化工过程流体力学基础
- 格式:ppt
- 大小:8.29 MB
- 文档页数:75
化工流体力学流体性质流体流动与流量计算化工流体力学是研究化工过程中流动态、变化过程以及与之相应的力学特性的学科。
其中,流体的性质对于流体力学的研究起着至关重要的作用。
本文将从流体性质和流体流动与流量计算两个方面来探讨化工流体力学的相关知识。
一、流体性质在研究流体力学中,了解流体的性质以及对流体的测量是必不可少的。
流体的性质包括物理性质和力学性质两个方面。
物理性质:物理性质是指描述流体本身特性的性质,主要包括密度、粘度、表面张力和温度等。
密度是单位体积内的质量,通常用符号ρ表示;粘度是流体抵抗剪切应力的能力,用符号η表示;表面张力是液体分子间的相互作用力,用符号σ表示;温度则是指流体内部的热力学状态,通常用符号T表示。
力学性质:力学性质是指流体力学中用来描述流体运动状态的性质,主要包括流速、流量和压力等。
流速是指流体单位时间通过某一截面的体积;流量是指单位时间通过某一截面的质量或体积;压力是指单位面积上的力。
了解流体的流速、流量和压力等力学性质对于预测和控制化工过程中的流动非常重要。
二、流体流动与流量计算在化工流体力学中,流体的流动状态与流速、流量以及流动阻力等紧密相关。
下面将介绍一些常见的流体流动和流量计算的方法和公式。
1. 流动形式:流体的流动方式可以分为层流和湍流两种形式。
层流是指在管道或其他容器内,流体以一定的速度无旋转、无交错地排列;湍流则是在流体流动的过程中,流速发生波动,产生旋转、交错的现象。
流动状态的判定对于工程设计和实际操作都有重要意义。
2. 流速计算:流速的计算方法有多种,常见的方法有流体静力学方法和流体动力学方法。
流体静力学方法主要通过统计学原理来计算流速,适用于层流流动;流体动力学方法则通过速度场的分析来计算流速,适用于湍流流动。
具体的计算公式可以根据流速计的类型和原理来选择。
3. 流量计算:流量计算是化工流体力学中非常重要的内容,常用的流量计算方法有测量壁压降法、浮子流量计法、涡街流量计法和热式流量计法等。
一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。
2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。
3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。
4.两种流动形态:层流和湍流。
流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。
当流体层流时,其平均速度是最大流速的1/2。
5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。
6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。
孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。
其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。
转子流量计的特点——恒压差、变截面。
8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。
)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。
9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。
化工原理流体流动知识点总结化工原理中的流体流动是指在化工过程中物质(气体、液体或固体颗粒)在管道、设备或反应器中的运动过程。
了解流体流动的知识对于化工工程师来说至关重要。
下面是关于流体流动的一些重要知识点的总结。
1.流体的物理性质:-流体可以是气体、液体或固体颗粒。
气体和液体的主要区别在于分子之间的相互作用力和分子间距。
-流体的物理性质包括密度、黏度、表面张力、压力和流速等。
2.流体的运动方式:- 流体的运动可以是层流(Laminar flow)或紊流(Turbulent flow)。
-在层流中,流体以平行且有序的方式流动,分子之间的相互作用力主导着流动。
-在紊流中,流体以非线性和混乱的方式运动,分子之间的相互作用力相对较小,惯性和湍流运动主导着流动。
3.流体的流动方程:-流体流动可以通过连续性方程、动量方程和能量方程来描述。
-连续性方程(质量守恒方程)描述了流体在空间和时间上的质量守恒关系。
-动量方程描述了流体中的力平衡关系,包括压力梯度、黏度和惯性力等因素。
-能量方程描述了流体中的能量守恒关系,包括热传导、辐射和机械能转化等因素。
4.管道流动:-管道中的流体流动可以是单相(单一组分)或多相(多个组分)。
-管道流动的主要参数包括流速、压力损失和摩阻系数等。
- 常用的管道流动方程包括Bernoulli方程、Navier-Stokes方程和Darcy-Weisbach方程等。
5.流体输送:-流体输送是指将流体从一个地点输送到另一个地点的过程。
-在流体输送中,常用的设备和装置包括泵、压缩机、阀门、流量计和管道系统等。
-输送过程中要考虑流体的性质、流速、压力损失以及设备的选型和操作条件等因素。
6.流体混合与分离:-流体混合和分离是化工过程中常见的操作。
-混合可以通过搅拌、喷淋、气体分散等方法实现。
-分离可以通过过滤、沉淀、蒸馏、萃取和膜分离等方法实现。
7.流体力学实验:-流体力学实验是研究流体流动和相应现象的方法之一-常用的流体力学实验包括流速测量、压力测量、流动可视化和摩擦系数测定等。
流体力学基础流体的性质与流体力学原理流体力学基础——流体的性质与流体力学原理流体力学是研究流体运动和流体力学基本原理的学科,广泛应用于航空、航海、能源、化工等领域。
本文将介绍流体的性质以及流体力学的基本原理。
一、流体的性质流体指的是气体和液体,在力学中被视为连续介质。
流体具有以下几个主要的性质:1. 可流动性:与固体不同,流体具有较低的粘性和内聚力,因此可以流动。
流体的流动性使其在工程领域中应用广泛,并且流体力学正是研究流体流动的力学学科。
2. 不可压性:对于液体来说,密度变化相对较小,一般可视为不可压缩的。
而对于气体来说,变化较大的压力会引起密度变化,所以流体力学中对气体流动的研究需要考虑密度的变化。
3. 流体静力学压力:流体静力学压力是由于流体自身重力或外力作用下的压力差异引起的。
流体中的每一点都承受来自其周围流体的压力。
4. 流体动力学压力:流体动力学压力是由于流体的动力作用引起的压力差异。
当流体以较高速度通过管道或物体时,流体动力学压力扮演着重要的角色。
二、流体力学原理流体力学原理是研究流体运动的基本规律,它由庞加莱提出的运动方程、贝努利定律、连续方程等组成。
以下将分别介绍这几个基本原理:1. 流体运动方程:流体运动方程描述了流体在空间中运动的规律。
流体运动方程包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程指出质量在流体中不会凭空消失或产生;动量守恒方程描述了流体运动中受到的作用力和压力的关系;能量守恒方程则研究了流体在流动过程中的能量转化。
2. 贝努利定律:贝努利定律是流体力学中最为著名的定律之一。
它说明了在无粘度和定常状态下,流体在不同位置的速度、压力和高度之间存在着一种平衡关系。
贝努利定律在飞行器设计和管道流动等领域中有广泛的应用。
3. 材料导数:材料导数是流体力学中用来描述物质随时间变化的速率的重要概念。
对于流体来说,由于其非刚性的特性,物质随时间的变化需要通过材料导数来描述,它包括时间导数和空间导数。
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。