第5章自相关性资料讲解
- 格式:ppt
- 大小:812.00 KB
- 文档页数:60
第五讲、自相关1、自相关的概念:古典线性回归中假设扰动项u i中不存在自相关,即E(u i u j)=0, i≠j这表明任一观察值的扰动项不受其他观察值的扰动项的影响。
但是如果存在E(u i u j) ≠0, i≠j表明存在自相关问题。
自相关通常与时间序列数据有关,但截面数据中也可能产生自相关的问题(空间相关),例如,某一家庭消费支出的增加可能影响不愿比别人逊色的另一家庭消费支出的影响。
图a-d表明扰动项u存在可辨别的模式(可能存在自相关),而图e则表明不存在系统模式(可能不存在自相关)。
2、导致自相关的因素:(1)在涉及时间序列数据的回归方程中,大多数经济时间序列数据的一个显著特征是“惯性”或“延迟性”。
如GDP、就业、货币供给等时间序列都呈现周期性,连续的观察值之间很可能存在相互依赖或是相关的。
(2)模型设定错误:应该包括在模型中的重要变量未包括进模型(过低设定)或模型选择了错误的函数形式,这时残差会呈现出系统模式。
(3)蛛网现象:即解释变量是时间滞后变量,即具有时间滞后效应。
如农产品供给模型中价格对供给的影响存在蛛网现象(滞后效应)。
这种情况下的扰动项不是随机的。
(4)数据加工:在实证研究中,通常原数据是要经过加工的。
例如季度数据的时间序列回归中,数据通常是由月度数据按季相加再平均得到,而这种“平滑”过程的本身可能导致扰动项的系统模式,从而产生自相关。
3、自相关的后果:(1)虽然最小二乘估计仍然是线性和无偏的,但不是有效的,即最小二乘估计量(OLS)不是最优线性无偏估计量(BLUE)。
(2)OLS估计量的方差是有偏的,计算OLS估计量的方差或标准差的公式可能严重低估真实的方差或标准差,从而导致常用的t检验和F检验是不可靠的。
(3)通常计算的R2也是不可靠的。
4、自相关的诊断自相关的诊断存在异方差诊断中的类似问题,即ui是无法观察的,而且也不知道其产生机制:我们通过OLS估计,仅仅得到的是ei,通过对ei的讨论来“了解”自相关是否存在。
第五章时间序列的模型识别前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。
从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下:图5.1 建立时间序列模型流程图在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。
需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。
在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。
对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。
所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。
我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。
如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。
同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。
如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关的准则函数,既考虑模型对原始观测值的接近程度,又考虑模型中所含待定参数的个数,最终选取使该函数达到最小值的阶数,常用的该类准则有AIC 、BIC 、FPE 等。
第5章 自相关性5.1 自相关性及其产生的原因5.1.1 什么是自相关性对于模型:t kt k t t t u x b x b x b b y +++++= 22110 (5.1.1)如果随机误差项的各期值之间存在着相关关系,即协方差0)())())(((),cov(≠=--=s t s s t t s t u u E u E u u E u E u u (s t ≠,k s t ,2,1,=)这时,称随机误差项之间存在自相关性或序列相关(Autocorrelation or serial correlation)。
随机误差项的自相关性可以有多种形式,其中最常见的类型是随机误差项之间存在一阶自相关性或一阶序列相关:0)(),cov(11≠=--t t t t u u E u u ,或者:)(1-=t t u f u 。
一阶自相关性可以表示为t t t v u u +⋅=-1ρ (5.1.2)其中ρ是t u 与1-t u 的一阶自相关系数,t v 是满足回归模型基本假定的随机误差项。
