﹣)﹣1=﹣2,此选项正确;D.(tan45°﹣1)0无意义,此选项错误;故选:C.【点评】本题主要考查实数的运算,解题的关键是掌握算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定.6. (2020•四川省凉山州•4分)函数y=中,自变量x的取值范围是x≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x +1≥0, 解得x ≥﹣1. 故答案为:x ≥﹣1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 二.填空题1. (2020•四川省遂宁市•4分)下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3.【点评】本题考查了无理数的知识,解答本题的掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 2. (2020•山东省潍坊市•3分)若|a -2|+=0,则a +b = .【分析】根据非负数的性质列式求出A.b 的值,然后代入代数式进行计算即可得解. 【解答】解:根据题意得,a -2=0,b -3=0,解得a =2,b =3,∴a +b =2+3=5. 故答案为5.【点评】本题考查了绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 3. 2020年内蒙古通辽市计算:(1)0(3.14)π-= ______;(2)2cos45︒=______;(3)21-= ______.【答案】 (1). 1 (2). 2 (3). -1【解析】 【分析】根据零指数幂,特殊角的三角函数值,乘方运算法则分别计算即可.【详解】解:0(3.14)π-=1,2cos45︒=2×22=2, 21-=-1,故答案为:1,2,-1.【点睛】本题考查了零指数幂,特殊角的三角函数值,乘方运算,掌握运算法则是关键. 4. (2020•山东淄博市•4分)计算:+= 2 .【分析】分别根据立方根的定义与算术平方根的定义解答即可. 【解答】解:+=﹣2+4=2.故答案为:2【点评】本题主要考查了立方根与算术平方根,熟记立方根与二次根式的性质是解答本题的关键.5. (2020•陕西•3分)计算:(2+)(2﹣)= 1 .【分析】先利用平方差公式展开得到原式=22﹣()2,再利用二次根式的性质化简,然后进行减法运算. 【解答】解:原式=22﹣()2=4﹣3 =1.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6. (2020•广东省•4分)若2-a +|b +1|=0,则(a +b )2020=_________. 【答案】1【解析】算术平方根、绝对值都是非负数,∴a =2,b =-1,-1的偶数次幂为正 【考点】非负数、幂的运算 7. (2020•北京市•2分)写出一个比大且比小的整数 2或3(答案不唯一) .【分析】先估算出和的大小,再找出符合条件的整数即可.【解答】解:∵1<<2,3<<4,∴比大且比小的整数2或3(答案不唯一).故答案为:2或3(答案不唯一).【点评】本题主要考查了估算无理数的大小,根据题意估算出和的大小是解答此题的关键.8. (2020•四川省南充市•4分)计算:0122+=__________. 2 【解析】 【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值. 【详解】解:0122+ 2-1+1 22.【点睛】此题考查了实数的运算,零指数幂,熟练掌握运算法则是解本题的关键.三、解答题1.(2020•山东东营市•4分)(1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(136-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+---36=-;2.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 3. (2020•山东东营市•4分)(1)计算:()220201272603232cos -⎛⎫+--+ ⎪⎝⎭; 【答案】(1)36-; 【分析】(1)根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可; 【详解】()1()220201272603232cos -⎛⎫+--+ ⎪⎝⎭3314323=+--- 36=-;4.(2020•山东菏泽市•3分)计算:2﹣1+|﹣3|+2sin 45°﹣(﹣2)2020•()2020.【分析】直接利用特殊角的三角函数值以及积的乘方运算法则、负整数指数幂的性质、绝对值的性质分别化简得出答案. 【解答】解:原式=+3﹣+2×﹣(﹣2×)2020=+3﹣+﹣1=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.5.(2020•广东省深圳市•5分)计算:【考点】实数的计算【答案】2【解析】6.(2020•广西省玉林市•6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【分析】先计算(π﹣3.14)0、|﹣1|、()2,再加减求值.