七年级数学上册期末复习(三)一元一次方程(人教版)
- 格式:docx
- 大小:715.04 KB
- 文档页数:10
2☆下列各数是方程a A.2 B. -2 C.1 D. 1和-23☆下列方程是一元一次方程的是( )A.x2+1=5 B. 3(m -1)-1=2 C. x-y=6 D.都不是 4★若x=4是方程a x -2=4的解,则a 等于( ) A. 0 B. 21C.-3D.-25★★已知关于x 的一元一次方程a x -b x=m 有解,则有( )A. a ≠b B.a>b C.a<b D.以上都对二、【方程变形——解方程的重要依据】1、▲等式的基本性质(P_83~84页)·等式的性质1:等式的两边同时加(或减) ( ),结果仍相等。
即:如果a =b ,那么a ±c =b 。
·等式的性质2:等式的两边同时乘 ,或除以 数,结果仍相等。
即:如果a =b ,那么ac =bc ; 或 如果a =b ( ),那么a/c =b/c[# 注:等式的性质(补充): 等式的两边,结果仍相等。
即:如果a =b ,那么b =a #]2、△分数的基本的性质[4]分数的分子、分母同时乘以或除以同一个不为0分数的值不变。
即:b a =bm am =mb ma ÷÷(其中m ≠0) [基础练习] 1☆ 利用等式的性质解方程:2x+13=12第一步:在等式的两边同时 ,第二步:在等式的两边同时 ,解得:x=2★ 下列变形中,正确的是( )55,253==-x x x A 得、由23,23-==-x x B 得、由21,4)1(2=-=-x x C 得、由23,032==y y D 得、由3★★解方程:103.013.031.02.0=--x x三、【解一元一次方程的一般..步骤】图示1、上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说解每一个方程都必须经过五个步骤;2、解方程时,一定要先认真观察方程的形式,再选择步骤和方法;3、对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解。
人教版数学七年级上册期末专项复习:一元一次方程实际应用(四)1.根据图中提供的信息,可知一个杯子的价格是()A.51元B.35元C.8元D.7.5元2.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.2x+4×20=4×340 B.2x﹣4×72=4×340C.2x+4×72=4×340 D.2x﹣4×20=4×3403.在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍、问支援拔草和支援植树的分别有多少人?若设支援拔草的有x人,则下列方程中正确的是()A.32+x=2×18 B.32+x=2(38﹣x)C.52﹣x=2(18+x)D.52﹣x=2×184.一次年级运动会设有跑步、跳远、铅球三个项目,每当一个学生参加某个项目时,就给该生所在班记1分,结果某班累计得到100分.已知这个班三个项目都参加的有25人,参加其中两个项目的有8人,则只参加一个项目的有()A.7人B.8人C.9人D.10人5.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14 B.33 C.66 D.696.一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折大拍卖,那么该商品三月份的价格比进货价()A.高12.8% B.低12.8% C.高28% D.高40%7.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套.设用x张铝片制瓶身,则下面所列方程正确的是()A.2×16x=45(100﹣x)B.16x=45(100﹣x)C.16x=2×45(100﹣x)D.16x=45(50﹣x)8.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框(如图所示).已知铺这个框恰好用了504块边长为0.5米的正方向花岗岩(接缝忽略不计).若设此标志性建筑底面长方形的宽为x米,给出下列方程:①4×3(2x+3)=0.5×0.5×504;②2×3(2x+6)+2×3x=0.5×0.5×504;③(x+6)(2x+6)﹣2x•x=0.5×0.5×504,其中正确的是()A.②B.③C.②③D.①②③9.某学校开学初有一批学生需要住宿,如果每间宿舍安排3人,就会有7人没床位;如果每间宿舍安排4人,将会空出1间宿舍.问该校有多少学生住宿?如果设该校有x人住宿,那么依题意可以列出的方程是()A.=+1 B.=﹣1 C.=+1 D.=﹣1 10.有x辆客车,若每辆客车乘50人,则还有10人不能上车,若每辆车乘52人,则车上只剩2个空位,下列方程中正确的是()A.50x﹣10=52x﹣2 B.50x+10=52x﹣2C.50x+10=52x+2 D.50x﹣10=52x+211.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套,现有42张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需用x张做盒身,则下面所列方程正确的是()A.18(42﹣x)=12x B.2×18(42﹣x)=12xC.18(42﹣x)=2×12x D.18(21﹣x)=12x12.有一些相同的房间需要粉刷墙面,一天4名一级技工去粉刷10个房间,结果其中有32m2墙面未来得及粉刷;同样时间内7名二级技工粉刷了15个房间之外,还多粉刷了另外的4m2墙面.