固溶体合金凝固过程有两个特点
- 格式:ppt
- 大小:9.67 MB
- 文档页数:72
第一章 原子排列与晶体构造1. fcc 构造的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 构造的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 构造的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。
2. Al 的点阵常数为,其构造原子体积是,每一个晶胞中八面体间隙数为 ,四面体间隙数为 。
3. 纯铁冷却时在912e 发生同素异晶转变是从 构造转变成 构造,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。
4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于〔111〕平面上的方向。
在hcp 晶胞的〔0001〕面上标出)(0121晶面和]0121[晶向。
5. 求]111[和]120[两晶向所决定的晶面。
6 在铅的〔100〕平面上,1mm 2有多少原子?铅为fcc 面心立方构造,其原子半径R=×10-6mm 。
第二章 合金相构造一、 填空1〕 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。
2〕 阻碍置换固溶体溶解度大小的要紧因素是〔1〕 ;〔2〕 ;〔3〕 ;〔4〕 和环境因素。
3〕 置换式固溶体的不均匀性要紧表现为 和 。
4〕 依照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。
5〕 无序固溶体转变成有序固溶体时,合金性能转变的一样规律是强度和硬度 ,塑性 ,导电性 。
6〕间隙固溶体是 ,间隙化合物是 。
二、问答1、 分析氢,氮,碳,硼在-Fe 和-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。
元素的原子半径如下:氢:,氮:,碳:,硼:,-Fe :,-Fe :。
西北⼯业⼤学材料科学基础历年真题与答案解析(1)西北⼯业⼤学2012年硕⼠研究⽣⼊学考试试题答案试题名称:材料科学基础试题编号:832说明:所有答题⼀律写在答题纸上第页共页⼀、简答题(每题10分,共50分)1.请简述滑移和孪⽣变形的特点?答:滑移变形特点:1)平移滑动:相对滑动的两部分位向关系不变2)滑移线与应⼒轴呈⼀定⾓度3)滑移不均匀性:滑移集中在某些晶⾯上4)滑移线先于滑移带出现:由滑移线构成滑移带5)特定晶⾯,特定晶向孪⽣变形特点:1) 部分晶体发⽣均匀切变2) 变形与未变形部分呈镜⾯对称关系,晶体位向发⽣变化3) 临界切分应⼒⼤4) 孪⽣对塑变贡献⼩于滑移5) 产⽣表⾯浮凸2.什么是上坡扩散?哪些情况下会发⽣上坡扩散?答:由低浓度处向⾼浓度处扩散的现象称为上坡扩散。
应⼒场作⽤、电场磁场作⽤、晶界内吸附作⽤和调幅分解反应等情况下可能发⽣上坡扩散。
扩散驱动⼒来⾃⾃由能下降,即化学位降低。
3.在室温下,⼀般情况⾦属材料的塑性⽐陶瓷材料好很多,为什么?纯铜与纯铁这两种⾦属材料哪个塑性好?说明原因。
答:⾦属材料的塑性⽐陶瓷材料好很多的原因:从键合⾓度考虑,⾦属材料主要是⾦属键合,⽆⽅向性,塑性好;陶瓷材料主要是离⼦键、共价键,共价键有⽅向性,塑性差。
离⼦键产⽣的静电作⽤⼒,限制了滑移进⾏,不利于变形。
铜为⾯⼼⽴⽅结构,铁为体⼼⽴⽅结构,两者滑移系均为12个,但⾯⼼⽴⽅的滑移系分布取向较体⼼⽴⽅匀衡,容易满⾜临界分切应⼒。
且⾯⼼⽴⽅滑移⾯的原⼦堆积密度⽐较⼤,因此滑移阻⼒较⼩。
因⽽铜的塑性好于铁。
4.请总结并简要回答⼆元合⾦平衡结晶过程中,单相区、双相区和三相区中,相成分的变化规律。
答:单相区:相成分为合⾦平均成分,不随温度变化;双相区:两相成分分别位于该相区的边界,并随温度沿相区边界变化;三相区:三相具有确定成分,不随结晶过程变化。