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.【点评】本题考查了零指数幂的意义、绝对值的化简、及开平方乘方运算.掌握零指数幂及绝对值的意义,是解决本题的关键.7. (2020•甘肃省天水市•6分)计算:114sin60|32|2020124-︒⎛⎫--+-+ ⎪⎝⎭【答案】33+;【解析】【分析】先代入三角函数值、去绝对值符号、计算零指数幂、化简二次根式、计算负整数指数幂,再计算乘法、去括号,最后计算加减可得;【详解】原式34(23)12342=⨯--+-+,23231234=-++-+,33=+;【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握运算法则.8.(2020•北京市•5分)计算:()﹣1++|﹣2|﹣6sin45°.【分析】直接利用负整数指数幂的性质以及二次根式的性质和特殊角的三角函数值分别化简得出答案. 【解答】解:原式=3+3+2﹣6×=3+3+2﹣3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键. 9.(2020•贵州省黔西南州•12分)计算(﹣2)2﹣|﹣|﹣2cos 45°+(2020﹣π)0;【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;【解答】解:原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;【点评】此题主要考查了实数运算,正确掌握相关运算法则是解题关键. 10. (2020•四川省内江市•7分)计算:(﹣)﹣1﹣|﹣2|+4sin 60°﹣+(π﹣3)0.【分析】先计算负整数指数幂、去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=﹣2﹣2+4×﹣2+1=﹣2﹣2+2﹣2+1=﹣3.【点评】本题主要考查实数的运算,解题的关键是掌握负整数指数幂和零指数幂的规定、熟记三角函数值、绝对值的性质、二次根式的性质.11. (2020•四川省乐山市•9分)计算:022cos60(2020)π--︒+-. 【答案】2 【解析】 【分析】根据绝对值,特殊三角函数值,零指数幂对原式进行化简计算即可.【详解】解:原式=12212-⨯+ =2.【点睛】本题考查了绝对值,特殊三角函数值,零指数幂,掌握运算法则是解题关键. 12. (2020•四川省遂宁市•7分)计算:﹣2sin 30°﹣|1﹣|+()﹣2﹣(π﹣2020)0.【分析】先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得. 【解答】解:原式=2﹣2×﹣(﹣1)+4﹣1=2﹣1﹣+1+4﹣1=+3.【点评】本题主要考查实数的运算,解题的关键是掌握二次根式和绝对值的性质、熟记特殊锐角三角函数值、负整数指数幂与零指数幂的规定.13. (2020•四川省自贡市•8分)计算:)-⎛⎫--+- ⎪⎝⎭11256π. 【解析】561)61(1121-=-=-+- (2020•四川省自贡市•10分)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式-x 2的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1,所以+x 1的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离. ⑴. 发现问题:代数式++-x 1x 2的最小值是多少?⑵. 探究问题:如图,点A,B,P 分别表示的是-1,2,x ,=AB 3.∵++-x 1x 2的几何意义是线段PA 与PB 的长度之和∴当点P 在线段AB 上时,+=PA PB 3;当点点P 在点A 的左侧或点B 的右侧时+>PA PB 3∴++-x 1x 2的最小值是3. ⑶.解决问题:①.-++x 4x 2的最小值是;②.利用上述思想方法解不等式:++->x 3x 14x–1–2–3–412340A BP③.当a 为何值时,代数式++-x a x 3的最小值是2.【解析】(3)①设A 表示4,B 表示-2,P 表示x ∴线段AB 的长度为6,则|2||4|++-x x 的几何意义表示为P A +PB ,当P 在线段AB 上时取得最小值6 ②设A 表示-3,B 表示1,P 表示x ,∴线段AB 的长度为4,则|1||3|-++x x 的几何意义表示为P A +PB ,∴不等式的几何意义是P A +PB >AB ,∴P 不能在线段AB 上,应该在A 的左侧或者B 的右侧,即不等式的解集为3-<x 或1>x③设A 表示-a ,B 表示3,P 表示x ,则线段AB 的长度为|3|--a ,|3|||-++x a x 的几何意义表示为P A +PB ,当P 在线段AB 上时P A +PB 取得最小值,∴2|3|=--a ∴23=+a 或23-=+a ,即1-=a 或5-=a ;14. (2020•新疆维吾尔自治区新疆生产建设兵团•6分)计算:()()213π-++-【解析】 【分析】分别计算平方,绝对值,零次幂,算术平方根,再合并即可得到答案. 【详解】解: ()()213π-++-112=-=【点睛】本题考查的是乘方,绝对值,零次幂,算术平方根的运算,掌握以上运算是解题的关键.–1–2–3–41234。
