主成分分析法精华讲义及实例
- 格式:doc
- 大小:244.00 KB
- 文档页数:9
主成分分析类型:一种处理高维数据的方法。
降维思想:在实际问题的研究中,往往会涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。
因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。
一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。
记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。
设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩(1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。
1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。
主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法目录[显示]1 什么是主成分分析法2 主成分分析的基本思想3 主成分分析法的基本原理4 主成分分析的主要作用5 主成分分析法的计算步骤6 主成分分析法的应用分析o案例一:主成分分析法在啤酒风味评价分析中的应用[1]1 材料与方法2 主成分分析法的基本原理3 主成分分析法在啤酒质量一致性评价中的应用4 结论7 参考文献[编辑]什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
主成分分析法主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法[编辑]什么是主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
[编辑]主成分分析的基本思想在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具。
同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
1、主成分法:用主成分法寻找公共因子的方法如下:假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。
将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系:11111221221122221122....................p p p p pp p pp p Y X X X Y X X X Y X X Xγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到X 得转换关系为:11112121212122221122....................p p p p pp p pp p X Y Y Y X Y Y Y X Y Y Yγγγγγγγγγ=+++⎧⎪=+++⎪⎨⎪⎪=+++⎩ 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为:1111212112121222221122....................m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。
为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根/i i F Y =,12m ,则式子变为:1111122112211222221122....................m m m m p p p pm m p X a F a F a F X a F a F a F X a F a F a F εεε=++++⎧⎪=++++⎪⎨⎪⎪=++++⎩这与因子模型完全一致,这样,就得到了载荷A 矩阵和 初始公因子(未旋转)。
主成分分析类型:一种处理高维数据的方法。
降维思想:在实际问题的研究中,往往会涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。
因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。
一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。
记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。
设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩ (1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。
1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。
第 k 个主成分的贡献率:1ipii λλ=∑;前m 个主成分累计贡献率:11mii pii λλ==∑∑,它表明前 m 个主成分Y 1,Y 2,…,Y m 综合提供 X 1,X 2,…,X p 中信息的能力。
1.3.2 主成分 Y i 与变量 X j 的相关系数 由于 Y=P T X ,故 X=PY ,从而1122,(,).j j j pj p i j i ij X e Y e Y e Y Cov Y X e λ=+++=由此可得 Y i 与 X j 的相关系数为,(,)ijY X ij Cov Y X e λρ===(4)1.4 标准化变量的主成分在实际问题中,不同的变量往往有不同的量纲,由于不同的量纲会引起各变量取值的分散程度差异较大,这时总体方差则主要受方差较大的变量的控制。
为了消除由于量纲的不同可能带来的影响,常采用变量标准化的方法,即令*,1,2,...,,i X i p == (5)其中 (),().i i ii i E X Var X μσ== 这时****12(,,...,)TpX X X X = 的协方差矩阵便是12(,,...,)T p X X X X =的相关矩阵 ()ij p p ρρ⨯=,其中**(,)().ij ijCov X X E X X ρ==(6)利用 X 的相关矩阵 ρ 作主成分分析,有如下结论:设 ****12(,,...,)Tp X X X X =为标准化的随机向量,其协方差矩阵(即 X 的相关矩阵)为 ρ ,则 *X 的第 i 个主成分为******12(),1,2,...,.T i i i i ipX Y e X e e e i p μ-==+++= (7)并且***111()(),pp pii i i i i Var YVar X p λ======∑∑∑ (8)其中 ***120p λλλ≥≥≥≥为 ρ的特征值,****12(,,...,)Ti i i ip ee e e =为相应于特征值*i λ的正交单位特征向量。
第 i 个主成分的贡献率:*i pλ;前 m 个主成分的累计贡献率:*1mii pλ=∑;*i Y 与*i X 的相关系数为 ***,ijij Y X ρ=。
二、样本主成分前面讨论的是总体主成分,但在实际问题中,一般 ∑(或ρ)是未知的,需要通过样本来估计。
设12(,,...,),1,2,...,.T i i i ip x x x x i n ==为取自12(,,...,)T p X X X X =的一个容量为n 的简单随机样本,则样本协方差矩阵及样本相关矩阵分别为11()()(),1(),n T ij p p k k k ij p pS s x x x x n sR r ⨯=⨯==---⎛⎫==∑ (9)其中12111(,,...,),,1,2,...,,1()(),,1,2,...,.1nTp j ij i nij kii kj j k x x x x x x j p n s x x x x i j p n ======--=-∑∑分别以 S 和 R 作为 ∑和ρ的估计,然后按总体主成分分析的方法作样本主成分分析。
三、 例 题某市为了全面分析机械类个企业的经济效益,选择了8个不同的利润指标,14企业关于这8个指标的统计数据如下表所示,试进行主成分分析。
表1 14家企业的利润指标的统计数据解:样本均值向量为:(27.97910.9509.1008.54311.06414.6141.55214.686)T x =,样本协方差矩阵为:168.33360.35745.75741.21557.90671.6728.602101.62037.20716.82515.50523.53529.029 4.78544.02324.84324.33536.47849.278 3.62939.41024.42336.28349.146 3.67538.71856.04675.404 5.00259.723103.018 6.82174.5231.1S =37 6.722102.707⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦168.3360.35745.75841.21657.90671.6728.602101.6260.35737.20716.82515.50523.53529.0294.784644.02345.75816.82524.84324.33536.47849.2783.62939.4141.21615.50524.33524.42336.28349.1463.674738.71857.90623.S =53536.47836.28356.04675.4045.002259.72371.67229.02949.27849.14675.404103.026.821574.5238.602 4.78463.629 3.67475.00226.82151.137 6.7217101.6244.02339.4138.71859.72374.5236.7217102.71⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎢⎢⎢⎣⎦⎥⎥⎥⎥⎥ 由于S 中主对角线元素差异较大,因此我们样本相关矩阵R 出发进行主成分分析。
样本相关矩阵R 为:1 0.76266 0.70758 0.64281 0.59617 0.54426 0.62178 0.772851 0.553410.51434 0.51538 0.468880.73562 0.7121410.98793 0.9776 0.974090.68282 0.78019 R = 1 0.98071 0.97980.69735 0.77306 1 0.992350.62663 0.78718 10.6303 0.72449 1 0.62202 1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦矩阵R 的特征值及相应的特征向量分别为:R 的特征值及贡献率见下表前3个标准化样本主成分类及贡献率已达到95.184%,故只需取前三个主成分即可。
前3个标准化样本主成分中各标准化变量 *(1,2,...,8)i x x i ==前的系数即为对应特征向量,由此得到3个标准化样本主成分为********112345678********212345678*310.32113x +0.29516x +0.38912x +0.38472x +0.37955x +0.37087x +0.31996x +0.35546x -0.4151x -0.59766x +0.22974x +0.27869x +0.31632x +0.37151x -0.27814x -0.15684x -0.45123x +0.103y y y ===*******234567803x -0.039895x +0.053874x -0.037292x +0.075186x +0.77059x -0.42478x ⎧⎪⎨⎪⎩注意到,y 1近似是8个标准化变量*(1,2,...,8)i x x i ==的等权重之和,是反映各企业总效应大小的综合指标,y 1的值越大,则企业的效益越好。
由于y 1的贡献率高达76.708%,故若用y 1的得分值对各企业进行排序,能从整体上反映企业之间的效应差别。
将S 中s ii 的值及x 中各i x 的值以及各企业关于x i的观测值代入y1的表达式中,可求得各企业y1的得分及其按其得分由大到小的排序结果。