《圆》同步试题及解题分析
- 格式:doc
- 大小:154.00 KB
- 文档页数:6
《圆》同步试题一、填空1.三角形、四边形是直线图形,圆是()图形;圆中心的一点叫做(),通过圆心,并且()都在()的线段叫做圆的直径;战国时期《墨经》一书中记载“圜(圆),一中同长也。
”表示圆心到圆上各点的距离都相等,即()都相等。
考查目的:圆的认识。
答案:曲线;圆心,两端,圆上;半径。
解析:可结合具体图形,采用对比的方法得出圆的图形特征。
对于圆心、直径和半径的概念,应使学生在深刻理解的基础上进行答题。
2.圆心确定圆的( ),半径确定圆的( );圆是轴对称图形,直径所在的直线是圆的( );圆的周长与它的直径的比值是一个( ),我们把它叫做( ),用字母()表示,计算时通常取值( )。
考查目的:圆的认识;圆周率意义的理解。
答案:位置,大小;对称轴;固定的数,圆周率,,3.14。
解析:此题包括了圆心和半径对确定圆的位置和大小的作用;圆的轴对称图形特征;圆周率的意义及字母表示方法等知识。
3.看图填空(单位:厘米)。
图1:=()cm 图2:=()cm图3:=()cm 图4:=()cm考查目的:圆的直径与半径之间的关系。
答案:12;8.6;4.5;2.4。
解析:可以让学生自己独立观察、思考,填一填。
然后让学生说说是如何分析得出答案的,初步培养学生推理能力,发展空间观念。
教学实际中,可以让学生画出第二幅图和第四幅图中圆的直径,再和梯形的高、长方形的边长进行比较,验证结论。
4.画一个直径是5厘米的圆,圆规两脚之间的距离是()厘米。
如果要画一个周长是12.56厘米的圆,圆规两脚之间的距离应该是()厘米,这个圆的面积是()平方厘米。
考查目的:画圆的方法;圆的周长和面积计算。
答案:2.5;2,12.56。
解析:画圆时,圆规两脚之间的距离就是半径的长度;根据圆的周长公式,通过计算得出画周长是12.56厘米的圆,半径是多少;再计算面积。
该题可引导学生比较“题目中出现了两个12.56,它们表示的意义相同吗?”5.看图填空。
新人教版六年级上册《第4章圆》同步练习卷F(三)一、想好了再填.1. 圆所占________叫做圆的面积。
2. 把一个圆形硬纸板分成若干等份。
然后剪开拼成一个近似的________形,这个长方形的长相当于圆的________,用字母表示是________;长方形的宽就是圆的________.因为长方形的面积=长×宽,所以圆的面积=________.3. 半径是5厘米的圆的周长是________厘米,面积是________平方厘米。
4. 一个圆的半径扩大3倍,则它的直径________,面积________.5. 在一个边长为20厘米的正方形中,画一个最大的圆,圆的周长是________厘米,面积是________平方厘米。
6. 圆环的面积=________圆面积-________圆面积。
7. 一个圆环内直径为2cm,外直径为3cm,圆环的面积为________cm2.8. 一个圆环,外圆直径是8cm,环宽是1cm,外圆半径是________,内圆半径是________,圆环面积是________.9. 在一张长6cm、宽4cm的长方形纸上画一个最大的圆,这个圆的半径是________,面积是________.10. 把一根6.28m长的铁丝围成一个正方形,则正方形的面积是________m2;若围成一个圆,则圆的面积是________m2.11. 甲圆的半径是乙圆半径的2倍,那么甲圆的直径是乙圆直径的________倍,甲圆周长是乙圆周长的________倍,甲圆面积是乙圆面积的________倍。
12. 周长相等的长方形、正方形和圆中,面积最大的是________.13. 小侣和小乐分别从A、B处出发,沿半圆走到C、D.小侣所走的路线半径为10米,她走过的路程是________米。
小乐所走的路程半径是________米,走过的路程是________米。
两人所走的路程相差________米。
人教版九年级数学上册《24.1.1圆》同步测试题带答案一、单选题1.下列命题中正确的有( ) A .长度相等的弧是等弧 B .相等的圆心角所对的弦相等 C .等边三角形的外心与内心重合D .任意三点可以确定一个圆2.如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是( )A .只有甲是扇形B .只有乙是扇形C .只有丙是扇形D .只有乙、丙是扇形3.如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ⊥,OCD ∠的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动4.下列命题中,⊙直径是圆中最长的弦;⊙长度相等的两条弧是等弧;⊙半径相等的两个圆是等圆;⊙半径不是弧,半圆包括它所对的直径,其中正确的个数是( ) A .1B .2C .3D .45.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积之和为( )A .πB .2πC .3πD .4π6.如图,在Rt ⊙ABC 中,⊙ACB =90°, AC =3,以点C 为圆心、CA 为半径的圆与AB 交于点D ,若点D 巧好为线段AB 的中点,则AB 的长度为( )A .32B .3C . 6D .9二、填空题7.到点O 的距离等于7cm 的点的集合是 .8.下图中,点O 是( ),线段OA 是圆的( ),线段BC 是圆的( ).9.已知,如图AB ,AD 是O 的弦 30B ∠=︒,点C 在弦AB 上,连结CO 并延长交O 于点D ,35D ∠=︒则BAD ∠的度数是 .10.如图,半径为r 的O 沿着边长为a 的正方形ABCD 的边作无滑动地滚动一周回到原来的位置,O 自身转动的圈数是 .(用含a r ,的代数式表示)11.下列说法:⊙直径是弦;⊙弦是直径;⊙大于半圆的弧是优弧;⊙长度相等的弧是等弧,其中正确的是 .12.顶点在圆外,并且两边都和圆相交的角叫做圆外角.圆外角的两边所夹的两条弧的度数与该角的度数之间的数量关系是:圆外角的度数等于 .三、解答题13.如图,O 的弦,AB CD 的延长线交于点P ,连接OP ,且OP 平分APC ∠.求证:PA PC =.14.如图,点O 是同心圆的圆心,大圆半径OA ,OB 分别交小圆于点C ,D ,求证:AB CD ∥.15.如图所示,AB 为O 的直径,CD 是O 的弦,AB CD ,的延长线交于点E ,已知220AB DE AEC =∠=︒,.求AOC ∠的度数.16.如图,O 的半径5cm OA =,AB 是弦,C 是AB 上一点,且OC OA ⊥,OC BC =求A ∠的度数.17.如图,破残的圆形轮片上,弦AB 的垂直平分线交弧AB 于C,交弦AB 于D .(1)求作此残片所在的圆的圆心(不写作法,保留作图痕迹); (2)若AB=8cm,CD=2cm,求(1)中所作圆的半径.18.如图,在O 中,AB 是直径,CD 是弦,延长AB ,CD 相交于点P ,且2AB DP = 18P ∠=︒ 求AOC ∠的度数.题号 1 2 3 4 5 6 答案CBBCD C7.以点O 为圆心,7cm 为半径的圆 8. 圆心 半径 直径 9.65︒ 10.21a r π+/21arπ+ 11.①③/③①12.两条弧度数差值的绝对值的一半 15.60AOC ∠=︒ 16.30︒17.(2) 圆的半径为5cm. 18.54。
圆单元测试题及答案解析一、选择题1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆的直径是圆的最长弦C. 圆的半径是圆心到圆周上任意一点的距离D. 圆的周长与直径的比值是一个常数答案:A2. 圆的周长公式是:A. C = πrB. C = 2πrC. C = 2rD. C = πd答案:B3. 如果圆的半径为3,那么它的直径是:A. 6B. 9C. 12D. 15答案:A二、填空题4. 圆的面积公式是 _______。
答案:A = πr²5. 一个圆的半径是4厘米,那么它的周长是 _______ 厘米。
答案:25.12三、简答题6. 圆的切线有哪些特点?答案:圆的切线在圆上只有一个接触点,且在该点的切线与半径垂直。
7. 圆的内接四边形有哪些性质?答案:圆的内接四边形的对角互补,即一个内角等于其对角的补角。
四、计算题8. 已知圆的半径为5厘米,求圆的周长和面积。
答案:周长 C = 2πr = 2 × 3.14 × 5 = 31.4 厘米;面积 A = πr² = 3.14 × 5² = 78.5 平方厘米。
9. 一个圆的周长是44厘米,求这个圆的半径。
答案:半径r = C / (2π) = 44 / (2 × 3.14) ≈ 7 厘米。
五、证明题10. 证明:圆的内接四边形的对角线互相平分。
答案:设圆内接四边形ABCD,连接对角线AC和BD。
由于ABCD是圆内接四边形,所以∠A + ∠C = 180°,同理∠B + ∠D = 180°。
根据圆周角定理,∠BAC和∠BDC是圆心角的一半,所以它们相等。
同理∠CAD和∠ABD也相等。
因此,△ABC和△ADC是全等的,所以AC平分BD。
同理,BD平分AC。
所以圆的内接四边形的对角线互相平分。
六、应用题11. 一个圆形花坛的直径是20米,求花坛的周长和面积。
新人教版六年级上册《第4章圆》同步练习卷F(二)一、想好了再填.1. 围成圆的________的长叫做圆的周长。
2. 圆的周长总是直径长度的________倍。
这个倍数是固定的,我们把它叫做________.3. 要做50个直径是20厘米的铁圈,至少需要铁丝________米。
4. 一个挂钟的分针长10厘米,经过1小时,分针针尖行走________厘米。
5. 把一块边长是8分米的正方形纸剪成一个最大的圆形,这个圆形纸板的周长是________.6. 有三个圆,第一个圆的直径是1分米4厘米,第二个圆的半径是6.5厘米,第三个圆的直径是1.6分米。
第________个圆的周长最短,它的周长是________厘米。
7. 圆的周长从6.28米增加到9.42米,直径比原来增加了________米。
8. 画出一个圆的周长是18.84厘米,那么圆规两脚间的距离是________.9. 用一根31.4厘米的铁丝围成一个正方形,这个正方形的边长是________厘米,如果围成一个圆形,这个圆的直径是________厘米。
二、看准了再选.(将正确答案的序号填在括号里)同一个圆里一条直径的长等于()条半径的长。
A.1B.2C.3圆周率π是一个()A.有限小数B.循环小数C.无限不循环小数两个圆的半径比是4:1,那么它们的周长比是()A.2:1B.1:4C.4:1直径是3分米的圆,在2米的距离内可以滚动()A.2周多B.3周多C.6周多二、理清了再判断.(对的画“√”,错的画“×”)大圆的周长是小圆周长的3倍,那么大圆的半径也是小圆半径的3倍。
________.(判断对错)把两个相等的半圆拼成一个圆,那么这两个半圆的周长之和等于这个圆的周长________.大圆的直径是10cm,小圆的直径是1cm,则大圆的圆周率大于小圆的圆周率。
________.(判断对错)三、求下面各圆的半径.C=157米。
(求半径)C=25.12分米。