实数的运算一、选择题1.(2010江苏盐城)20100的值是 A .2010 B .0 C .1 D .-1【答案】C2.(2010山东威海)计算()201020092211-⨯⎪⎭⎫ ⎝⎛-的结果是 A .-2 B .-1 C .2D .3【答案】B3.(2010台湾)计算 | -1-(-35) |-| -611-67 | 之值为何? (A) -37 (B) -31 (C) 34(D)311。
【答案】A 4.(2010台湾)计算106⨯(102)3÷104之值为何?(A) 108 (B) 109 (C) 1010 (D) 1012。
【答案】A 5.(2010台湾)下列四个选项中的数列,哪一个不是等差数列?(A) 5,5,5,5,5 (B) 14,9,16,25(C)5,25,35,45,55 (D) 1,22,33,44,55 。
【答案】D 6.(2010台湾)图(五)数在线的A 、B 、C 三点所表示的数分别为 a 、b 、c 。
根据图中各点位置,判断下列各式何者 正确? (A) (a -1)(b -1)>0 (B) (b -1)(c -1)>0 (C) (a +1)(b +1)<0 (D) (b +1)(c +1)<0 。
【答案】D7.(2010浙江杭州) 计算 (– 1)2 + (– 1)3 =A.– 2B. – 1C. 0D. 2 【答案】C8.(2010 浙江义乌)28 cm 接近于( ▲ ) A .珠穆朗玛峰的高度 B .三层楼的高度 C .姚明的身高 D .一张纸的厚度【答案】C9.(2010 福建德化)2-的3倍是( ) A 、 6- B 、1 C 、6 D 、5-A B C O a bc 0 -1 1 图(五)【答案】A10.(2010 山东济南)某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃ 【答案】D11.(2010 东济南)下列各式中,运算正确的是 ( )A 632=B .223355+=C .632a a a ÷=D .325()a a =【答案】A12.(2010山东临沂)计算()21-的值等于 (A )-1 (B )1 (C )-2 (D )2 【答案】B13.(2010 河北)计算3×(-2) 的结果是A .5B .-5C .6D .-6【答案】D14.(2010 河北)下列计算中,正确的是A .020=B .2a a a =+C 93=±D .623)(a a =【答案】D15.(2010 山东省德州)下列计算正确的是 (A)020= (B)331-=- 93= 235=【答案】C16.(2010江苏宿迁)3)2(-等于A .-6B .6C .-8D .8 【答案】C17.(2010 山东莱芜)如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是1 0 -1 a b BA (第5题图)A .0>abB .0>-b aC .0>+b aD .0||||>-b a【答案】D18.(2010江西) 计算 -2- 6的结果是( )A .-8B . 8C . -4D . 4 【答案】A19.(2010年贵州毕节)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平均一个人传染的人数为( ) A .8人 B .9人 C .10人 D .11人【答案】B.20.(2010湖北荆门)()()2012321-+-+⎪⎭⎫ ⎝⎛--π的值为( )A .-1B .-3C . 1D . 0【答案】C21.(2010 四川成都)3x 表示( )(A )3x (B )x x x ++ (C )x x x ⋅⋅ (D )3x + 【答案】C22.(2010湖北荆州)温度从-2°C 上升3°C 后是A .1°CB . -1°C C .3°CD .5°C 【答案】A23.(2010湖北荆州)下面计算中正确的是 A .532=+ B .()111=--C . ()2010201055=- D . x 32x •=x 6【答案】C24.(2010湖北荆州)在电子显微镜下测得一个圆球体细胞的直径是5×105-cm.,3102⨯个这样的细胞排成的细胞链的长是A .cm 210- B .cm 110- C .cm 310- D .cm 410- 【答案】B 25.(2010湖北省咸宁)下列运算正确的是 A .263-=- B .24±=C .532a a a =⋅D .3252a a a +=【答案】C26.(2010江苏淮安)观察下列各式:()1121230123⨯=⨯⨯-⨯⨯()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=A .97×98×99B .98×99×100C .99×100×101D .100×101×102 【答案】C27.(2010湖南怀化)下列运算结果等于1的是( ) A .)3()3(-+- B .)3()3(--- C .)3(3-⨯-D .)3()3(-÷-【答案】D 28.(2010山东泰安)如图,数轴上A 、B 两点对应的实数分别为,a b ,则下列结论不正确的是( ) A 、0a b +> B 、0ab < C 、0a b -< D 、0a b ->-1【答案】D29.(2010云南红河哈尼族彝族自治州)下列计算正确的是A .(-1)-1=1 B.(-3)2=-6 C.π0=1 D.(-2)6÷(-2)3=(-2)2 【答案】C30.(2010云南楚雄)下列计算正确的是( )A .a 2·a 3=a 6B .6÷2=3C .