每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为x平方米,一级技工每天粉刷y平方米,下列方程正确有几个()①﹣+10=0;②15(4y+32)=70(y﹣10)﹣40③=;④=+10.A.4 B.3 C.2 D.113.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是()A.8 B.7 C.6 D.514.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,第一台盈利20%,另一台亏本20%,则本次出售中,商场()A.不赚不赔B.赚160元C.赔80元D.赚80元15.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm2 16.已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?()A.39 B.40 C.41 D.4217.一件工作,甲单独做要20小时完成,乙单独做要12小时完成,现在由甲单独做4小时,剩下的部分由甲、乙合作,那么剩下的部分需要几个小时完成?若设还要xh完成,则依题意可列方程为()A.B.C.D.18.甲、乙两班共有88人,若从甲班调3人到乙班,那么两班人数正好相等,设甲班原有人数是x人,可列出方程()A.88﹣x=x﹣3 B.88+x=x﹣3C.(88﹣x)+3=x﹣3 D.(88﹣x)+3=x19.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是()A.96+x=(72﹣x)B.(96+x)=72﹣xC.(96﹣x)=72﹣x D.×96+x=72﹣x20.某工人若每小时生产38个零件,在规定时间内还有15个不能完成,若每小时生产42个零件,则可以超额完成5个,问:规定时间是多少?设规定时间为x小时,则可列方程为()A.38x﹣15=42x+5 B.38x+15=42x﹣5C.42x+38x=15+5 D.42x﹣38x=15﹣5参考答案1.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选:C.2.解:设汽车离山谷x米,则汽车离山谷距离的2倍即2x,因为汽车的速度是72千米/时即20米/秒,则汽车前进的距离为:4×20米/秒,声音传播的距离为:4×340米/秒,根据等量关系列方程得:2x+4×20=4×340,故选:A.3.解:设支援拔草的有x人,则支援植树的为(20﹣x)人,现在拔草的总人数为(32+x)人,植树的总人数为(18+20﹣x=38﹣x)人.根据等量关系列方程得,32+x=2(38﹣x).故选:B.4.解:设只参加一个项目的有x人,根据题意得,25×3+8×2+x=100,解得:x=9,答:只参加一个项目的有9人,故选:C.5.解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7),∴三个数的和为3的倍数,由四个选项可知只有A不是3的倍数.故选:A.6.解:设一月份某种商品进货价为x元,所以该商品三月份的价格为(60%+1)x•0.8,因为=0.28,所以该商品三月份的价格比进货价高28%.故选:C.7.解:设用x张制瓶身,则用(100﹣x)张制瓶底才能正好制成整套的饮料瓶,根据题意列方程得,2×16x=45(100﹣x),故选:A.8.解:设此标志性建筑底面长方形的宽为x米,给出下列方程:①4×3(2x+3)=0.5×0.5×504,错误;②2×3(2x+6)+2×3x=0.5×0.5×504,正确;③(x+6)(2x+6)﹣2x•x=0.5×0.5×504,正确.故选:C.9.解:设该校有x人住宿,根据题意得:=+1.故选:C.10.解:由题意可得,50x+10=52x﹣2,故选:B.11.解:由题意可得,12x×2=(42﹣x)×18,故选:C.12.解:设每个房间需要粉刷的墙面面积为x平方米,一级技工每天粉刷y平方米,根据题意可得:①﹣+10=0,15x﹣4错误,10x+32错误,应为15x+4,10x﹣32,故此选项错误;②15(4y+32)=70(y﹣10)﹣40,利用粉刷的速度得出等式,正确,③=,利用粉刷的速度得出等式,正确;④=+10,正确;故选:B.13.解:(方法一)设甲计划完成此项工作的天数为x,根据题意得:x﹣(1+)=3,解得:x=7.(方法二)设甲计划完成此项工作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式方程的解,且符合题意.故选:B.14.解:设盈利20%的电子琴的成本为x元,根据题意得:x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,根据题意得:y(1﹣20%)=960,解得y=1200;∵960×2﹣(800+1200)=﹣80,∴赔80元,故选:C.15.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=204x=4×20=80(cm2)所以每一个长条面积为80cm2.故选:C.16.解:设小明买了x个面包,根据题意得:15x﹣15×0.9(x+1)=45,解得:x=39.故选:A.17.解:“设剩下部分要x小时完成”,那么甲共工作了4+x小时,乙共工作了x小时,设工作总量为1,则甲的工作效率为,乙的工作效率为.那么可得出方程为:+=1;即++=1,故选:D.18.解:设甲班原有人数是x人,根据题意得(88﹣x)+3=x﹣3.故选:C.19.解:设应从乙队调x人到甲队,此时甲队有(96+x)人,乙队有(72﹣x)人,根据题意可得:(96+x)=72﹣x.故选:B.20.解:设规定时间为x小时,则38x+15=42x﹣5.故选:B.。