九年级数学上册《圆》练习题及答案解析学校:___________姓名:___________班级:___________一、单选题1.下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条2.下列语句不正确的有()个.①直径是弦;①优弧一定大于劣弧;①长度相等的弧是等弧;①半圆是弧.A.1B.2C.3D.43.如图,在①O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦.A.2B.3C.4D.54.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等5.下列由实线组成的图形中,为半圆的是()A.B.C.D.6.下列说法正确的是()A.平分弦的直径垂直于弦B .半圆(或直径)所对的圆周角是直角C .相等的圆心角所对的弧相等D .若一条直线与一个圆有公共点,则二者相交二、填空题7.如图,已知在Rt△ABC 中,①ACB =90°,分别以AC ,BC ,AB 为直径作半圆,面积分别记为S 1,S 2,S 3,若S 3=9π,则S 1+S 2等于_____.8.如图,Rt ABC 中,90ACB ∠=︒,以点C 为圆心,BC 为半径的圆交AB 于D ,交AC 于点E ,40BCD ∠=︒,则A ∠=______.9.如图,圆中扇子对应的圆心角α(180α)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则βα-的度数是__________.10.数学家赵爽在注解《周髀算经》时给出了“赵爽弦图”,如图所示,它是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,若直角三角形较短直角边长为6,大正方形的边长为10,则小正方形的边长为________.11.如图,在O 中,AB 为直径,8AB =,BD 为弦,过点A 的切线与BD 的延长线交于点C ,E 为线段BD 上一点(不与点B 重合),且OE DE =.(1)若35B ∠=︒,则AD 的长为______(结果保留π);(2)若6AC =,则DE BE=______.三、解答题12.如图,在Rt ABC 中,90ACB ∠=︒,以AC 为直径作O ,交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点E .(1)求证:DF 是O 的切线;(2)若2CF =,4DF =,求O 的半径.13.如图,点A ,B 分别在①DPE 两边上,且PA PB =,点C 在①DPE 平分线上.(1)连接AC ,BC ,求证:AC BC =;(2)连接AB 交PC 于点O ,若60APB ∠=︒,6PA =,求PO 的长;(3)若PO OC ,且点O 是PAB △的外心,请直接写出四边形P ACB 的形状.参考答案与解析:1.C【详解】解:A 、直径是弦,但弦不一定是直径,不符合题意;B 、过圆心的弦是直径,但线段不一定是直径,不符合题意;C 、圆中最长的弦是直径,符合题意;D 、直径有无数条,不符合题意,故选C .2.B【分析】根据圆的概念、等弧的概念、垂径定理、弧、弦直径的关系定理判断即可.【详解】解:①直径是弦,①正确;①在同圆或等圆中,优弧大于劣弧,①错误;①在同圆或等圆中,长度相等的弧是等弧,①错误;①半圆是弧,①正确;故不正确的有2个.故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.B【详解】根据弦的概念,AB 、BC 、EC 为圆的弦,共有3条弦.故选B.4.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.5.B【分析】根据半圆的定义即可判断.【详解】半圆是直径所对的弧,但是不含直径,故选B .【点睛】此题主要考查圆的基本性质,解题的根据熟知半圆的定义.6.B【分析】利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可【详解】A 、平分弦(不是直径)的直径垂直于弦,故本选项错误;B 、半圆或直径所对的圆周角是直角,故本选项正确;C 、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D 、若一条直线与一个圆有公共点,则二者相交或相切,故本选项错误,故选B .【点睛】本题考查直线与圆的位置关系,垂径定理,圆心角、弧、弦的关系,圆周角定理.能清楚的知道每个定理的条件和它对应的结论是解题的关键.7.9π.【分析】根据勾股定理和圆的面积公式,可以得到S 1+S 2的值,从而可以解答本题.【详解】解:①①ACB =90°,①AC 2+BC 2=AB 2,①S 1=π(2AC )2×12,S 2=π(2BC )2×12,S 3=π(2AB )2×12, ①S 1+S 2=π(2AC )2×12+π(2BC )2×12=π(2AB )2×12=S 3, ①S 3=9π,①S 1+S 2=9π,故答案为:9π.【点睛】本题考查勾股定理,解答本题的关键是利用数形结合的思想解答.8.20°.【分析】由半径相等得CB=CD,则①B=①CDB,在根据三角形内角和计算出①B=12(180°-①BCD)=70°,然后利用互余计算①A的度数.【详解】解:①CB=CD,①①B=①CDB,①①B+①CDB+①BCD=180°,①①B=12(180°-①BCD)=12(180°-40°)=70°,①①ACB=90°,①①A=90°-①B=20°.故答案为20°.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了三角形内角和定理.9.90°##90度【分析】根据题意得出α=0.6β,结合图形得出β=225°,然后求解即可.【详解】解:由题意可得:α:β=0.6,即α=0.6β,①α+β=360°,①0.6β+β=360°,解得:β=225°,①α=360°-225°=135°,①β-α=90°,故答案为:90°.【点睛】题目主要考查圆心角的计算及一元一次方程的应用,理解题意,得出两个角度的关系是解题关键.10.2【分析】在Rt①ABC中,根据勾股定理求出AC,即可求出CD.【详解】解:如图,①若直角三角形较短直角边长为6,大正方形的边长为10,①AB =10,BC =AD =6,在Rt ①ABC 中,AC 8,①CD =AC ﹣AD =8﹣6=2.故答案为:2.【点睛】本题主要考查了勾股定理,熟练掌握勾股定理是解决问题的关键.11. 149π 2539 【分析】(1)根据圆周角定理求出①AOD =70°,再利用弧长公式求解;(2)解直角三角形求出BC ,AD ,BD ,再利用相似三角形的性质求出DE ,BE ,可得结论.【详解】解:(1)①270AOD ABD ∠=∠=︒,①AD 的长704141809ππ⋅⋅==; 故答案为:149π; (2)连接AD ,①AC 是切线,AB 是直径,①AB AC ⊥,①10BC ,①AB 是直径,①90ADB ∠=︒,①AD CB ⊥,①1122AB AC BC AD ⋅⋅=⋅⋅,①245 AD=,①325 BD==,①OB OD=,EO ED=,①EDO EOD OBD ∠=∠=∠,①DOE DBO△∽△,①DO DE DB DO=,①43245DE=,①52 DE=,①325395210 BE BD DE=-=-=,①5252393910DEBE==.故答案为:25 39.【点睛】本题主要考查圆的相关知识,相似三角形的判定和性质,解直角三角形等知识,熟练掌握各性质及判定定理,正确寻找相似三角形解决问题是解题的关键.12.(1)见解析(2)3【分析】(1)连接OD、CD,由AC为①O的直径知①BCD是直角三角形,结合E为BC的中点知①CDE=①DCE,由①ODC=①OCD且①OCD+①DCE=90°可得答案;(2)设①O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.(1)解:如图,连接OD、CD.①AC为①O的直径,①①ADC=90°,①①CDB=90°,即①BCD是直角三角形,①E为BC的中点,①BE=CE=DE,①①CDE=①DCE,①OD=OC,①①ODC=①OCD,①①ACB=90°,①①OCD+①DCE=90°,①①ODC+①CDE=90°,即OD①DE,①DE是①O的切线;(2)解:设①O的半径为r,①①ODF=90°,①OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,①①O的半径为3.【点睛】本题主要考查了圆切线的判定与性质,等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理等等,熟知圆切线的性质与判定是解题的关键.13.(1)证明见解析(2)(3)正方形,理由见解析【分析】(1)证明①P AC①①PBC即可得到结论;(2)根据已知条件得到①APC=①BPC=30°,OP①AB于O,求得AO=3,再利用勾股定理即可得到结论;P A B C在以O为圆心,OP为半径的圆上,再证明①APB=①PBC=①BCA=①CAP=90°,可得(3)先证明,,,OBP BPC POB根据正方形的判定定理即可得到结论.四边形APBC为矩形,再证明45,90,(1)证明:①点C在①DPE平分线上,① APC BPC ∠=∠ ,又①P A =PB ,PC =PC ,①①P AC ①①PBC (SAS );.AC BC(2)解:①,,60,PA PB APOBPO APB ①①APC =①BPC =30°,OP ①AB 于O ;①P A =6,①AO =3, 22633 3.OP(3) 解:如图,①点O 是①P AB 的外心,①OA =OB =OP ,而OP =OC , ,,,P A B C 在以O 为圆心,OP 为半径的圆上,,AB PC 为圆的直径,①①APB =①PBC =①BCA =①CAP =90°,①四边形APBC 为矩形,PC 平分,APB ∠45,APC BPC,OP OB 45,90,OBP BPC POB①四边形APBC 为正方形.【点睛】本题考查了圆的综合题,全等三角形的判定和性质,正方形的判定,圆的确定,圆周角定理,正确的识别图形是解题的关键.。