(21)-2=-2 D . (-a 3)2=-a 6 【答案】B31. (2010湖北随州)下列运算正确的是( )A .1331-÷= B 2a a = C .3.14 3.14ππ-=- D .326211()24a b a b =【答案】D32. (2010四川乐山)计算(-2)×3的结果是( )(A)-6 (B)6 (C)-5 (D)5【答案】A33. (2010黑龙江哈尔滨)某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高( ) (A )16℃ (B )20℃ (C )-16℃ (D ).-20℃ 【答案】B34. (2010 福建三明)如果□,1)23(=-⨯则□内应填的实数是 ( )A .23-B .32-C .23 D .32 【答案】B35. (2010湖北襄樊)某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高( ) A .10℃ B .-10℃ C .6℃ D .-6℃【答案】A36. (2010 湖北孝感)2010)1(-的值是( )A .1B .—1C .2010D .—2010【答案】A37.(2010 山东淄博)下列结论中不能由0=+b a 得到的是(A )ab a -=2(B )b a =(C )0=a ,0=b (D )22b a = 【答案】C38.(2010 山东淄博)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+【答案】B39.(2010云南玉溪) 的结果是)(计算12010)21(1:.1--- A. 1 B. -1C.0D. 2【答案】B40.(2010 甘肃)()=-21( )x 21输出输入xx +3x 为偶数x 为奇数(第11题)A .1B .-1C .2D .-2【答案】A41.(2010 山东荷泽)2010年元月19日,山东省气象局预报我市元月20日的最高气温是4℃,最低气温是-6℃,那么我市元月20日的最大温差是 A .10℃ B .6℃ C .4℃ D .2℃【答案】A42.(2010青海西宁) 计算)3(21-⨯--的结果等于 A.5B.5-C.7D.7-【答案】A43.(2010广西梧州)用0,1,2,3,4,5,6,7,8这9个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( ) A .36 B .117 C .115 D .153 【答案】44.(2010广东深圳)观察下列算式,用你所发现的规律得出20102的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,… A .2 B .4 C .6 D .8【答案】B45.(2010湖北宜昌)冰箱冷冻室的温度为-6℃,此时房屋内的温度为20℃,则房屋内的温度比冰箱冷冻室的温度高( )。
一、选择题1. (2012•台湾)计算(﹣1000)×(5﹣10)之值为何?( )A .1000B .1001C .4999D .5001考点: 有理数的乘法。
专题: 计算题。
分析: 将﹣1000化为﹣(1000+),然后计算出5﹣10,再根据分配律进行计算.解答: 解:原式=﹣(1000+)×(﹣5)=(1000+)×5=1000×5+×5=5000+1=5001.故选D .点评: 本题考查了有理数的乘法,灵活运用分配律是解题的关键.2. (2012•台湾)计算[()2]3×[()2]2之值为何?( )A .1B .C .()2D .()4考点: 整式的混合运算。
专题: 计算题。
分析: 先算乘方,再算乘法即可.解答: 解:原式=()6×()4=()6×()﹣4,=()2故选C .点评: 本题考查的是整式的混合运算,整式的混合运算运算顺序和有理数的混合运算顺序相似,即先算乘方,再算乘法,最后算加减,有括号的先算括号里面的.3. (2012浙江舟山)()02-等于( ) (A) -2 (B) 0 (C) 1 ( D) 2【答案】C4. (2012浙江台州)计算-1+1的结果是( * )A .1B .0C .-1D .-2【答案】B5. (2012浙江嘉兴)0(2)-等于( )A .1B .2C .0D .-2 【答案】A 0A .﹣2B .0C .1D .2考点: 零指数幂。
分析: 根据零指数幂的运算法则求出(﹣2)0的值解答: 解:(﹣2)0=1.故选C .点评: 考查了零指数幂:a 0=1(a ≠0),由a m ÷a m =1,a m ÷a m =a m ﹣m =a 0可推出a 0=1(a ≠0),注意:00≠1.7. (2012•杭州)计算(2﹣3)+(﹣1)的结果是( )A .﹣2B .0C .1D .2【答案】A8. (2012四川南充) 计算:2-(-3)的结果是( )A .5B .1C .-1D .-5【答案】A 9.(2012山东滨州)32-等于A .-6B .6C .-8D .8【答案】C10. (2012山东滨州)求20123222221+⋅⋅⋅++++的值,可令S =20123222221+⋅⋅⋅++++,则2S=2013322222+⋅⋅⋅+++,因此1222013-=-S S ,仿照以上推理,计算出20123222221+⋅⋅⋅++++的值为 A .152012- B .152013- C .4152013- D .4152012- 【答案】C10. (2012铁岭)2的算术平方根是( )A 、2B 、﹣2C 、±2D 、2考点:算术平方根。