5.合⾦产品在进⾏冷塑性变形时会发⽣强度、硬度升⾼的现象,为什么?如果合⾦需要进⾏较⼤的塑性变形才能完成变形成型,需要采⽤什么中间热处理的⽅法?⽽产品使⽤时⼜需要保持⾼的强度、硬度,⼜应如何热处理?答:合⾦进⾏冷塑性变形时,位错⼤量増殖,位错运动发⽣交割、缠结等,使得位错运动受阻,同时溶质原⼦、各类界⾯与位错的交互作⽤也阻碍位错的运动。
《材料科学基础》复习思考题第一章:材料的结构一、解释以下基本概念空间点阵、晶格、晶胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为晶体,晶体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属晶格分别为(),()和()。
5、体心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),晶胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方晶格的常见金属有()。
7、密排六方晶格中,晶胞原子数为(),原子半径与晶格常数的关系为(),配位数是(),致密度是(),密排晶向为(),密排晶面为(),具有密排六方晶格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在晶格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()、()、()。
11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、CuZn、Cu5Zn8、Cu3Sn的电子浓度分别为(),(),()。
1.名词解释(15分)2.判断题(20)3.单项选择题(20)4.简答题(19)5.综合分析题(画图与相图分析)(26)空间点阵:阵点在空间呈周期性规则排列,并具有等同的周围环境的模型晶胞:在空间点阵中,能代表空间点阵结构特点的小平行六面体。
置换固溶体:溶质原子占据溶剂晶格中的结点位置而形成的固溶体间隙固溶体:溶质原子占据溶剂晶格中的间隙位置而形成的固溶体。
晶体缺陷:晶体缺陷就是指实际晶体中与理想的点阵结构发生偏差的区域。
肖特基缺陷:由于晶体表面附近的原子热运动到表面,在原来的原子位置留出空位,弗仑克尔缺陷:指晶体结构中由于原先占据一个格点的原子(或离子)离开格点位置,成为间隙原子(或离子),并在其原先占据的格点处留下一个空位空位形成能:在晶体内取出一个原子放在晶体表面上(但不改变晶体的表面能和表面积)所需要的能量。
伯氏矢量:反映位错周围点阵畸变总积累的重要物理量刃型位错:在金属晶体中,由于某种原因,晶体的一部分相对于另一部分出现一个多余的半原子面。
这个多余的半原子面又如切入晶体的刀片,刀片的刃口线即为位错线螺型位错“一个晶体的某一部分相对于其余部分发生滑移,原子平面沿着一根轴线盘旋上升,每绕轴线一周,原子面上升一个晶面间距。
在中央轴线处即为一螺型位错。
滑移:是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。
攀移:刃型位错在垂直与滑移面的方向上运动稳态扩散:是指在扩散系统中,任一体积元在任一时刻,流入的物质量与流出的物质量相等,即任一点的浓度不随时间变化。
非稳态扩散:即任一点的浓度随时间的变化而变化??扩散激活能:指杂质原子或者母体原子在固体(包括半导体)中扩散的激活能。
上坡扩散:是指物质从低浓度区向高浓度区扩散,扩散的结果提高了浓度梯度。
弹性形变:外力撤消后,物体能恢复原状的形变塑性形变:如果外力较大,当它的作用停止时,所引起的形变并不完全消失,而有剩余形变的形变软取向:晶体中有些滑移系与外力的取向接近45o角,处于易滑移的位向,具有较小的σs值硬取向:晶体中有些滑移系与外力取向偏离45o很远,需要较大的σs值才能滑移临界分切应力:把滑移系开动所需要的最小分切应力滑移系:一个滑移面和此面上的一个滑移方向组成回复:冷变形金属在退火时发生组织性能变化的早起阶段,在此阶段内物理或力学性能的回复程度是随温度和时间而变化的。
