高级人工智能复习提纲
- 格式:pdf
- 大小:1.50 MB
- 文档页数:15
8.何为状态图和与或图图搜索与问题求解有什么关系状态图是描述寻找目标或路径问题的有向图,即描述一个实体基于事件反应的动态行为,显示了该实体如何根据当前所处的状态对不同的时间做出反应的。
与或图是一种系统地将问题分解为互相独立的小问题,然后分而解决的方法。
与或图中有两种代表性的节点:“与节点”和“或节点”,“与节点”指所有的后续节点都有解时它才有解;“或节点”指各个后续节点均完全独立,只要其中有一个有解它就有解。
关系:问题求解就是在一个图中寻找一个从初始节点到目标节点的路径问题,图搜索模拟的实际是人脑分析问题,解决问题的过程,它基于领域知识的问题求解过程。
11. 什么是与或树什么是可解节点什么是解树答:一棵树中的弧线表示所连树枝为“与”关系,不带弧线的树枝为或关系。
这棵树中既有与关系又有或关系,因此被称为与或树。
满足下列条件的节点为可解节点。
①终止节点是可解节点;②一个与节点可解,当且仅当其子节点全都可解;③一个或节点可解,只要其子节点至少有一个可解。
解树实际上是由可解节点形成的一棵子树,这棵子树的根为初始节点,叶为终止节点,且这棵子树一定是与树14. 请阐述状态空间的一般搜索过程。
OPEN表与CLOSED表的作用是什么答:先把问题的初始状态作为当前扩展节点对其进行扩展,生成一组子节点,然后检查问题的目标状态是否出现在这些子节点中。
若出现,则搜索成功,找到了问题的解;若没出现,则再按照某种搜索策略从已生成的子节点中选择一个节点作为当前扩展节点。
重复上述过程,直到目标状态出现在子节点中或者没有可供操作的节点为止。
所谓对一个节点进行“扩展”是指对该节点用某个可用操作进行作用,生成该节点的一组子节点。
OPEN表用于存放刚生成的节点,对于不同的搜索策略,节点在OPEN表中的排序是不同的。
CLOSED表用于存放将要扩展或者已扩展的节点。
15. 广度优先搜索与深度优先搜索各有什么特点答:广度优先搜索就是始终先在同一级节点中考查,只有当同一级节点考查完之后,才考查下一级节点。
人工智能复习重点一、选择题。
(30分)1、人工智能英文:Artificial Intelligence(注意不就是Rengongzhineng!!)2、任课老师得名字:郑波尽邮箱:zhengbojingmail、3、据说还会考亚里士多德得功绩……(您们自己去网上查查,老师说就是常识来着)4、可能会出选择题得几个点:黄帝得“指南车”、诸葛亮得“木牛流马”、亚里士多德得形式逻辑、布莱尼茨得关于数理逻辑得思想、“机器人”一词得来源。
5、AI(人工智能)得本质问题:研究如何制造出人造得智能机器或系统,来模拟人类智能活动得能力,以延伸人们智能得科学。
6、研究对象:模拟人类智能7、研究目标:研究瞧上去具有人类智能得系统,解决需要人类智能才能解决得问题二、简答题。
1、图灵测试:三个重点(1)一个测试者,一个受试者,一台机器(2)所有交流信息无泄漏(3)如果提问者区分两者得正确率小于50%,则可以认为机器具有智能2、希尔勒得中文屋子:一个对中文一窍不通得,以英语作母语得人被关闭在一只有两个通口得封闭房间中。
房间里有一本中英翻译手册。
房外得人不断向房间内递进用中文写成得问题。
房内得人便按照手册得说明,用中文回答出问题,并将答案递出房间。
(希尔勒中文屋子得实验表明用图灵测试来定义智慧还就是远远不够充分得)3、人工智能得思想流派:(1)基于符号处理得符号主义(Symbolism)人类思维得基本单元就是符号,思维过程就是对符号得处理过程,自然语言也就是用符号表示得理论基础: 物理符号系统假设与有限合理性原理、物理符号系统假设:物理符号系统就是表现智能行为必要与充分得条件有限合理性原理:人类行为表现出有限得合理性(2)以人工神经网络为代表得连接主义(Connectionism)人工神经网络就是典型代表,其理论基础就是脑模型。
人工神经网络具有良好得自学习,自适应与自组织能力,以及大规模并行,分布式信息存储与处理得特点、可以处理不确定性问题、(3)以演化计算为代表得演化主义(Evolutionism)模拟自然界得生物演化过程入手,以解决智能系统如何从环境中进行学习得问题、理论基础为达尔文得进化论。