实数(无理数,平方根,立方根)一.选择题1. (2021•天津•3分)估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D【解析】因为,所以,故选D.2. (2021•江苏扬州•3分)下列个数中,小于-2的数是(A )A.-5B.-错误!不能通过编辑域代码创建对象。
C.-错误!不能通过编辑域代码创建对象。
D.-1【考点】:数的比较大小,无理数【解析】:根据二次根式的定义确定四个选项与-2的大小关系,可得-错误!不能通过编辑域代码创建对象。
比-2小【答案】:A.3. (2021•广东省广州市•3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4. (2021•甘肃省庆阳市•3分)下列整数中,与最接近的整数是()A.3 B.4 C.5 D.6【分析】由于9<10<16,于是<<,10与9的距离小于16与10的距离,可得答案.【解答】解:∵32=9,42=16,∴3<<4,10与9的距离小于16与10的距离,∴与最接近的是3.故选:A.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.5.6.二.填空题1. (2021•海南•12分)(1)计算:9×3﹣2+(﹣1)3﹣;(1)原式=9×﹣1﹣2=3﹣1﹣2=0;2. (2021•江苏无锡•2分)的平方根为±.【分析】根据平方根的定义求解.【解答】解:的平方根为±=±.故答案为:±.【点评】本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数.3. (2021•江苏宿迁•3分)实数4的算术平方根为2.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.4.5.6.三.解答题1. (2021•铜仁•10分)(1)计算:|﹣|+(﹣1)2021+2sin30°+(﹣)0【解答】(1)|﹣|+(﹣1)2021+2sin30°+(﹣)0=+(﹣1)+2×+1=+(﹣1)+1+1=.2. (2021•江苏无锡•8分)计算:(1)|﹣3|+()﹣1﹣()0;(2)2a3•a3﹣(a2)3.【分析】(1)直接利用负指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用幂的乘方运算法则以及单项式乘以单项式运算法则分别化简得出答案.【解答】解:(1)原式=3+2﹣1=4;(2)原式=2a6﹣a6=a6.【点评】此题主要考查了幂的乘方运算以及单项式乘以单项式运算、实数运算,正确掌握相关运算法则是解题关键.3. (2021•江苏宿迁•8分)计算:()﹣1﹣(π﹣1)0+|1﹣|.【分析】直接利用负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1+﹣1=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.4. (2021•江苏扬州•8分)计算或化简:(1)错误!不能通过编辑域代码创建对象。
实数的运算一、选择题1、(2013安徽芜湖一模)下列运算正确的是( ).A. 22232x x x -=B .22(2)2a a -=-C .222()a b a b +=+D .()2121a a --=--答案:A2、(2013江苏扬州弘扬中学二模)下列计算错误的是( )A. 20120=1 B. 981±= C. 3)31(1=- D. 24=16答案:B3、(2013江苏扬州弘扬中学二模)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…, 则第2010次输出的结果为( )A.8B. 4C.2D.1答案:B4、(2013江苏扬州弘扬中学二模)8的立方根为_______. 答案:25、(2013山东省德州一模)-7的相反数的倒数是 ( ) A .7 B .-7 C .17 D .- 17答案:C6、(2013山西中考模拟六)计算:2= ( )A.-1 B.-3 C.3 D.5 答案:A7、(2013年深圳育才二中一摸)下列运算正确的是( )A .23532x x x -=- B.52232=+C.1025)()(x x x -=-⋅-D.5235363)3()93(a x ax ax x a -=-÷- 答案:D8、(2013年广西南丹中学一摸)计算(-2a )2-3a 2的结果是A .-a 2B .a 2C .-5a 2D .5a 2答案:B9.(2013年河北三摸)下列计算正确的是A.x +x =x 2B. x ·x =2xC.(x 2)3=x 5D. x 3÷x =x 2答案:D 二、填空题1、(2013山东省德州一模)某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是 元.12题图2题)4、(2013·湖州市中考模拟试卷7)已知x y==223x xy y-+的值_____.答案: 955、 (2013年河北二摸)已知13xx+=,则代数式221xx+的值为_________.答案:76、(2013年河南西华县王营中学一摸)计算:231)2011(410-+⎪⎭⎫⎝⎛--+-= 。