圆(一)一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.513.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为度.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=°.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=度.三、解答题(共5小题)26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.圆(一)参考答案与试题解析一、选择题1.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理;含30度角的直角三角形.【专题】几何图形问题.【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.2.如图,在⊙O中,=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°【考点】圆周角定理;垂径定理.【分析】先求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=50°,∴∠AOC=50°,∴∠ADC=∠AOC=25°,故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3.如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.55°B.60°C.65°D.70°【考点】圆周角定理.【分析】连接OB,要求∠BAO的度数,只要在等腰三角形OAB中求得一个角的度数即可得到答案,利用同弧所对的圆周角是圆心角的一半可得∠AOB=50°,然后根据等腰三角形两底角相等和三角形内角和定理即可求得.【解答】解:连接OB,∵∠ACB=25°,∴∠AOB=2×25°=50°,由OA=OB,∴∠BAO=∠ABO,∴∠BAO=(180°﹣50°)=65°.故选C.【点评】本题考查了圆周角定理;作出辅助线,构建等腰三角形是正确解答本题的关键.4.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B.=C.∠ACB=90°D.∠COB=3∠D【考点】圆周角定理;垂径定理;圆心角、弧、弦的关系.【分析】根据垂径定理、圆周角定理,进行判断即可解答.【解答】解:A、∠A=∠D,正确;B、,正确;C、∠ACB=90°,正确;D、∠COB=2∠CDB,故错误;故选:D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧,也考查了圆周角定理,解集本题的关键是熟记垂径定理和圆周角定理.5.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,再利用互余得∠ACD=90°﹣∠DCB=70°,然后根据同弧或等弧所对的圆周角相等求解.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6.如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.32°B.38°C.52°D.66°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ADB的度数,继而求得∠A的度数,又由圆周角定理,即可求得答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=52°,∴∠A=90°﹣∠ABD=38°;∴∠BCD=∠A=38°.故选:B.【点评】此题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.7.如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠BOD的度数是()A.25°B.30°C.40°D.50°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】由“等弧所对的圆周角是所对的圆心角的一半”推知∠DOB=2∠C,得到答案.【解答】解:∵在⊙O中,直径CD垂直于弦AB,∴=,∴∠DOB=2∠C=50°.故选:D.【点评】本题考查了圆周角定理、垂径定理.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【考点】圆周角定理.【专题】计算题.【分析】连结OB,如图,先根据圆周角定理得到∠BOC=2∠A=144°,然后根据等腰三角形的性质和三角形内角和定理计算∠BCO的度数.【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.故选B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.9.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30°B.45°C.60°D.70°【考点】圆周角定理.【专题】计算题.【分析】先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.【解答】解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB 与∠ACB是优弧AB所对的圆周角.11.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100° D.80°或100°【考点】圆周角定理.【分析】首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.【解答】解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.【点评】此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确,==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD,=,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.13.如图,点A,B,C是⊙O上的三点,已知∠AOB=100°,那么∠ACB的度数是()A.30°B.40°C.50°D.60°【考点】圆周角定理.【专题】计算题;压轴题.【分析】根据图形,利用圆周角定理求出所求角度数即可.【解答】解:∵∠AOB与∠ACB都对,且∠AOB=100°,∴∠ACB=∠AOB=50°,故选C【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.14.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是()A.22°B.26°C.32°D.68°【考点】圆周角定理.【分析】先根据圆周角定理求出∠BOC的度数,再根据等腰三角形的性质即可得出结论.【解答】解:∵∠A与∠BOC是同弧所对的圆周角与圆心角,∠A=68°,∴∠BOC=2∠A=136°.∵OB=OC,∴∠OBC==22°.故选A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.15.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°【考点】圆周角定理.【分析】根据∠DOB=140°,求出∠AOD的度数,根据圆周角定理求出∠ACD的度数.【解答】解:∵∠DOB=140°,∴∠AOD=40°,∴∠ACD=∠AOD=20°,故选:A.【点评】本题考查的是圆周角定理,掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.16.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).17.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.18.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100° D.130°【考点】圆周角定理.【分析】首先在上取点D,连接AD,CD,由圆周角定理即可求得∠D的度数,然后由圆的内接四边形的性质,求得∠ABC的度数.【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.二、填空题19.如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧是劣弧的2倍;⑤AE=BC,其中正确的序号是①②④.【考点】圆周角定理;等腰三角形的判定与性质;弧长的计算.【专题】压轴题.【分析】根据圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角等知识,运用排除法逐条分析判断.【解答】解:连接AD,AB是直径,则AD⊥BC,又∵△ABC是等腰三角形,故点D是BC的中点,即BD=CD,故②正确;∵AD是∠BAC的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC﹣∠BAD=45°=2∠CAD,故④正确;∵∠EBC=22.5°,2EC≠BE,AE=BE,∴AE≠2CE,③不正确;∵AE=BE,BE是直角边,BC是斜边,肯定不等,故⑤错误.综上所述,正确的结论是:①②④.故答案是:①②④.【点评】本题考查了圆周角定理,等腰三角形的判定与性质以及弧长的计算等.利用了圆周角定理,等边对等角,等腰三角形的性质,直径对的圆周角是直角求解.20.将量角器按如图所示的方式放置在三角形纸板上,使顶点C在半圆上,点A、B的读数分别为100°、150°,则∠ACB的大小为25度.【考点】圆周角定理.【专题】计算题.【分析】连接OA,OB,根据题意确定出∠AOB的度数,利用圆周角定理即可求出∠ACB 的度数.【解答】解:连接OA,OB,由题意得:∠AOB=50°,∵∠ACB与∠AOB都对,∴∠ACB=∠AOB=25°,故答案为:25【点评】此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.21.如图所示,A、B、C三点均在⊙O上,若∠AOB=80°,则∠ACB=40°.【考点】圆周角定理.【专题】计算题.【分析】直接根据圆周角定理求解.【解答】解:∠ACB=∠AOB=×80°=40°.故答案为40.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.22.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=,则线段AC的长为2.【考点】圆周角定理;解直角三角形.【专题】计算题.【分析】连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则sinD=sinB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.【解答】解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴sinD=sinB=,在Rt△ACD中,∵sinD==,∴AC=AD=×8=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.23.如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为42°.