一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
第一章绪论●人工智能的诞生:1965年夏季,在达特茅斯大学●人工智能的学派:符号主义,联结主义,行为主义第二章知识表示方法●知识的特性:1.相对正确性;2.不确定性;3.可表示性;4.可利用性●★用谓词公式表示知识的步骤:1.定义谓词及个体,确定每个谓词及个体的确切含义。
2.根据所要表达的事物或概念,为每个谓词中的变元赋以特定的值。
3.根据所要表达的知识的语义,用适当的联接符号将各个谓词联接起来,形成谓词公式。
●★★机器人搬弄积木块问题表示P19●★一阶谓词逻辑表示法的特点:1.自然性;2.适宜于精确性知识的表示;3.易实现;4.与谓词逻辑表示法相对应的推理方法。
●产生式系统的组成:1.规则库;2.综合数据库;3.推理机●★产生式系统的推理方式:1.正向推理:①规则库中的规则与综合数据库中的事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③执行启动规则的后件。
将该启用规则的后件送入综合数据库或对综合数据库进行必要的修改。
重复这个过程直至达到目标。
2.反向推理:①规则库中的规划后件与目标事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③将启用规则的前件作为子目标。
重复这个过程直至各子目标均为已知事实,则反向推理的过程成功结束。
●★★语义网络表示知识举例:P36 例2.5、2.6、2.7;P71 作业18●框架的定义及组成:一个框架由若干个“槽”组成,每个“槽”又可划分为若干个“侧面”。
一个槽用于描述所论及对象的某一方面的属性,一个侧面用于描述相应属性的一个方面。
框架名<槽名><侧面><值>●脚本表示法:美国耶鲁大学的R.C.Schank及其同事们根据概念从属理论提出了一种知识表示方法——脚本表示法。
●问题状态空间的构成:1.状态;(2).算符;3.状态空间。
●★用状态空间表示问题的步骤1.定义状态的描述形式;2.用所定义的状态描述形式把问题的所有可能的状态都表示出来,并确定出问题的初始状态集合描述和目标状态集合描述;3.定义一组算符。
自考人工智能原理重点复习大纲
一、概述
- 人工智能的基本概念和定义
- 人工智能的发展历史和应用领域
- 人工智能的基本原理和方法
二、知识表示与推理
- 逻辑表示和推理的基本概念和方法
- 谓词逻辑与一阶谓词逻辑
- 归结推理和演绎推理
- 产生式规则与专家系统
三、机器研究
- 机器研究的基本概念和分类
- 监督研究、无监督研究和半监督研究的基本原理
- 决策树、朴素贝叶斯和支持向量机的原理和应用
- 神经网络和深度研究的基本原理和应用
四、自然语言处理
- 自然语言理解和生成的基本概念和方法
- 词法分析、句法分析和语义分析的原理和技术
- 文本分类、信息抽取和机器翻译的基本原理和应用
五、计算机视觉
- 计算机视觉的基本概念和方法
- 图像特征提取和图像识别的原理和技术
- 目标检测、图像分割和人脸识别的基本原理和应用
六、智能系统与伦理
- 智能系统的发展现状和前景
- 人工智能在社会和经济中的应用
- 人工智能带来的伦理、法律和社会问题
七、人工智能的挑战和发展方向
- 当前人工智能面临的挑战和问题
- 未来人工智能的发展方向和趋势
- 人工智能与人类的关系和合作
以上为自考人工智能原理的重点复习大纲,希望能对你的学习有所帮助。
人工智能复习重点1绪论1.1人工智能-理论基础。
从理论基础上讲,它是信息论、控制论、系统工程论、计算机科学、心理学、神经学、认知科学、数学和哲学等多学科相互渗透的结果。
1.2 什么是人工智能?从思维基础上讲,它是人们长期以来探索研制能够进行计算、推理和其它思维活动的智能机器的必然结果;• 从理论基础上讲,它是信息论、控制论、系统工程论、计算机科学、心理学、神经学、认知科学、数学和哲学等多学科相互渗透的结果;• 从物质和技术基础上讲,它是电子计算机和电子技术得到广泛应用的结果。