高频考点:实数运算一、平方根、算术平方根、立方根【高频考点精讲】1.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.2.算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.3.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.注意:符号a3中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.4.平方根和立方根的性质(1)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(2)立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.【热点题型精练】1.(2021•广安中考)16的平方根是()A.4 B.±4 C.8 D.±82.(2021•南充中考)如果x2=4,则x=.3.(2021•济南中考)9的算术平方根是()A.3 B.﹣3 C.±3 D.4.(2021•上海中考)已知=3,则x=.5.(2021•达州中考)已知a,b满足等式a2+6a+9+=0,则a2021b2020=.6.(2021•河池中考)计算:=.7.(2021•益阳中考)若实数a的立方等于27,则a=.二、无理数定义及估算【高频考点精讲】1.无理数定义(1)定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)无理数与有理数的区别:①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.②所有的有理数都可以写成两个整数之比;而无理数不能.(3)常见三种类型①开不尽的方根,如等.②特定结构的无限不循环小数,如0.303 003 000 300 003…(两个3之间依次多一个0).③含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.2.估算无理数的大小估算无理数大小要用逼近法,即用有理数逼近无理数,求无理数的近似值.【热点题型精练】8.(2021•湖北中考)下列实数中是无理数的是()A.3.14 B.C.D.9.(2021•永州中考)在0,,﹣0.101001,π,中无理数的个数是个.10.(2021•广东中考)设6﹣的整数部分为a,小数部分为b,则(2a+)b的值是()A.6 B.2C.12 D.911.(2021•北京中考)已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<<n+1,则n 的值为()A.43 B.44 C.45 D.4612.(2021•百色中考)实数的整数部分是.13.(2021•安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是﹣1,它介于整数n和n+1之间,则n的值是.三、实数的运算【高频考点精讲】1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.【热点题型精练】14.(2021•株洲中考)计算:=()A.﹣2B.﹣2 C.﹣D.215.(2021•河北中考)若取1.442,计算﹣3﹣98的结果是()A.﹣100 B.﹣144.2 C.144.2 D.﹣0.0144216.(2021•滨州中考)计算:+﹣|π0﹣|﹣()﹣1=.17.(2020•邵阳中考)在如下方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3 21 6318.(2021•十堰中考)对于任意实数a、b,定义一种运算:a⊗b=a2+b2﹣ab,若x⊗(x﹣1)=3,则x的值为.19.(2020•恩施州中考)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x 的值是()A.﹣1 B.1 C.0 D.2。
卜人入州八九几市潮王学校实数的运算一、选择题1、〔2021年十五校联考〕计算3×(-2) 的结果是〔〕A .5B .-5C .6D .-6答案:D2、〔2021年黄浦二模〕计算()23-的结果是〔〕A .6;B .6-;C .9;D .9-;答案:C3、以下运算结果正确的选项是〔〕 A.6332a a a=⋅ B.623)(a a -=- C.66a a a =÷ D.632125)5(a a -=-答案:D4、-2的绝对值等于() A .2B .C .-2D .- 答案:A7、对于非零的两个实数a 、b ,规定11a b b a⊕=-.假设1(1)1x ⊕+=那么x 的值是〔〕 A.23B.1C.21-D.21答案:C8、〔2021二模〕估算224+的值〔〕A .在5和6之间B .在6和7之间C .在7和8之间D .在8和9之间 答案:B9、〔2021二模〕如图,是一个简单的数值运算程序.当输入x 的值是-4,那么输出的数值为_________答案:1010、〔2021一模〕以下计算中,正确的选项是〔〕〔A 〕145=-〔B 〕a a =2〔C 〕824⋅=〔D 〕236=答案:C11、〔2021奉贤调研试题〕计算4的结果是〔〕A .2;B .2±;C .2-;D .2±.答案:A12、〔2021〕在4,,0.101001中,无理数的个数是〔〕 A .2 B .3C .4D .5答案:A13.