【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=48°,∴∠OAB=∠OBA=48°,∴∠AOB=180°﹣48°×2=84°,∴∠C=∠AOB=42°,故答案为:42°.【点评】此题综合运用了三角形的内角和定理以及圆周角定理.解决本题的关键是熟记一条弧所对的圆周角等于它所对的圆心角的一半.24.如图,点O为所在圆的圆心,∠BOC=112°,点D在BA的延长线上,AD=AC,则∠D=28°.【考点】圆周角定理;等腰三角形的性质.【分析】由AD=AC,可得∠ACD=∠ADC,由∠BAC=∠ACD+∠ADC=2∠D,可得∠BAC的度数,由∠D=∠BAC即可求解.【解答】解:∵AD=AC,∴∠ACD=∠ADC,∵∠BAC=∠ACD+∠ADC=2∠D,∴∠BAC=∠BOC=×112°=56°,∴∠D=∠BAC=28°.故答案为:28°.【点评】本题主要考查了圆周角及等腰三角形的性质,解题的关键是找出∠D与∠BOC 的关系.25.如图,点A,B,C是⊙O上的点,AO=AB,则∠ACB=150度.【考点】圆周角定理;等边三角形的判定与性质;圆内接四边形的性质.【分析】根据AO=AB,且OA=OB,得出△OAB是等边三角形,再利用圆周角和圆心角的关系得出∠BAC+∠ABC=30°,解答即可.【解答】解:∵点A,B,C是⊙O上的点,AO=AB,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠BAC+∠ABC=30°,∴∠ACB=150°,故答案为:150【点评】此题考查了圆心角、圆周角定理问题,关键是根据AO=AB,且OA=OB,得出△OAB是等边三角形.三、解答题26.已知:如图,AB为⊙O的直径,点C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.【考点】圆周角定理;勾股定理;扇形面积的计算.【分析】(1)由AB为⊙O的直径,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.连OD,得到等腰直角三角形,根据勾股定理即可得到结论;(2)根据S阴影=S扇形﹣S△OBD即可得到结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.连OD,∵OD=OB,∴∠ODB=∠ABD=45°.∴∠BOD=90°.∴BD==5cm.(2)S阴影=S扇形﹣S△OBD=π•52﹣×5×5=cm2.【点评】本题考查了圆周角定理,勾股定理,等腰直角三角形的性质,扇形的面积,三角形的面积,连接OD构造直角三角形是解题的关键.27.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.【考点】圆周角定理;圆心角、弧、弦的关系.【专题】计算题.【分析】(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.【解答】(1)解:∵BC=DC,∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,∴∠BAD=∠BAC+∠CAD=39°+39°=78°;(2)证明:∵EC=BC,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠BDC=∠CBD,∴∠1=∠2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰三角形的性质.28.如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;垂径定理.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为的中点时,PE+CF=PC从而得出最大面积.【解答】证明:(1)△ABC是等边三角形.证明如下:在⊙O中∵∠BAC与∠CPB是所对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大.理由如下,如图2,过点P作PE⊥AB,垂足为E.过点C作CF⊥AB,垂足为F.=AB•PE,S△ABC=AB•CF,∵S△APB=AB•(PE+CF),∴S四边形APBC当点P为的中点时,PE+CF=PC,PC为⊙O的直径,∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=,=×2×=.∴S四边形APBC【点评】本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.29.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF 并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【考点】圆周角定理;全等三角形的判定与性质;扇形面积的计算.【分析】(1)解直角三角形求出OB,求出AB,根据圆周角定理求出∠ACB,解直角三角求出AC即可;(2)求出△ACF和△AOF全等,得出阴影部分的面积=△AOD的面积,求出三角形的面积即可.【解答】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF +S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.【点评】本题考查了三角形的面积,全等三角形的性质和判定,圆周角定理,解直角三角形的应用,能求出△AOD的面积=阴影部分的面积是解此题的关键.30.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求的长.(2)求弦BD的长.【考点】圆周角定理;含30度角的直角三角形;等腰直角三角形;弧长的计算.【分析】(1)首先根据AB是⊙O的直径,可得∠ACB=∠ADB=90°,然后在Rt△ABC中,求出∠BAC的度数,即可求出∠BOC的度数;最后根据弧长公式,求出的长即可.(2)首先根据CD平分∠ACB,可得∠ACD=∠BCD;然后根据圆周角定理,可得∠AOD=∠BOD,所以AD=BD,∠ABD=∠BAD=45°;最后在Rt△ABD中,求出弦BD的长是多少即可.【解答】解:(1)如图,连接OC,OD,,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ABC中,∵,∴∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,∴的长=.(2)∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠AOD=∠BOD,∴AD=BD,∴∠ABD=∠BAD=45°,在Rt△ABD中,BD=AB×sin45°=10×.【点评】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了含30度角的直角三角形,以及等腰直角三角形的性质和应用,要熟练掌握.(3)此题还考查了弧长的求法,要熟练掌握,解答此题的关键是要明确:①弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).②在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.。
九年级数学上册第24章《圆》同步练习一、选择题1.圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切2.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连接CD.如果∠BAC=20°,则∠BDC=()A.80°B.70°C.60°D.50°3.如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.102 B.20 C.18 D .2024.如图,△ABC内接于⊙O,且∠ABC=700,则∠AOC为()(A)1400 (B)1200(C)900 (D)3505.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外 D.无法确定6.(3分)在⊙O中,圆心O到弦AB的距离为AB长度的一半,则弦AB所对圆心角的大小为()A.30° B.45° C.60° D.90°7.(3分)(2015•牡丹江)如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于().A.32° B.38° C.52° D.66°8.已知一块圆心角为300°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥的底面圆的直径是80cm,则这块扇形铁皮的半径是()A.24cm B.48cm C.96cm D.192cm二、填空题9.用半径为6cm的半圆围成一个圆锥的侧面,则圆锥的底面半径等于cm.10.一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)11.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.12.如图,在⊙O中,∠OAB=45°,圆心O到弦AB的距离OE=2cm,则弦AB的长为 cm.13.(3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径.14.(3分)边长为1的正三角形的内切圆半径为.15.(3分)(2015•郴州)已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为 cm2.16.(4分)如图,AD是⊙O的直径,弦BC⊥AD于E,AB=BC=12,则OC= .三、解答题17.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).18.已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A 求证: BC 是⊙O 的切线;19.若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.20.如图,已知⊙O 与BC 相切,点C 不是切点,AO ⊥OC ,∠OAC=∠ABO ,且AC=BO ,判断直线AB 与⊙O 的位置关系,并说明理由.21.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是⊙O 的直径,DE 切⊙O 于点D ,且DE ⊥MN 于点E . (1)求证:AD 平分∠CAM .(2)若DE=6,AE=3,求⊙O 的半径. 22.(10分)如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,点E 在⊙O 外,∠EAC=∠B . (1)求证:直线AE 是⊙O 的切线;(2)若∠D=60°,AB=6时,求劣弧AC 的长(结果保留π).O E D CB A参考答案1.C2.B.3.B.4.A5.B.6.D.7.B.8.B.9.310.24π.11.4π.12.4.13.1.14.6.15.3π.16.17.18.证明:(1)∵AB为⊙O的直径∴∠D=90°, ∠A+∠ABD=90°∵∠DBC =∠A∴∠DBC+∠ABD=90°∴BC⊥AB∴BC是⊙O的切线19.∵OC∥AD,∠D=90°,BD=6∴OC⊥BD∴BE=12BD=3∵O是AB的中点∴AD=2EO -∵BC⊥AB ,OC⊥BD∴△CEB ∽△BEO ,∴2BE CE OE =• ∵CE=4, ∴94OE = ∴AD=9220.直线AB 与⊙O 的位置关系是相离.理由见解析. 21.(1)证明见解析;(2)⊙O 的半径为7.5. 22.(1)证明见试题解析;(2)2π.。