1.3 人工智能的研究途径和方法1.利用搜索采用尝试-检验(try-and-test)的方法,对问题进行试探性的求解,直到成功。
这就是AI问题求解的基本策略中的生成-测试法。
2.利用知识知识有几大难以处理的属性:①非常庞大②难于精确表达③经常变化所以,对于知识的处理必须做到:①抓住一般性,以免浪费大量时间,空间;②要能够被提供和接受知识的人所理解;③易于修改;④能够通过搜索技术来减少知识的巨大容量。
3.利用抽象抽象用以区分重要与非重要的特征,借助于抽象可将处理问题中的重要特征和变式与大量非重要特征和变式区分开来,使对知识的处理变得更有效、更灵活。
4.利用推理目前,AI 工作者以研究出各种逻辑推理、概率推理、定性推理、模糊推理、非单调推理和次协调推理等各种推理技术和各种控制策略,它为人工智能的应用开辟了广阔的应用前景。
5.遵循有限合理性原则西蒙在20世纪50年代在研究人的决策制定中总结出一条关于智能行为的基本原则,因此而获得诺贝尔奖。
爆炸性的搜索量,仍要做好决策,而不是放弃,这时,人将在一定的约束条件下作机遇性的搜索,以制定尽可能好的决策。
这样的决策的制定具有一定的机遇性,往往不是最优的。
1.4 人工智能三大学派1. 符号主义认为人工智能源于数理逻辑。
2. 联结主义(Connetionism)认为人工智能源于仿生学,特别是人脑模型的研究,神经元与神经元之间的连接。
厂盲目搜索状态空间「广度优先搜索深度优先搜索有界深度优先搜索代价树的广度优先搜索1-代价树的深度优先搜索1.人工智能研究途径有:(1)符号主义(Symbolicism )基于物理符号系统假设和有限合理性原理的人工智能学派。
(2)联结/连接主义(Connectionism )基于神经元及神经元之间的网络联结机制来模拟和实现人工智能。
(3)行为主义(Actionism )基于控制论和“感知一一动作”型控制系统的人工智能学派P. S:知识和推理是人工智能的核心,学习是人工智能的关键。
命题是能表达判断并具有确定真值的陈述句。
人工智能的研究内容一一机器思维,机器感知,决策与行为,其目的即实现人的智能!人工智能研究的基本内容是机器感知、机器思维、机器学习、机器行为、智能系统及智能计算机的构造技术。
2•人工智能的研究途径主要有以符号处理为核心的方法、以网络连接为主的连接机制方法及系统集成。
3•人工智能的研究领域主要有专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络等。
2•人工智能研究方法:采集,预处理,推理,机器学习和反馈。
3•知识的特性:相对正确性,知识来自于人们对客观世界运动规律的正确认识,是从感性认识上升成为理性认识的高级思维劳动过程的结晶,故相应于一定的客观环境与条件下,知识无疑是正确的。
然而当客观环境与条件发生改变时,知识的正确性就要接受检验,必要时就要对原来的认识加以修正或补充,以至全部更新而取而代之。
不确定性,如前所述,知识由若干信息关联的结构组成。
但是,其中有的信息是精确的,有的信息却是不精确的。
这样,则由该信息结构形成的知识也有了确定或不确定的特征。
可表示性与可利用性,可发展性。
知识的可利用性使得计算机或智能机器能利用知识成为现实;而知识的机器可学习、可表示性使得人工智能不断得以进步与发展成为必然。
4•产生式的基本形式:产生式通常用于表示具有因果关系的知识,其基本形式是:P—Q 或者If P Then Q [Else S]其中,P是前件,用于指出该产生式是否可用的条件。
《人工智能应用技术》复习大纲一、人工智能概述略二、谓词公式与逻辑推理定义2.1 命题(Proposition),即具有真(T)假(F)意义的陈述性语句。
定义2.2 所谓个体,是指可以独立存在的某个事物。
定义2.3 谓词:由定义的谓词名、变元,共同构成了具有陈述性表达的形式化语句,称为谓词。
一个谓词可以有n(其中n=0,1,2, ……)个变元,并称之为n元谓词。