〔2021年模拟〕估计58的立方根的大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间答案:B. 14.(西城区2021初三一模).计算:29()A .-1B .-3C .3D .5答案:A15、〔2021年4月初三质量检测〕以下运算正确的选项是〔〕输入x ×〔-3〕-2输出第2题图A .326aa a ⋅= B .336()xx =C .5510x x x +=D .5233()()ab ab a b -÷-=-答案:D16、〔2021年中考数学新编及改编题试卷〕化简:322)3(x x-的结果是〔〕〔A 〕53x -〔B 〕518x 〔C 〕56x -〔D 〕518x - 答案:C17、〔2021年顺义区一诊考试〕以下运算正确的选项是〔〕A .22423a a a +=B .2242a a a -=C .22422a a a =D .2222a a a ÷=答案:C18、(2021年延庆县一诊考试)以下运算中正确的选项是〔〕 A .a 3a 2=a 6B .〔a 3〕4=a 719、[2021年中招第一次模拟]按下面程序计算:输入x =-3,那么输出之答案是。
实数的运算A 组一 选择题1.(2011上海市杨浦区中考模拟)两个连续的正整数的积一定是 ( ) (A)素数; (B)合数; (C)偶数; (D)奇数. 【答案】C2.(2011上海市杨浦区中考模拟)已知实数a 、b 在数轴上的位置如图所示,则下列等式成立的是 ( )(A)a b a b +=+; (B)a b a b +=-;(C)11b b +=+;(D)11a a +=+.【答案】D ; 3、(2011双柏县中考模拟)下列运算正确的是( )A .x 2+x 3=x 5B . x ·x --1=0C .(x -2)2=x 2-4D . (x 2)3=x 6【答案】D4、(2011双柏县中考模拟)若2(2)|3|0a b -++=,则2008()a b +的值是( )A .0B .1C .-1D .2008 【答案】B5. (2011杭州市余杭中考模拟) 设02a =,2(3)b =-,c =,11()2d -=,则a b c d ,,,按由小到大的顺序排列正确的是A .c a d b <<<B .b d a c <<<C .a c d b <<<D .b c a d <<<【答案】A6. (2011杭州市余杭中考模拟) 如果一个数x相乘的结果是有理数,则这个数x 的一般形式是 .(用代数式表示x【答案】x =(a为有理数)或x =(a 为有理数) 7. (2011杭州市金山学校中考模拟)方根是 ( ▲ )A. 4B. 2C. ±4D.±2 【答案】D8. (2011杭州市金山学校中考模拟)(根据初中教与学中考全程复习训练题改编)1O 1的值 ( ▲ )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间【答案】C9.(2011萧山区中考模拟)【原创】按100分制60分及格来算,满分是150分的及格分是( )A 、60分B 、72分C 、90分D 、105分 【答案】C10、 (2011萧山区中考模拟)【原创】下列哪一个数与方程1693=-x 的根最接近( )A 、2B 、3C 、4D 、5 【答案】B 11.(2011浙江金衢十一校联考)比1小2的数是 ( )A .-3B .-2C .-1D .0 【答案】C12.(南京市六合区2011年中考一模)14开平方的结果是( ▲ ) A.12- B.12C.12± D.116答案:C13.(南京市江宁区2011年中考一模)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(▲)A .3B .6C .20063 D .1003331003⨯+答案:A14. 在 ①2的平方根是 2 ;②2的平方根是± 2 ;③2的立方根是32 ;④2的立方根是±32 中,正确的结论有( ▲ )个 A .1个 B .2个 C .3个 D .4个 答案:B15、(2011黄冈张榜中学模拟)下列运算正确的是()第2题A .()b a b a +=+--B .a a a =-2333C .01=+-a a D . 323211=⎪⎭⎫⎝⎛÷- 考查内容: 答案:D16、(2011年徐汇区诊断卷)下列运算正确的是( ▲ )A .224a a a +=; B a =(a 为实数);C .a a a =÷23; D .()532a a =.考查内容: 答案:C二 填空题1.(2011上海市杨浦区中考模拟)将1132,8,(2)a b c π-=-==-从小到大排列,并用不等号连接: . 【答案】a <c <b 2、(2011双柏县中考模拟)“惠农”超市1月份的营业额为16万元,3月份的营业额为36万元,则每月的平均增长率为 。