中考数学复习《圆》经典题型及测试题(含答案)【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP =4,∠APO=30°,则弦AB的长为( )A.2 5 B. 5C.213 D. 13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin 30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=2 5.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8 m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是( )A.4 2 m B.5 m C. 30 m D.215 m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴l BC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是422-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED 为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为( )A.9 5 B.18 5 C.36 5 D.72 5【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN 的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN 中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN 的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=18 5.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM =90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为( B )A.40° B.50° C.60° D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为( C )A. 3 B.3 C.2 3 D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( A )A.25° B.50° C.60° D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP 的度数为( B )A.15° B.30° C.60° D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为( D )A.6 B.7 C.8 D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是( D )A.BA⊥DA B.OC∥AEC.∠COE=2∠CAE D.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是( D )A.23-33π B.43-33πC.43-π D.23-π8.如图,正六边形ABCDEF是边长为2 cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12 cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( B )A .13π cmB .14π cmC .15π cmD .16π cm9.如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A. 133B. 92C. 4313 D .2 5 解:如图,连接OE ,OF ,ON ,OG .∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,∴∠AEO =∠AFO =∠OFB =∠BGO =90°.∴四边形AFOE ,FBGO 都是正方形.∴AF =BF =AE =BG =2.∴DE =3.∵DM 是⊙O 的切线,∴DN =DE =3,MN =MG . ∴CM =5-2-MN =3-MN .在Rt △DMC 中,DM 2=CD 2+CM 2,∴(3+MN )2=(3-MN )2+42.∴NM =43.∴DM =3+43=133.故选A. 答案:A二、填空题10.在平面直角坐标系中,O 为坐标原点,则直线y =x +2与以O 点为圆心,1为半径的圆的位置关系为 相切.11.如图,圆内接四边形ABCD 两组对边的延长线分别相交于点E ,F ,且∠A =55°,∠E =30°,则∠F =40° .12.如图,正三角形ABC 的边长为2,点A ,B 在半径为2的圆上,点C 在圆内,将正三角形ABC 绕点A 逆时针旋转,当点C 第一次落在圆上时,点C 运动的路线长为 .【解析】设点C 落在圆上的点为C ′,连结OA ,OB ,OC ′,则OA =OB = 2.又∵AB =2,∴OA 2+OB 2=AB 2,∴∠AOB =90°,∴∠OAB =45°,同理∠OAC ′=45°,∴∠BAC ′=90°.∵△ABC 为等边三角形,∴∠CAB =60°,∴∠CAC ′=30°,∴点C 运动的路线长为30π×2180=π3.故答案为π3. 答案:π3 13.如图,在△ABC 中,∠BAC =90°,AB =5 cm ,AC =2 cm ,将△ABC 绕顶点C按顺时针方向旋转45°至△A 1B 1C 的位置,则线段AB 扫过区域(图中的阴影部分)的面积为 cm 2.【解析】在Rt△ABC 中,BC =AC 2+AB 2=29(cm),S 扇形BCB 1=45π×292360=29π8(cm 2),S △CB 1A 1=12×5×2=5(cm 2),S 扇形CAA 1=45π×22360=π2(cm 2),故S 阴影部分=S 扇形BCB 1+S △CB 1A 1-S △ABC -S 扇形CAA 1=29π8+5-5-π2=25π8(cm 2). 答案:25π8三、解答题14.如图,AB 是⊙O 的直径,BC 切⊙O于点B ,OC 平行于弦AD ,过点D 作DE ⊥AB 于点E ,连结AC ,与DE 交于点P .求证:(1)PE =PD ;(2)AC ·PD =AP ·BC .证明:(1)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴EP BC =AE AB .又∵AD ∥OC ,∴∠DAE =∠COB ,∴△AED ∽△OBC ,∴ED BC =AE OB =AE 12AB =2AE AB .∴ED =2EP ,∴PE =PD . (2)∵AB 是⊙O 的直径,BC 是切线,∴AB ⊥BC ,∵DE ⊥AB ,∴DE ∥BC ,∴△AEP ∽△ABC ,∴AP AC =PE BC .∵PE =PD ,∴AP AC =PD BC,∴AC ·PD =AP ·BC . 15.如图,在△OAB 中,OA =OB =10,∠AOB =80°,以点O 为圆心,6为半径的优弧MN 分别交OA ,OB 于点M ,N .(1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′,求证:AP =BP ′;(2)点T 在左半弧上,若AT 与弧相切,求点T 到OA 的距离;(3)设点Q 在优弧MN 上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.11。
鲁教版(五四制)九年级数学下册第五章圆同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,得到的封闭图形是莱洛三角形.若AB=2,则此莱洛三角形的周长为()A.2πB.4πC.6 D.2 32、如图,△ABC为等腰直角三角形,∠BAC=90°,AB=AC=2,点D为△ABC所在平面内一点,∠BDC=90°,以AC、CD为边作平行四边形ACDE,则CE的最小值为()A B .3C .75 D .3、如图,O 中,直径AB 为8cm ,弦CD 经过OA 的中点P ,则22PC PD +的最小值为( )A .212cmB .224cmC .236cmD .240cm4、如图,AB 是O 的直径,CD 是O 的弦,连接AD 、DB 、BC ,若55ABD ∠=︒,则BCD ∠的度数为( )A .65︒B .55︒C .45︒D .35︒5、在半径为12cm 的圆中,150°的圆心角所对的弧长等于( )A .24πcmB .12πcmC .10πcmD .5πcm6、如图,点M 、N 分别是正方形ABCD 的边BC 、CD 上的两个动点,在运动过程中保持∠MAN =45°,连接EN 、FM 相交于点O ,以下结论:①MN =BM +DN ;②BE 2+DF 2=EF 2;③BC 2=BF •DE ;④OM ( )A.①②③B.①②④C.②③④D.①②③④7、如图,点A、B、C在⊙O上,∠ACB=54°,则∠AOB的度数为()A.90°B.100°C.108°D.110°PC=,8、如图,AB,CD是O的两条弦,它们相交于点P,连接AD、BD,已知4==,6AD BD那么CD的长为()A.6 B.7 C.8 D.99、已知⊙O半径为4,圆心O在坐标原点上,点P的坐标为(3,4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.不能确定10、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆一定与()A.x轴相交B.y轴相交C.x轴相切D.y轴相切第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个无底帐篷的三视图,该帐篷的表面积是_______(结果保留π).2、如图,半径为4的扇形OAB中,∠O=60°,C为半径OA上一点,过C作CD⊥OB于点D,以CD为边向右作等边△CDE,当点E落在AB上时,CD=_____.3、如图,▱ABCO的顶点A,B,C在⊙O上,若AB=2,则▱ABCO的周长是_______.4、如图,将半径为6cm的圆分别沿两条平行弦对折,使得两弧都经过圆心,则图中阴影部分的面积为______cm2.5、如图所示,O是ABC的外接圆,D是弧AB上一点,连接BD,并延长至E,连接AD,若55ADE∠=︒,则AOB∠=______.