因为在大样本情况下,根据OLS 原理,ρ的OLS 估计式为:∑∑--=211ˆt t tuuu ρ(0)(=t u E )而t u 和1-t u 之间的相关系数r 为:∑∑∑--=2121t tt t uu u u r ≈ρˆ211=∑∑--t t tuu u (在大样本情况下,∑∑-≈212t t u u ) 因此,可以认为ρ是t u 与1-t u 的一阶自相关系数。
1≤ρ,1=ρ表示完全正自相关,t t t v u u +=-1;10〈〈ρ表示正自相关;0=ρ表示不存在自相关,t t v u =;01〈〈-ρ表示负自相关;1-=ρ表示完全负自相关,t t t v u u +-=-1。
自相关性的一般形式可以表示成:),,,(21p t t t t u u u f u ---= ,或者:t p t p t t t v u u u u ++++=---ρρρ 2211 (5.1.3)称之为p 阶自回归形式,或模型存在p 阶自相关。
自相关系数‘-概述说明以及解释1.引言1.1 概述概述:自相关系数是用于衡量时间序列数据中各个数据点之间的相关性程度的统计指标。
在时间序列分析中,了解数据点之间的关联性可以帮助我们预测未来的趋势和波动。
自相关系数可以告诉我们当前数据点与之前数据点之间的相关性强弱,进而帮助我们做出更准确的预测。
本文将介绍自相关系数的定义、计算方法及其在实际应用中的领域。
通过深入理解和掌握自相关系数的概念,我们可以更好地分析时间序列数据,从而提高预测的准确性和可靠性。
1.2 文章结构本文分为引言、正文和结论三部分。
在引言部分,我们将介绍本文的概述、文章结构和目的。
在正文部分,我们将详细讨论什么是自相关系数、自相关系数的计算方法以及自相关系数的应用领域。
最后,在结论部分,我们将总结自相关系数的重要性,讨论自相关系数的局限性,并展望未来可能的研究方向。
通过这样的结构安排,读者可以系统地了解和掌握自相关系数的相关知识,深入理解其在实际应用中的意义和价值。
1.3 目的自相关系数作为统计学中重要的概念,其在时间序列分析、信号处理、经济学和金融等领域都有广泛的应用。
因此,本文的目的是深入探讨自相关系数的概念、计算方法以及在不同领域中的应用,希望读者能够通过阅读本文,全面了解和掌握自相关系数的相关知识,进一步拓展对其应用的认识,为实际问题的分析和解决提供理论支持和参考。
同时,本文也将探讨自相关系数的局限性,引领读者思考如何克服这些局限性,并提出未来研究的方向,为自相关系数的进一步研究和应用提供启示。
通过本文的阐述,希望能够增进读者对自相关系数的理解,为其在实际应用中发挥更大的作用提供帮助。
2.正文2.1 什么是自相关系数:自相关系数是统计学中一种用来衡量时间序列数据中自相关性程度的指标。
在时间序列分析中,自相关性指的是同一个变量在不同时间点上的相关性。
自相关系数用来表示数据之间的相关性程度,如果两个数据在时间上相关,那么它们之间的自相关系数将会是一个非零的值,反之则为零。
第七章自相关让我们回忆古典线性回归假设中对扰动项u i的要求: 总体回归函数的扰动项u i无序列相关或无自相关。
但在实际研究中,误差项常常不满足上述假定。
本章要讨论以下问题:1.自相关性质是什么?2.自相关的理论与实际结果是什么?3.如何诊断自相关?4.如果发现比较严重的自相关,如何采取补救措施?§7.1 自相关的性质自相关就是指总体回归方程的误差项u i之间存在着相关,即:在时间(如在时间序列数据中)或空间(如在截面数据中)按顺序所列观察值序列的各成员间存在着相关。
正如异方差的产生常常与截面数据有关,自相关问题通常与时间序列数据有关。
但截面数据中也可能产生自相关问题。
古典线性回归模型中扰动项u i中不存在自相关可表示为:E(u i u j) = 0, i≠j (7.1)其含义为两个不同误差项u i和u j的乘积的期望是零,即,任一观察值的扰动项不受其他观察值扰动项的影响。
例如,在分析消费支出与家庭收入的时序数据时,本期家庭收入的增加,只影响本期消费支出,对以后的消费支出没有影响。
如果不同误差项之间存在着依赖关系,即u i存在自相关,则可表示为:E(u i u j) ≠ 0, i≠j (7.2)这种情况下,本期家庭收入的增加,可能会影响下一期或以后几期的消费支出。
由于我们无法观察到总体扰动项u i,我们只能通过样本扰动项e i来判断u i的行为。
如果u i或e i呈现出图7.1中a ~ d的形式,则表示u i自相关,如果u i或e i呈现图7.1 中e的形式,则表示u i不存在自相关。
§7.2 自相关产生的原因§7.2.1 惯性多数经济时间序列都存在惯性。
如国民生产总值、就业、货币供给、价格指数、消费、投资等,都呈现周期波动。
当经济复苏时,由萧条的底部开始,大多数经济序列向上移动,在向上移动的过程中,序列某一点的值会大于其前期值。
这种向上的“动力”存在,直到经济开始衰退。