定义2.3 谓词中包含个体或变元的数目,称为谓词的元或谓词的目。
定义2.4 谓词表达形式中所包容相叠加的含义层次数数目,称为谓词的阶。
例2-2 比较下列谓词或谓词形式的命题:①LIKE(john,mary);②ROBOT(john);③ROBOT(mary);④ADDQ(x,y,z)。
试解释具体含义,并指出它们各是几元谓词。
解:上述谓词①②③意即“机器人约翰喜欢玛丽”;②和③都只有一个个体,称为一元谓词;相应①则称为二元谓词;④表示为表达式“x+y=z”,其中包含有3个变元,故称为三元谓词。
依此类推,可推出关于n元谓词的概念。
例2-3 为了说明谓词的阶,我们来比较下列谓词形式的命题:①LIFELESS(outer-stars);外星球没有智能生命。
②INCORRECT(lifeless(outer-stars));说“外星球没有智能生命”是不确切的。
解:在上述谓词形式的命题中,谓词①只有一层含义,称为一阶谓词;谓词②在前一层含义基础上,又增加了一层新意,共有二层含义。
故把谓词②称为二阶谓词。
依此类推,可推出关于n阶谓词的概念。
注意:在谓词逻辑演算中,最重要的有三大类:即:命题逻辑演算、一阶谓词逻辑演算和二阶谓词演算。
命题逻辑表示比较简单,只能表达具体固定的情况,命题是谓词逻辑特殊事例的生动描述,谓词逻辑可以灵活表现多种或变化的情况;谓词表达是命题逻辑的抽象与推广。
总的看来,命题和谓词的知识表示形式可以相互转换,而谓词比命题有更强的表达能力。
一、智能化智能体1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件.理性智能体定义:给定感知序列(percept sequence)和内在知识(built—in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。
智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)智能体的分类:简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动.基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。
基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。
基于效用的智能体:决定最好的选择达到自身的满足。
学习型智能体:自主学习,不断适应环境与修正原来的先验知识.2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性.答题举例:练习:给出如下智能体的任务环境描述及其属性刻画。
o机器人足球运动员o因特网购书智能体o自主的火星漫游者o数学家的定理证明助手二、用搜索法对问题求解1。
简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。
非启发式搜索:按已经付出的代价决定下一步要搜索的节点。
具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。
启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进。
由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。
2.如何评价一个算法的性能?(度量问题求解的性能)▪完备性:当问题有解时,算法是否能保证找到一个解;▪最优性:找到的解是最优解;▪时间复杂度:找到一个解需要花多长时间▪搜索中产生的节点数▪空间复杂度:在执行搜索过程中需要多少内存▪在内存中存储的最大节点数3。
8.何为状态图和与或图?图搜索与问题求解有什么关系?状态图是描述寻找目标或路径问题的有向图,即描述一个实体基于事件反应的动态行为,显示了该实体如何根据当前所处的状态对不同的时间做出反应的。
与或图是一种系统地将问题分解为互相独立的小问题,然后分而解决的方法。