材料科学基础思考题第二章1.什么是点阵参数?正方晶系和立方晶系的空间点阵的特征是什么?点阵参数是描述点阵单胞几何形状的基本参数,由六个参数组成,即三个边长a、b、c和它们之间的三个夹角αβγ。
正方晶系的点阵参数特征是a≠b≠c,α=β=γ=90立方晶系的点阵参数特征是a=b=c α=β=γ=902.划分大角度晶界和小角度晶界的依据是什么?并讨论构成小角度晶界的结构模型?依据是按界面两侧晶粒间的取向差,小于15度称小角度晶界,大于15度称大角度晶界。
小角度晶界的结构模型是位错模型,比如对称倾转晶界用一组平行的刃位错来描述。
3.为什么固溶体的强度常比纯金属高?因为合金中两类原子尺寸不同,引起点阵畸变,阻碍位错运动,造成固溶强化。
4.固溶体与中间相的主要差异固溶体保持纯金属的晶体结构,中间相的结构一般与两组元的结构都不同;固溶体原子间以金属键为主,中间相以共价键以及离子键为主;固溶体塑韧性好,,中间相的强度高,韧性较差。
5.小角度晶界由位错构成,其中对称倾转晶界由刃型位错构成,扭转晶界由螺型位错构成。
第三章1.晶体中若是有较多的线缺陷、面缺陷,其强度会明显上升,这些现象称为什么?强度提高的原因?称为形变强化和晶界强化。
原因是两类缺陷的增多都明显阻碍位错的运动,从而提高强度。
2.第四章1.写出非稳态扩散方程式的表达式,说明影响方程式中扩散系数的主要原因,扩散系数的物理意义扩散系数——表示气体(或固体)扩散程度的物理量。
扩散系数是指当浓度为一个单位时,单位时间内通过单位面积的气体量,影响方程中扩散系数的主要原因有温度、晶体结构、晶体结构、晶体缺陷、固溶体类型、扩散元素性质、扩散组元浓度。
2.扩散系数的物理意义?扩散系数的一般表达式,指出各个符号的意义,并指出固溶体类型和晶体类型对扩散有和影响?扩散系数的物理意义是:第五章1、指出影响冷变形后金属再结晶温度的主要因素。
要获得细小的再结晶晶粒,有哪些主要的措施?①变形程度的影响:随着冷变形程度的增加,储能也增加,再结晶的驱动力就越大,因此再结晶温度越低,同时等温退火时的再结晶速率也越快。
第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF(2)CaO(3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e---⨯= 共价键比例为:1-90.2%=9.8%101.(1)(2)(3)解:1、2.有一正交点阵的a=b,c=a/2。
某晶面在三个晶轴上的截距分别为6个、2个和4个原子间距,求该晶面的密勒指数。
3.立方晶系的{111},1110},{123)晶面族各包括多少晶面?写出它们的密勒指数。
4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、[1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。
5.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径。
(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数。
6.用密勒指数表示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度。
解:1、体心立方密排面:{110}21141.414a-+⨯=237.(1(2)(3)8.(1(2(110),(132)的晶带轴为[112]3×1+1×1-2×1=2≠0或(132),(311)的晶带轴为[158]-1×1+1×5-0×8=4≠0故(110),(132),(311)晶面不属于同一晶带2、根据晶带定律,hu+kv+lw=0,可得2u+v+w=0u+v=0联立求解,得:u:v:w=-1:1:1,故晶带轴为[111]属于该晶带的晶面:(321)、(312)、(101)、(011)、(431)等。