三、解答题(5小题,每小题10分,共计50分)1、已知⊙O的直径AB=6,点C是⊙O上一个动点,D是弦AC的中点,连接BD.(1)如图1,过点C作⊙O的切线交直径AB的延长线于点E,且tan E=34;①BE=;②求证:∠CDB=45°;(2)如图2,F是弧AB的中点,且C、F分别位于直径AB的两侧,连接DF、BF.在点C运动过程中,当△BDF是等腰三角形时,求AC的长.2、如图,在每个小正方形的边长为1的网格中,ABC的顶点A在格点上,B是小正方形边的中点,经过点A,B的圆的圆心在边AC上.(1)弦AB的长等于_____;(2)请用无刻度的直尺,在如图所示的网格中,找出经过点A,B的圆的圆心O,并简要说明点O的位置是如何找到的(不要求证明)_____.3、如图,⊙O是△ABC的外接圆,BC为⊙O的直径.(1)尺规作图:作∠ABD=∠ABC,与⊙O交于点D(保留作图痕迹,不写作法);(2)在(1)的条件下,连接CD交AB于点E,已知BD=35,BE=7AE,求⊙O的半径长.4、如图,已知AB为⊙O的直径,AC为⊙O的切线,连接CO,过B作BD∥OC交⊙O于D,连接AD交OC于G,延长AB、CD交于点E.(1)求证:CD是⊙O的切线;(2)若BE=4,DE=8,求CD的长.5、定义1:如图1,若点H在直线l上,在l的同侧有两条以H为端点的线段MH、NH,满足∠=∠,则称MH和NH关于直线l满足“光学性质”;12定义2:如图2,在ABC中,PQR的三个顶点P、Q、R分别在BC、AC、AB上,若RP和QP关于BC 满足“光学性质”,PQ和RQ关于AC满足“光学性质”,PR和QR关于AB满足“光学性质”,则称PQR为ABC的光线三角形.阅读以上定义,并探究问题:=,DEF三个顶点D、E、F分别在BC、AC、AB上.在ABC中,30∠=︒,AB ACA(1)如图3,若FE∥BC,DE和FE关于AC满足“光学性质”,求∠EDC的度数;⊥于F,以AB为直径的圆分别交AC,BC于点E,D.(2)如图4,在ABC中,作CF AB①证明:DEF为ABC的光线三角形;②证明:ABC的光线三角形是唯一的.-参考答案-一、单选题1、A【解析】【分析】根据正三角形的性质求出弧的半径和圆心角,根据弧长的计算公式求解即可.【详解】解:ABC ∆是正三角形,60BAC ∴∠=︒,∴BC 的长为:60221803ππ⋅⨯=, ∴ “莱洛三角形”的周长2323ππ=⨯=.故选:A .【点睛】本题考查的是正多边形和圆的知识,解题的关键是理解“莱洛三角形”的概念、掌握弧长公式是解题的关键.2、A【解析】【分析】延长AE 交BD 于点F ,根据平行四边形的性质可得AE ∥CD ,可得∠AFB =∠BDC =90°,可以证明△AFB ≌△DFE ,可得∠AEB =135°,点E 的运动轨迹为圆的运动轨迹,假设点E 所在圆的圆心为M ,连接MB ,MA ,MC ,MC 与圆M 交于点E ′,根据圆外的点到圆上的点的距离最值可得,CE ′即为CE 的最小值,利用勾股定理可得CM 的值,进而可得CE 的最小值.【详解】解:如图,延长AE 交BD 于点F ,连接BE ,∵四边形ACDE 是平行四边形,∴AE ∥CD ,AC =ED ,∠EAC =∠CDE ,∵∠BAC =90°,AB =AC =2,∠BDC =90°,∴ED =AB =AC =2,∠BAF +∠CAE =90°,∠CDE +∠EDF =90°,∠AFB =∠CDB =∠DFE =90°, ∴BC=∴∠BAF =∠EDF ,在△AFB 和△DFE 中,BAF EDF AFB DFE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB ≌△DFE (AAS ),∴BF =EF ,∴∠BEF =45°,∴∠AEB =135°,∴点E 的运动轨迹为圆的运动轨迹,假设点E 所在圆的圆心为M ,连接MB ,MA ,MC ,MC 与圆M 交于点E ′,则根据圆外的点到圆上的点的距离最值可得:CE ′即为CE 的最小值,如图,∴∠AMB=90°,∵AM=BM,AB=2,∴∠MBA=45°,BM AB∴∠MBC=90°,∴在Rt△MBC中,MC∴CE′=CM﹣ME.即CE故选:A.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、四点共圆、勾股定理、最短路径问题、等腰直角三角形的性质,解决本题的关键是综合运用以上知识.3、B【解析】【分析】连结AD,BC,根据O中,直径AB为8cm,得出OA=OB=4cm,根据弦CD经过OA的中点P,得出AP=OP=2cm,根据∠ADP=∠CBP,∠DAP=∠BCP,可证△ADP∽△CBP,得出PA DPPC BP=,得出2612PC DP PA BP⋅=⋅=⨯=,(PC-PD)2≥0,即22221224PC PD PC PD+≥⋅=⨯=.解:连结AD,BC,∵O中,直径AB为8cm,∴OA=OB=4cm,∵弦CD经过OA的中点P,∴AP=OP=2cm,∵∠ADP=∠CBP,∠DAP=∠BCP,∴△ADP∽△CBP,∴PA DP PC BP=,∴2612PC DP PA BP⋅=⋅=⨯=,∵(PC-PD)2≥0,即22221224PC PD PC PD+≥⋅=⨯=.故选B.【点睛】本题考查圆的基本知识,同弧所对圆周角性质,三角形相似判定与性质,非负数应用,掌握圆的基本知识,同弧所对圆周角性质,三角形相似判定与性质,非负数应用是解题关键.4、D【解析】先根据圆周角定理求出∠ADB 的度数,再由直角三角形的性质求出∠A 的度数,进而可得出结论.【详解】解:∵AB 是⊙O 的直径,∴∠ADB =90°.∵∠ABD =55°,∴∠A =90°-55°=35°,∴∠BCD =∠A =35°.故选:D .【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.5、C【解析】【分析】直接运用弧长公式计算即可.【详解】 解:弧长为:1501210180l ππ⨯==cm . 故选:C .【点睛】 本题考查的是弧长的计算,熟记弧长公式180n R l π=是解答本题的关键. 6、A【分析】由旋转的性质可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可证△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正确;由“SAS”可证△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正确;通过证明△DAE∽△BFA,可得DE ADAB BF,可证BC2=DE•BF,故③正确;通过证明点A,点B,点M,点F四点共圆,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可证MO EO,由∠BAM≠∠DAN,可得OE≠OF,故④错误,即可求解.【详解】解:将△ABM绕点A逆时针旋转90°,得到△ADM′,将△ADF绕点A顺时针旋转90°,得到△ABD',∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,∴∠ADM'+∠ADC=180°,∴点M'在直线CD上,∵∠MAN=45°,∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,∴∠M′AN=∠MAN=45°,又∵AN=AN,AM=AM',∴△AMN≌△AM′N(SAS),∴MN=NM′,∴M′N=M′D+DN=BM+DN,∴MN=BM+DN;故①正确;∵将△ADF绕点A顺时针旋转90°,得到△ABD',∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',∴∠D'BE=90°,∵∠MAN=45°,∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,∴∠D'AE=∠EAF=45°,又∵AE=AE,AF=AD',∴△AEF≌△AED'(SAS),∴EF=D'E,∵D'E2=BE2+D'B2,∴BE2+DF2=EF2;故②正确;∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,∴∠BAF=∠AEF,又∵∠ABF=∠ADE=45°,∴△DAE∽△BFA,∴DE AD AB BF,又∵AB=AD=BC,∴BC2=DE•BF,故③正确;∵∠FBM =∠FAM =45°,∴点A ,点B ,点M ,点F 四点共圆,∴∠ABM =∠AFM =90°,∠AMF =∠ABF =45°,∠BAM =∠BFM ,同理可求∠AEN =90°,∠DAN =∠DEN ,∴∠EOM =45°=∠EMO ,∴EO =EM ,∴MO ,∵∠BAM ≠∠DAN ,∴∠BFM ≠∠DEN ,∴EO ≠FO ,∴OM FO ,故④错误,故选:A .【点睛】本题考查了全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,旋转的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.7、C【解析】【分析】直接根据圆周角定理即可得.【详解】解:54ACB ∠=︒,∴由圆周角定理得:2108AOB ACB ∠=∠=︒,故选:C .本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.8、C【解析】【分析】根据圆周角定理,可证∠C=∠B,又由AD=BD,可证∠B=∠DAB,即得∠DAP=∠C,可证△DAP∽△DCA,得到AD:CD=DP:AD,代值计算即可求CD的长.【详解】解:连接AC,由圆周角定理知,∠C=∠B,∵AD=BD∴∠B=∠DAB,∴∠DAP=∠C∴△DAP∽△DCA,∴AD:CD=DP:AD,得AD2=DP•CD=CD•(CD﹣PC),把AD=4,PC=6代入得,26160--=,CD CD解得,CD=8或CD=-2(舍去).故选:C.本题考查了圆周角定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题.9、C【解析】【分析】根据题意求得OP的长为5,根据OP r>即可判断点P与⊙O的位置关系,当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解:∵圆心O在坐标原点上,点P的坐标为(3,4),∴5OP==⊙O半径为4,54>∴点P与⊙O的位置关系是点P在⊙O外故选C【点睛】本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外,求得点到圆心的距离是解题的关键.10、D【解析】【分析】根据点(2,3)到y轴的距离为2,到x轴的距离为3即可判断.