与或图中有两种代表性的节点:“与节点”和“或节点”,“与节点”指所有的后续节点都有解时它才有解;“或节点”指各个后续节点均完全独立,只要其中有一个有解它就有解。
关系:问题求解就是在一个图中寻找一个从初始节点到目标节点的路径问题,图搜索模拟的实际是人脑分析问题,解决问题的过程,它基于领域知识的问题求解过程。
11. 什么是与或树?什么是可解节点?什么是解树?答:一棵树中的弧线表示所连树枝为“与”关系,不带弧线的树枝为或关系。
这棵树中既有与关系又有或关系,因此被称为与或树。
满足下列条件的节点为可解节点。
①终止节点是可解节点;②一个与节点可解,当且仅当其子节点全都可解;③一个或节点可解,只要其子节点至少有一个可解。
解树实际上是由可解节点形成的一棵子树,这棵子树的根为初始节点,叶为终止节点,且这棵子树一定是与树14. 请阐述状态空间的一般搜索过程。
OPEN表与CLOSED表的作用是什么?答:先把问题的初始状态作为当前扩展节点对其进行扩展,生成一组子节点,然后检查问题的目标状态是否出现在这些子节点中。
若出现,则搜索成功,找到了问题的解;若没出现,则再按照某种搜索策略从已生成的子节点中选择一个节点作为当前扩展节点。
重复上述过程,直到目标状态出现在子节点中或者没有可供操作的节点为止。
所谓对一个节点进行“扩展”是指对该节点用某个可用操作进行作用,生成该节点的一组子节点。
OPEN表用于存放刚生成的节点,对于不同的搜索策略,节点在OPEN表中的排序是不同的。
CLOSED表用于存放将要扩展或者已扩展的节点。
15. 广度优先搜索与深度优先搜索各有什么特点?答:广度优先搜索就是始终先在同一级节点中考查,只有当同一级节点考查完之后,才考查下一级节点。
复习提纲:第二章:1.一个表的表头和表尾的求法;2.Prolog程序的基本构成部分:给出几个部分,能够通过添加补充成一个完整的可运行的程序;3.Prolog程序的基本运行过程;4.Prolog程序的中关于循环控制的实现方法:读程序,写出程序结果.第三章:1.搜索算法中,OPEN表和CLOSE表的作用;2.掌握画出问题的状态空间搜索图(不断扩展节点的方法),并给出解路径.3.按和代价法及最大代价法求解树的代价.第五章:1.文字,互补文字;纯文字;2.子句,求一个命题逻辑公式的子句集,求一个谓词逻辑的子句集,求一个命题(有前提和结论)的子句集;3.求一个公式在一个替换下的例;求两个公式之间的所有差异集;求一个公式集的最一般合一.4.判断一个子句集是否不可满足;5.命题逻辑中的归结原理;谓词逻辑中的归结原理,有归结原理进行推理.6.Horn子句归结方法;7.课本后面所有的习题.第/、章:1.产生式系统的三个组成部分;2.推理机的正向推理基本过程;3.产生式系统常推理方法;4.产生式系统常用的产生式规则冲突消解策略.第七章:知识表示:1.常见事物之间8种关系的语义网络表示方法;2.用语义网络表示命题.(习题七:4, 5题)一、填空题1、文字P (X)与文字____________________ 互补。
2、产生式系统由产生式规则库、动态数据库和_________________ 三部分组成。
3、己知表:[[a,b], [c], [d,e]],则表头是:_____________ ,表尾是:______________4、设谓词公式:G= 3xVyVz (P(x, y, z) A -.Q(x, y, z)),则G 的子句集为:5、命题“不是毎个计算机系的都喜欢计算机程序设计语言”,用谓词公式表达为:2.试用Horn子句归结法,证明P(a, c)是子句集{(1), (2),(3), (4)}的逻辑结论.(1)P(x, z) <—Pi(x, y), P2(y, z)(2)Pi (u, v) <—Pu (u, v)(3)Pn(a, b) <—(4)P“b,c) e(5)<-P(a, c)3.计算机科学系要招聘一名教师,侖A, B, C三人前來应聘,经面试后,计算机系表示如下想法:①如果录用B,则一定录用C;②如果录用A而不录用B,则一定录用C;③三人中至少录用一人。
一、简答题
1.什么是智能?