9.回答下列问题:(1)试求出立方晶系中[321]与[401]晶向之间的夹角。
材料科学基础背记要点一、填空题1.晶体非晶体根本区别质点在三维空间存在有规律的周期排列质点在三维空间不存在有规律的周期排列熔化时具有固定的熔点没有固定的熔点,只有一个软化温度范围性能具有各向异性具有各向同性2.金属的通性:良好的导电导热性;正的电阻温度系数;不透明性,具有金属光泽;良好的延展性;3.离子键共价键金属键分子键氢键结合方式正离子和负离子静电吸引力吸引相邻原子共用电子对正离子和电子云结合分子或原子团之间存在极性,存在于中性的原子和原子团之间的结合力含H物质中,H和其他原子之间形成共价键,之后与另一原子结合所形成的附加键结合类型化学键化学键化学键物理键物理键微观和宏观性能结合力大;晶体高强度,高硬度,脆,热膨胀系数小,是良好的绝缘体。
具有8-N规则,方向性强,结合力大。
晶体具有高强度,高硬度,较脆;熔点高晶体具有良好塑性,具有良好的导电导热性。
结合力小,晶体易变形,熔点低,硬度低。
具有方向性,结合力较强,比离子键和共价键的结合力要小举例部分陶瓷材料,NaCl陶瓷,聚合物,Si金属元素结合物塑料,陶瓷4.晶向指数确定步骤:①建立坐标系,选原点,定三个基矢,以晶胞边长为坐标轴单位长度。
②做直线平行于待标识的晶向,或标定晶向的直线,通过坐标原点。
③确定通过原点直线上任一一点的坐标值。
④将坐标值化为最小整数,并加上方括号。
5.晶面指数确定步骤:①建立坐标系。
②确定晶面在各个坐标轴上的截距。
③取截距的倒数,并通分,化为最简整数比。
6.一个晶向指数代表着相互平行,方向一致的所有晶向,如果晶体中的两个晶向相互平行,方向相反,则晶向指数中的指数相同而符号相反。
7.晶面指数的实际意义是晶面的法向量,因此晶面指数不是指的一个晶面,而是代表着一组相互平行的晶面,相互平行的晶面之间的晶面指数相同,或者数字相同而正负号相反。
8.晶体中的任一晶面都至少属于两个晶带,对于任意两个不互相平行的晶面,但是从属于同一个晶带时,这两个晶面的交线就是晶带轴。
固溶处理的工艺特点固溶处理,是一种重要的金属材料热处理工艺,广泛应用于各种金属合金的生产中,以改善材料的力学性能、物理性能和化学性能。
固溶处理的工艺特点主要包括以下几个方面:1. 温度控制固溶处理的首要任务是将金属合金加热至固溶温度,使合金中的固态溶质完全溶解于基体金属中,形成均匀的固溶体溶液。
温度控制是固溶处理过程中至关重要的一环,确保合金能够达到适当的固溶温度保持一定时间,以实现溶质在基体金属中的均匀分布。
2. 搅拌均匀在固溶处理过程中,为了促进溶质在基体金属中的均匀分布,通常需要对金属合金进行搅拌,以提高热量和质量的传递效率。
搅拌均匀有助于减少组织中的孤立析出物,从而提高材料的性能均匀性和稳定性。
3. 保持时间固溶处理过程中的保持时间取决于不同金属材料和合金的固溶特性,以确保固溶作用能够充分进行。
保持时间过短可能导致溶质未完全溶解或溶质的扩散不够均匀;而保持时间过长则可能导致固溶体内析出相沉淀,影响材料性能。
4. 冷却速度控制固溶处理后的金属合金需要进行合理的冷却过程,以达到所需的组织结构和性能。
冷却速度控制可以影响固溶体中溶质的析出形态和尺寸,进而影响材料的硬度、强度和韧性等性能指标。
因此,合适的冷却速度对固溶处理效果至关重要。
5. 后续热处理固溶处理通常作为金属材料热处理的基础工艺,搭配不同的后续热处理工艺能够进一步调控材料的性能。
通过时效处理、析出处理等方式,可以使固溶体中的溶质重新析出,形成细小、均匀的析出相,从而提高材料的强度和硬度。
通过控制固溶处理过程中的温度、搅拌、保持时间、冷却速度和后续热处理等关键技术参数,可以有效改善金属材料的组织结构和性能,满足不同工程应用的需求。
固溶处理作为一项重要的金属热处理工艺,在现代工业生产中发挥着不可替代的作用。