【答案】50%3. (2011杭州市金山学校中考模拟)(原创)把二次根式内,结果是( ▲ )A .B .C . D【答案】B4. (2011杭州市金山学校中考模拟)(原创)2与2的比例中项是 ▲ . 【答案】 ±15. (2011杭州市金山学校中考模拟)(原创)已知x y ==223x xy y -+的值为___▲______.【答案】 954. (南京市浦口区2011年中考一模)计算:=-⨯263__▲___. 答案:225.(南京市六合区2011年中考一模)计算:28- = ▲ .答案:2;6. (南京市高淳县2011年中考一模)计算:20= ▲ ,(12)-2= ▲ .答案:7.1, 47.(南京市溧水县2011年中考一模)计算:=+312 ▲ . 答案:338. (2011广州六校一摸)计算:()0112006π33---=__________. 答案:0三 解答题1. (2011双柏县中考模拟)(8分)计算:2- -22sin 45(31)+-121-⎪⎭⎫⎝⎛--(-2)【答案】2(1)(2011杭州市金山学校中考模拟) 计算(中考复习学案实数章改编)0|2|(1--+【答案】解:(1)原式=2-1+2=3………………………………………………3分2. (2011杭州市进化一中模拟)(本小题满分6分)(1)1114-⎛⎫- ⎪⎝⎭【答案】(1)解:原式=41-=3 ……………………………2分 3.(2011浙江金衢十一校联考)(6分)(102tan 60(1)+-.【答案】 (102tan 60(1)+-1=------------------------2分=1-------------------------------------------3 分4. (2011浙江新昌县模拟)(1) |2-|o 2o 12sin30((tan 45)-+-+【答案】解:(1) 原式=1312+-+ 2分=1 2分5. (2011珠海市香洲区模拟)计算:︒-+---60tan 22)31(121【答案】解:01060tan 22)31(12-+---=3221132⨯-+- ……4分 =21- …6分6.(南京市雨花台2011)11()4cos 452π--︒-解:原式2412=-?………………………………………………3分21=- 1= …………………………………………5分 7.(南京市浦口区2011年中考一模)计算:5)3()4(02---+-π答案:解:原式=16+1-5------------------------------------------------3分 = 12 -----------------------------------------------4分8.(南京市江宁区2011年中考一模)计算:|-2|-(3-π)0+. 答案:解:原式=2—1+ 2………………………………………………………3分=1+2.…………………………………………………………4分9.(南京市建邺区2011年中考一模)计算:182)31(0+---. 答案 解:原式=1-2+3 23分=-1+3 2 ···························· 5分 10.(南京市鼓楼区2011年中考一模)计算: (-3)-2-(cos 30°-1) 0-82×0.1252.答案:解:原式=19-1-1……………………………4分=-189……………………………6分11.(南京市高淳县2011年中考一模)计算: (1) (212 -13)× 6 ; 答案:解法1:原式=272 - 2 ………2分 =12 2 - 2 ………3分=11 2 ………4分 解法2: 原式=(4 3 -33)× 6 …2分 =11 33× 6 ………3分 =11 2 ………4分12.(南京市溧水县2011年中考一模)计算:12)21()3(23---+-+-. 解:原式=-9+2+1-2 …………………………………………………………………4分=8- …………………………………………………………………6分13.(2011名校联合一模)(6分)先化简,再求值. (xx -1 -21-x )÷1x -1 ,其中x =-12. 考查内容:实数的运算求值 答案:原式=(xx -1 +2 x -1)×(x -1)……………………2分 =x +2x -1×(x -1) =x +2.……………………4分 把x =-12代入得,原式=32.……………………6分14.(2011朝阳区一模)计算: ()12130tan 32101+-+︒-⎪⎭⎫ ⎝⎛-π.考查内容: 实数的运算 答案:解:原式=3213332++⨯- ………………………………………………… 4分 =33+. ………………………………………………………………… 5分15、(2011海淀一模)计算:0211)()4sin 452-+-︒.考查内容:答案:原式=14+-…………………………….……………………………4分= 3.…………………………….……………………………5分16、(2011怀柔一模)(本题满分5分)计算:02sin 302011︒-考查内容:答案:解:原式=1212⨯+……………………………………4分=5分17. (2011平顶山二模)3101(2)()1)sin 60cos 45.3---++︒︒考查内容:答案:解:原式=222313)8(62⨯++--÷ …………………4分 =46246+--……………………………7分 =-2. ……………………………8分18、(2011127219⎛⎫-++ ⎪⎝⎭tan 60︒考查内容:答案:解:原式=51)1)3-+…………………………7分233= ………………………………3分(说明:对一个2分,2个4分,3个5分,4个6分,5个7分) B 组实数的运算一、选择题 1. (2011广东化州市中考模拟)近期由于部分地区民众盲目抢购囤积碘盐,中国疾病控制中心表示,抢购碘盐对于防辐射并没有意义,人体不可能通过摄入如此大量的盐来达到防辐射的。
我国规定碘盐的碘含量为每千克30毫克。
按人均每天食用10克碘盐计算,可获得0.3毫克碘。