2.AI的本质问题是什么?
研究如何制造出人造的智能机器或系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
3.什么是图灵测试?
图灵测试(又称“图灵判断”)是图灵提出的一个关于机器人的著名判断原则。
所谓图灵测试是一种测试机器是不是具备人类智能的方法。
被测试的有一个人,另一个是声称自己有人类智力的机器。
4.有界深度优先搜索的算法
5.什么是启发式搜索
启发式搜索就是利用启发性信息进行制导的搜索。
启发性信息就是有利于尽快找到问题之解得信息。
6.写出A*算法
7.产生式系统正向推理和反向推理的常用算法,画出推理树
8.什么样的知识能用框架表示?
概念、对象、产生式规则等知识
9.什么是语义网络?什么样是知识能用语义网络表示?
语义网络是由节点和边(也称有向弧)组成的一种有向图。
关系(或联系)型的知识和能化为关系型的知识都可以用语义网络来表示10.专家系统的结构,各个主要模块的功能
11.什么是专家系统,举例说明专家系统的应用
12.计算机视觉处理的4个阶段的主要任务。
二、解答题
1.求谓词公式的子句集
2.用归结原理证明命题
3.应用归结原理求取问题答案
4.用全局择优搜索法解八数码难题
5.用极大极小分析发求解二人博弈问题
6.给出若干语句,画出相应的语义网络
7.给出一组产生式规则和证据事实,用确定性理论求出由每一个规则推出的结论及其可信度。
8.构造决策树并写出规则集
9.用遗传算法求解问题
10.如何设计一个神经网络识别手写体?。
⼈⼯智能考试复习资料⼈⼯智能第⼀章绪论1、智能(intelligence )⼈的智能是他们理解和学习事物的能⼒,或者说,智能是思考和理解能⼒⽽不是本能做事能⼒。
2、⼈⼯智能(学科)⼈⼯智能研究者们认为:⼈⼯智能(学科)是计算机科学中涉及研究、设计和应⽤智能机器的⼀个分⽀。
它的近期主要⽬标在于研究⽤机器来模仿和执⾏⼈脑的某些智⼒功能,并开发相关理论和技术。
3、⼈⼯智能(能⼒)⼈⼯智能(能⼒)是智能机器所执⾏的通常与⼈类智能有关的智能⾏为,这些智能⾏为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、⾏动和问题求解等活动。
4、⼈⼯智能:就是⽤⼈⼯的⽅法在机器上实现的智能,或者说,是⼈们使⽤机器模拟⼈类的智能。
5、⼈⼯智能的主要学派:符号主义:⼜称逻辑主义、⼼理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。
代表⼈物有纽厄尔、肖、西蒙和尼尔逊等。
连接主义:⼜称仿⽣学派或⽣理学派,其原理主要为神经⽹络及神经⽹络间的连接机制与学习算法。
⾏为主义:⼜称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。
6、⼈类认知活动具有不同的层次,它可以与计算机的层次相⽐较,见图⼈类计算机认知活动的最⾼层级是思维策略,中间⼀层是初级信息处理,最低层级是⽣理过程,即中枢神经系统、神经元和⼤脑的活动,与此相对应的是计算机程序、语⾔和硬件。
研究认知过程的主要任务是探求⾼层次思维决策与初级信息处理的关系,并⽤计算机程序来模拟⼈的思维策略⽔平,⽽⽤计算机语⾔模拟⼈的初级信息处理过程。
7、⼈⼯智能研究⽬标为:1、更好的理解⼈类智能,通过编写程序来模仿和检验的关⼈类智能的理论。
思维策略初级信息处理⽣理过程计算机程序计算机语⾔计算机硬件图:⼈类认知活动与计算机的⽐2、创造有⽤和程序,该程序能够执⾏⼀般需要⼈类专家才能实现的任务。
⼀般来说,⼈⼯智能的研究⽬标⼜可分为近期研究⽬标和远期研究⽬标两种。