【详解】∵圆是以点(2,3)为圆心,2为半径,∴圆心到y 轴的距离为2,到x 轴的距离为3,则2=2,2<3∴该圆必与y 轴相切,与x 轴相离.故选D.【点睛】本题是直线和圆的位置关系及坐标与图形的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.二、填空题1、100π【解析】【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为8,底面圆的半径为5210=÷,圆锥的高为6,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形的面积公式和矩形的面积公式分别进行计算,然后求它们的和积.【详解】解:根据三视图得圆锥的母线长为8,底面圆的半径为5210=÷, 所以圆锥的侧面积1258402ππ=⨯⨯⨯=,圆柱的侧面积25660ππ=⨯⨯=,所以每顶帐篷的表面积4060100πππ=+=.故答案为:100π.【点睛】本题考查了圆锥的计算,三视图,解题的关键是掌握圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2【解析】【分析】如图,连接OE,设OD=m,证明∠OCE=90°,利用勾股定理构建方程求解即可.【详解】解:如图,连接OE.设OD=m.∵CD⊥OB,∴∠CDO=90°,∵∠COD=60°,∴∠OCD=90°﹣60°=30°,∴OC=2OD=2m,CD,∵△CDE是等边三角形,∴CD=CE,∠DCE=60°,∴∠OCE=∠OCD+∠DCE=90°,∴OC2+CE2=OE2,∴4m2+3m2=42,∴m(负根舍去),∴CD【点睛】 本题考查解直角三角形性质、勾股定理、等边三角形的性质等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.3、8【解析】【分析】证明四边形ABCO 是菱形,即可得到周长.【详解】解:∵四边形ABCO 是平行四边形,OA=OC ,∴四边形ABCO 是菱形,∴▱ABCO 的周长是248⨯=,故答案为:8.【点睛】此题考查了菱形的判定及性质定理,圆的半径相等的性质,熟记菱形的判定定理是解题的关键.4、12π【解析】【分析】设该圆圆心为O ,并用大写字母表示出其它点,作OC AB ⊥于点C .根据所作图形可知AC BC =,再根据题意可知11322OC OA OB cm ===,60AOC BOC ∠=∠=︒,即得出AOB ∠.结合勾股定理,在Rt OAC △中,可求出AC 的长,即可求出AB 的长,最后根据4()AOB AOB S S S S =--阴圆扇形,结合圆的面积公式、扇形的面积公式,三角形面积公式求出结果即可.【详解】如图,设该圆圆心为O ,其它点如图所示,并作OC AB ⊥于点C .根据垂径定理可知,AC BC =.∵该圆分别沿两条平行弦对折,且两弧都经过圆心, ∴11163222OC OA OB cm ===⨯=, ∴30OAC OBC ∠=∠=︒,∴903060AOC BOC ∠=∠=︒-︒=︒,∴6060120AOB ∠=︒+︒=︒.∵在Rt OAC △中,AC ,∴BC AC ==,∴AB =.∴222120614()64(3)12)3602AOB AOB S S S S cm πππ⋅=--=⋅--⨯=阴圆扇形.故答案为:12π【点睛】本题考查不规则图形的面积计算,涉及垂径定理,含30角的直角三角形的性质,勾股定理,圆的面积公式,扇形的面积公式.正确的作出辅助线是解答本题的关键.5、110°##110度【解析】【分析】先根据外角的性质求出ADB∠,再根据圆内接四边形的性质求出ACB∠的度数,再根据ACB∠与AOB∠是同弧所对的圆周角与圆心角即可求出.【详解】解:四边形ABDC内接于圆O,55ADE∠=︒,18055125ADB∴∠=︒-︒=︒,根据圆内接四边形的性质有:180ACB ADB∠+∠=︒,18012555ACB∴∠=︒-︒=︒,ACB∠与AOB∠是同弧所对的圆周角与圆心角,2110AOB ACB∴∠=∠=︒,故答案是:110︒.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,解题的关键是熟知圆内接四边形的对角互补.三、解答题1、(1)①2;②见解析(2)AC的长为【解析】【分析】(1)①连接OC,根据CE是⊙O的切线得∠OCE=90°,根据tan34E=得CE=4,在Rt OCE中,根据勾股定理得OE=5,即可得BE=2;②连接OC,BC,取AE的中点,连接DM,根据D为AC的中点,M为AE的中点得DM为△ACE的中位线,则2DM=,DM∥CE,则DM BE=,根据平行线的性质得∠AMD=∠CEB ,又因为AM =12AE =4,所以AM =CE ,根据SAS 可得△AMD ≌△CEB ,所以AD =BC ,根据边之间的关系等量代换得CD =BC ,根据圆周角定理可得∠ACB =90°,即可得∠CDB =45°;(2)连接AF ,根据题意得AF =BF ,∠AFB =90°,则AF BF ==BD BF ==BC ,根据圆周角定理可得∠ACB =90°,则BC 2=AB 2﹣AC 2=BD 2﹣CD 2,且CD =12AC ,即可得AC =BF DF ==FA ,FC ,过点F 作FG ⊥AC 于点G ,即可得AF =DF ,DG =12AD ,根据∠ACF =∠ABF =45°,得CF =FG ,设DG =x ,则CD =AD =2x ,FG =CG =DG +CD =3x ,根据勾股定理可得FG 2+DG 2=DF 2,解得x =4AC x ==DF =BD ,过点D 作DN ⊥BF 于点N ,连接ON ,AF ,BC ,N 为BF 的中点,ON ⊥BF ,因为D 为AC 的中点,所以OD ⊥AC ,即DN ⊥AC ,根据圆周角定理可得∠AFB =90°,则四边形ADNF 是矩形,根据矩形的性质得AD =NF ,即可得AC BF ==(1)①连接OC ,如图1,∵CE 是⊙O 的切线,∴OC ⊥CE ,∴∠OCE =90°, ∵tan 34E =,AB =6, ∴OC =3, ∴34OC CE = ∴CE =4,∴5OE =,∴BE =OE ﹣BO =5﹣3=2,故答案为:2.②如图2,连接OC ,BC ,取AE 的中点,连接DM ,∵D 为AC 的中点,M 为AE 的中点,∴DM 为△ACE 的中位线, ∴122DM CE ==,DM ∥CE , ∴DM BE =,∠AMD =∠CEB ,∵AM =12AE =4,∴AM =CE ,在△AMD 和△CEB 中,DM BE AMD CEB AM CE =⎧⎪∠=∠⎨⎪=⎩ ∴△AMD ≌△CEB (SAS ),∴AD =BC ,∵AD =CD ,∴CD =BC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CDB =45°.(2)解:连接AF ,∵F 为弧AB 的中点,AB 是⊙O 的直径,∴AF =BF ,∠AFB =90°,∴∠ABF =45°,AF BF AB ===①若BD BF ==BC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC 2=AB 2﹣AC 2=BD 2﹣CD 2,且CD =12AC ,∴222216()2AC AC -=-,∴AC =②若BF DF ==FA ,FC ,过点F 作FG ⊥AC 于点G ,∴AF =DF ,DG =12AD ,∵∠ACF =∠ABF =45°,∴CG =FG ,设DG =x ,则CD =AD =2x ,FG =CG =DG +CD =3x ,∵FG 2+DG 2=DF 2,∴222(3)x x +=,解得x =∴4AC x ==③若DF =BD ,过点D 作DN ⊥BF 于点N ,连接ON ,AF ,BC ,∴N 为BF 的中点,ON ⊥BF ,∵D 为AC 的中点,∴OD⊥AC,即DN⊥AC,∵AB是⊙O的直径,∴∠AFB=90°,∴四边形ADNF是矩形,∴AD=NF,∴AC BF==综合上述可得,AC的长为【点睛】本题考查了切线的性质,锐角三角形函数,勾股定理,三角形的中位线,全等三角形的判定与性质,圆周角的推论,矩形的判定与性质,解题的关键是掌握并灵活运用这些知识点.2、90°的圆周角所对的弦是直径【解析】【分析】(1)由勾股定理即可得出答案;(2)取圆与网格线的交点D、E,连接DE交AC于O,点O即为经过出点A,B的圆的圆心;由圆周角定理即可得出结论.【详解】解:(1)由勾股定理得:AB;;(2)如图试所示:取圆与网格线的交点D、E,连接DE交AC于O,点O即为经过出点A,B的圆的圆心;理由如下:∵∠EAD=90°,∴DE为圆O的直径,∵经过点A,B的圆的圆心在边AC上,∴DE与AC的交点即为点O;故答案为:90°的圆周角所对的弦是直径.【点睛】本题考查了圆周角定理、勾股定理;熟练掌握圆周角定理和勾股定理是解题的关键.3、 (1)见解析(2)45 2【解析】【分析】(1)根据同圆或等圆中,相等的弦所对的圆周角相等,只需作弦AD=AC即可.(2)连接OA,交DC于H,可得AO∥BD,O是BC中点,可知OH是BD的一半,可得△BDE∽△AHE,利用性质可求AH长,最后可得半径长.(1)解:如图,以点A为圆心,AC为半径画弧与圆O交于点D,连接BD,则∠ABD即所求.(2)解:如图,连接OA,交DC于H,在⊙O中:设OB=OA=OC=r,∴∠OBA=∠OAB,r=OH+HA,∵∠ABD=∠ABC,∴∠ABD=∠OAB,∴BD∥OA,∴∠BDC=∠OHC,∵BC是直径,∴∠BDC=∠OHC=90°,连接OD,∵OD=OC,OH⊥CD,∴DH =CH ,∴H 是CD 的中点,∵点O 是BC 的中点,∴OH 是△BCD 的中位线,∴OH =12BD =352, ∵BE =7AE , ∴17AE BE =, ∵BD ∥OA ,∴△BDE ∽△AHE , ∴1735AE AH AH BE BD ===, ∴AH =5,∴r =OH +HA =352+5=452. ∴⊙O 的半径长是452. 【点睛】本题考查了圆的基本性质,三角形相似的判定和性质,三角形中位线定理,熟练掌握圆的性质,灵活运用相似三角形的性质是解题的关键.4、 (1)证明见解析;(2)12.【解析】【分析】(1)根据圆周角的定义可得90ADB ︒∠=,再根据平行线的性质可知90AGO ADB ︒∠=∠=,再根据垂直平分线的性质得,DG AG AC DC ==,从而可得AOC DOC ∆∆≌,进而运用全等三角形的性质进行证明即可;(2)设⊙O 半径为r ,在Rt DOE ∆中,利用勾股定理得2264(4)r r +=+,解得6r =,再根据平行线分线段成比例进行求解即可.(1)如图所示,连接OD ,AB 为⊙O 的直径,90ADB ︒∴∠=,//BD OC ,90AGO ADB ︒∴∠=∠=,又OA OD =,,DG AG AC DC ∴==,在AOC ∆和DOC ∆中,AC DC CO CO AO DO =⎧⎪=⎨⎪=⎩, AOC DOC ∴∆∆≌,CAO CDO ∴∠=∠,AC 为⊙O 的切线,90CAO ︒∴∠=,=90CDO ︒∴∠,∴CD 为⊙O 的切线;(2)⊙O 半径为r ,则在Rt DOE ∆中,2264(4)r r +=+,解得6r =,//BD OC ,=BE DE OB CD∴, 即48=6CD , 解得=12CD .【点睛】本题考查全等三角形的判定和性质,圆周角定理,勾股定理及切线的判定和性质,解题的关键是结合图形得到三角形的全等关系,与此同时需要利用平行线的性质.5、 (1)30°(2)①证明过程见解析;②证明过程见解析.【解析】【分析】(1)由“光学性质”定义得到∠DEC =∠FEA ,由FE ∥BC 得到∠FEA =∠C =75°,最后在△DEC 中由三角形内角和定理即可求解;(2)①根据定义一和定义二,证明∠BDF=∠CDE ,∠AEF =∠DEC ,∠AFE =∠BFD 即可;②如下图所示,根据光线三角形的定义得到∠1+∠3+∠5=180°,再由∠1=30°,∠3=75°,∠5=75°,全部已经唯一确定,进而得到△ABC 的光线三角形是唯一的.(1)解:由题意知,∠A=30°,AB=AC,∴∠C=∠B=(180°-30°)÷2=75°,∵DE和FE关于AC满足“光学性质”,∴∠DEC=∠FEA,∵FE∥BC,∴∠FEA=∠C,∴∠DEC=∠C=75°,∴在△DEC中,由三角形内角和定理可知:∠EDC=180°-∠C-∠DEC=180°-75°-75°=30°,故∠EDC=30°;(2)证明:①如下图所示,设AB的中点为O,连接OD,∵∠A=30°,AB=AC,∴∠ACB=∠B=(180°-30°)÷2=75°,∵OB=OD,∴∠B=∠ODB=75°=∠ACB,∴OD∥AC,又O为AB中点,∴OD为△ABC的中位线,D为BC的中点,又已知CF⊥AB,∴由直角三角形斜边上中线等于斜边一半可知:DF=DB=DC,∴∠BFD=∠B=75°,∴∠BDF=180°-∠B-∠BFD=30°,又B、D、E、A四点共圆,由圆内接四边形对角互补可知:∠BDE=180°-∠A=150°,又∠BDE=∠DCE+∠DEC=75°+∠DEC,∴∠DEC=75°,∴∠CDE=180°-∠ACD-∠DEC=180°-75°-75°=30°,∴∠BDF=∠CDE=30°,∴直线DF和DE关于直线BC满足“光学性质”;∵∠BFD=∠B=∠ACD=∠DEC=75°,且D为BC中点,∴FD=BD=CD=D E,且∠EDF=∠BDE-∠BDF=150°-30°=120°,∴∠DFE=∠DEF=(180°-∠EDF)÷2=(180°-120°)÷2=30°,∴∠AEF=180°-∠DEF-∠DEC=180°-30°-75°=75°=∠DEC,∴直线DE和FE关于直线AC满足“光学性质”;同理:∠AFE=180°-∠BFD-∠DFE=180°-75°-30°=75°=∠BFD,∴直线DF和EF关于直线AB满足“光学性质”,由定义二可知:DEF为ABC的光线三角形.证明:②如下图所示,△DEF是△ABC的光线三角形,下面证明唯一性:由光线三角形的定义可知:∠1=∠2,∠3=∠4,∠5=∠6,又∠B=180°-∠1-∠6,∠C=180°-∠2-∠3,∠A=180°-∠4-∠5,将上述三个式子相加,得到:∠B+∠C+∠A=540°-(∠1+∠2+∠3+∠4+∠5+∠6),整理得到:∠1+∠3+∠5=180°,由①中可知:∠1=30°,∠3=75°,∠5=75°,全部已经唯一确定,故△ABC的光线三角形是唯一的.【点睛】本题考查了等腰三角形的性质及判定、圆周角定理及其推论,本题属于新定义题,读懂题意,根据题意中的定义求解分析是解决本类题的关键.。
《圆》同步试题及解题分析
一、填空
1.三角形、四边形是直线图形,圆是()图形;圆中心的一点叫做(),通过圆心,并且()都在()的线段叫做圆的直径;战国时期《墨经》一书中记载“圜(圆),一中同长也。
”表示圆心到圆上各点的距离都相等,即()都相等。
考查目的:圆的认识。
答案:曲线;圆心,两端,圆上;半径。
解析:可结合具体图形,采用对比的方法得出圆的图形特征。
对于圆心、直径和半径的概念,应使学生在深刻理解的基础上进行答题。
2.圆心确定圆的( ),半径确定圆的( );圆是轴对称图形,直径所在的直线是圆的( );圆的周长与它的直径的比值是一个( ),我们把它叫做( ),用字母()表示,计算时通常取值( )。
考查目的:圆的认识;圆周率意义的理解。
答案:位置,大小;对称轴;固定的数,圆周率,,3.14。
解析:此题包括了圆心和半径对确定圆的位置和大小的作用;圆的轴对称图形特征;圆周率的意义及字母表示方法等知识。
3.看图填空(单位:厘米)。
图1:=()cm 图2:=()cm
图3:=()cm 图4:=()cm
考查目的:圆的直径与半径之间的关系。
答案:12;8.6;4.5;2.4。
解析:可以让学生自己独立观察、思考,填一填。
然后让学生说说是如何分析得出答案的,初步培养学生推理能力,发展空间观念。
教学实际中,可以让学生画出第二幅图和第四幅图中圆的直径,再和梯形的高、长方形的边长进行比较,验证结论。
4.画一个直径是5厘米的圆,圆规两脚之间的距离是()厘米。
如果要画一个周长是12.56厘米的圆,圆规两脚之间的距离应该是()厘米,这个圆的面积是()平方厘米。
考查目的:画圆的方法;圆的周长和面积计算。
答案:2.5;2,12.56。
解析:画圆时,圆规两脚之间的距离就是半径的长度;根据圆的周长公式,通过
计算得出画周长是12.56厘米的圆,半径是多少;再计算面积。
该题可引导学生比较“题目
中出现了两个12.56,它们表示的意义相同吗?”
5.看图填空。
(1)大圆的半径是()cm,直径是()cm;小圆的半径是()cm,直径是( ) cm;
(2)整个图形的周长是();面积是()。
考查目的:同圆或等圆中半径与直径的关系;圆的周长和面积计算。
答案:(1)10,20;5,10;(2)62.8 cm;157 cm2。
解析:第(2)小题中的周长计算,一般的方法是大圆周长的一半加整个小圆的周长,可继续引导学生计算出整个大圆的周长,通过进行比较发现该图形的周长等于大圆的周长。
面积的计算采用割补的方法,揭示整个图形的面积等于大圆面积的一半。
二、选择
1.下面()的阴影部分是扇形。
A. B.
C.
考查目的:扇形的认识。
答案:C
解析:一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
A、B图中经过弧两端的线段不是圆的半径,所以对应的阴影部分不是扇形。
2.在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长是()。
A.圆的半径
B.圆的直径
C.圆的周
长 D.圆周长的一半
考查目的:圆的面积公式推导。
答案:D
解析:把一个圆分成若干等份,拼成一个近似长方形,这个长方形的长是圆周长的一半,宽是圆的半径。
即圆。
3.如图,圆的半径是1厘米,阴影部分的周长是()厘米。
A.3.14
B.6.28
C.11.28
D.14.28
考查目的:正方形的边长与它内切圆的半径之间的关系;圆和正方形的周长计算。
答案:D
解析:阴影部分的周长为圆的周长与正方形的周长之和。
根据圆的半径是1厘米,可得正方形的边长是2厘米。
阴影部分周长=(厘米)。
4.一个圆的半径增加1厘米,它的周长就增加()。
A.1厘米
B.2厘米
C.6.28厘
米 D.3.14厘米
考查目的:圆的半径变化引起圆的周长变化的规律。
答案:C
解析:圆的周长公式为,圆的半径增加1厘米,则,它的周长会增加厘米,即6.28厘米。
5.小明的妈妈要买一块台布盖住家中一张直径1米的圆形桌面,你认为选()比较合适。
A.120厘米×120厘米
B.3140平方厘米
C.120厘米×80厘米
D.785平方厘米
考查目的:利用圆的知识解决实际问题。
答案:A
解析:因为是一张直径1米的圆形桌面,所以台布的边长应大于1米。
选项中只有120厘米×120厘米的桌布符合要求。
该题错误的做法是计算桌面的面积,教师需引导学生结合生活实际考虑问题。
三、解答
1.先按要求操作,再计算。
(1)在方框中画一个周长18.84厘米的圆;(2)在所画圆中,画两条相互垂直的直径;(3)依次连接这两条直径的四个端点,得到一个小正方形;(4)这个圆的面积是多少?小正方形的面积是多少?
考查目的:正方形的内切圆、圆的内切正方形的画法;圆的面积计算;圆的内切正方形的面积计算。
答案:
第(1)题
第(2)题
第(3)题
(4)(cm2);(cm2)。
答:这个圆的面积是28.26 cm2。
小正方形的面积是18 cm2。
解析:第(1)小题先根据周长计算圆的半径(),在画圆时应先确定圆
心的位置,可连接方框的两条对角线得到;第(2)小题只要画出两条相互垂直的直径,具体的位置可以不同,但要注意标上直角符号;第(4)小题中计算正方形面积的方法是先算出以圆的直径为底,半径为高的直角三角形的面积,而小正方形的面积是该直角三角形面积的两倍。
2.模具厂有两块边长为80厘米的有机玻璃,要从其中一块上割下两个半圆拼成跑道的模型(如图)。
分别计算完工后这两块有机玻璃的周长和面积,根据结果说说你的发现。
考查目的:利用圆的周长、面积知识解决实际问题。
答案:
左图周长(cm),面积(cm2);
右图周长(cm),面积(cm2)。
发现:两个图形的周长相同,右图比左图多两个以80 cm为直径的圆的面积。
解析:计算周长之前可先让学生描一描,避免受到图中虚线的干扰。
根据结果说说自己的发现时,周长相同的结论非常明显,面积之间的关系可结合计算过程或图形得出。
3.有一个面积为700平方米的圆形草坪,要为它安装自动旋转喷灌装置进行喷灌。
现有射程为20米、15米、10米的三种装置,你认为选哪种比较合适?安装在什么位置?
考查目的:圆的认识和面积计算。
答案:1256(平方米),(平方米),(平方米),
706.5平方米最接近圆形草坪的面积。
答:选择射程为15米的装置最合适。
安装在圆形草坪的圆心的位置。
解析:先要明确射程的含义,即为圆的半径。
利用已知的射程长度,分别求出可以喷灌的面积,再与已知的面积相比较得出结果。
此题也可以根据已知的面积700平方米,求出圆形草坪的半径大约是多少,再与射程相比较进行解答。
4.下图池塘的周长251.2米,池塘周围(阴影)是一条5米宽的水泥路,在路的外侧围一圈栏杆。
水泥路的面积是多少?栏杆长多少米?
考查目的:圆环的面积计算;圆的周长计算。
答案:(米),水泥路的面积(平方米),栏杆长
(米)。
答:水泥路的面积是1334.5平方米,栏杆长282.6米。
解析:求水泥路的面积,实际上是求圆环的面积,根据小圆的周长计算出小圆的半径,大圆的半径等于小圆的半径加上小路的宽度,再利用圆环的面积公式计算。
求外侧栏杆的长度实际就是求大圆的周长。
5.如图。
一只小狗拴在等边三角形的墙角,墙边长3米。
绳长4米,求这只小狗最多能看护的面积。
考查目的:与圆有关的组合图形面积计算;利用所学知识解决实际问题。
答案:(平方米)。
答:这只小狗最多能看护的面积是43.96平方米。
解析:解答此题的关键是弄清小狗的看护范围由哪些图形组成。
如下图,小狗最多能看护的面积以4米为半径圆的(绿色部分)+两个以1米为半径圆的(蓝色部分)。
教师在分析讲解时,可让学生根据实际进行作图,再利用圆心角的度数得出每个扇形面积相当于整个圆面积的几分之几,最后列式解答。