人教版七年级数学上册第三章《一元一次方程》知识点复习练习3.1 从算式到方程3.1.1 一元一次方程基础题知识点1 方程的概念含有未知数的等式叫做方程.1.下列各式中,是方程的是(A ) A .7x -3=3x +5B .4x -7C .22+3=7D .2x <52.下列各式中,不是方程的是(C ) A .2x +3y =1B .-x +y =4C .3π+4≠5D .x =8知识点2 一元一次方程只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.3.(昆明月考)下列关于x 的方程中,是一元一次方程的是(B )A .ax =5B .x =0C .3x -2=yD .-2x =3 4.如果方程(m -1)x +2=0是关于x 的一元一次方程,那么m 的取值范围是(B )A .m≠0B .m≠1C .m =-1D .m =0 5.若方程2x a -2-3=0是关于x 的一元一次方程,则a =3.知识点3 方程的解6.(临沧期中)方程1-3y =7的解是(C )A .y =-12B .y =12C .y =-2D .y =27.在0,1,2,3中,0是方程13x -12=-12的解. 8.x =3是方程①3x =6;②2(x -3)=0;③x -2=0;④x +3=5中②的解.(填序号)知识点4 列方程9.设某数是x ,若比它的2倍大3的数是8,可列方程为(B )A .2x -3=8B .2x +3=8 C.12x -3=8 D.12x +3=8 10.(杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为(C )A .518=2(106+x )B .518-x =2×106C .518-x =2(106+x )D .518+x =2(106-x )11.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x 元,根据题意,列出方程为50-8x =38. 易错点 对一元一次方程概念理解不透而致错12.(昆明月考)若方程(a -1)x |a|-2=3是关于x 的一元一次方程,则a 的值为-1.中档题13.(民大附中月考)下列是一元一次方程的有(A )①23-x =23-y ;②2x -4=x -1;③x +1-3;④3x -2x =3;⑤2x -4>5.A.2个B.3个C.4个D.5个14.以x=-3为解的方程是(C)A.3x-7=5-x B.6x+7=1-12xC.2-8x=20-2x D.11x+2=5(1+2x)15.检验下列各题括号内的值是否为相应方程的解:(1)2x-3=5(x-3){x=6,x=4};(2)4x+5=8x-3{x=3,x=2}.解:(1)x=4是方程的解.(2)x=2是方程的解.16.已知y=1是方程my=y+2的解,求m2-3m+1的值.解:把y=1代入方程my=y+2中,得m=3,当m=3时,m2-3m+1=1.17.(教材P80练习变式)根据下列问题,设未知数,列出方程:(1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种报纸共15份,他买的两种报纸各多少份?(2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张?解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方程,得0.5x+0.4(15-x)=7.(2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得10x+60%×10(128-x)=912.综合题18.在一次植树活动中,甲班植树的株数比乙班多20%,乙班植树的株数比甲班的一半多10株.设乙班植树x株.(1)列两个不同的含x的式子,分别表示甲班植树的株数;(2)根据题意列出含未知数x的方程;(3)检验乙班、甲班植树的株数是不是分别为25株和35株.解:(1)根据甲班植树的株树比乙班多20%,得甲班植树的株数为(1+20%)x;根据乙班植树的株数比甲班的一半多10株,得甲班植树的株数为2(x-10).(2)(1+20%)x=2(x-10).(3)把x=25分别代入方程的左边和右边,得左边=(1+20%)×25=30,右边=2×(25-10)=30.因为左边=右边,所以x=25是方程(1+20%)x=2(x-10)的解.这就是说乙班植树的株数是25株,从上面检验过程可得甲班植树的株数是30株,而不是35株.3.1.2 等式的性质基础题知识点1 等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.即:如果a =b ,那么a±c =b±c.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么a c =b c . 1.下列等式变形中,错误的是(D )A .由a =b ,得a +5=b +5B .由a =b ,得a -3=b -3C .由x +2=y +2,得x =yD .由-3x =-3y ,得x =-y2.若x =y ,且a≠0,则下面各式中不一定正确的是(D )A .ax =ayB .x +a =y +a C.x a =y a D.a x =a y3.已知m +a =n +b ,根据等式的性质变形为m =n ,那么a ,b 必须符合的条件是(C )A .a =-bB .-a =bC .a =bD .a ,b 可以是任意有理数或整式4.在下列各题的横线上填上适当的数或整式,使所得结果仍是等式,并说明根据的是等式的哪一条性质以及是怎样变形的.(1)如果-x 10=y 5,那么x =-2y ,根据等式的性质2,两边乘-10; (2)如果-2x =2y ,那么x =-y ,根据等式的性质2,两边除以-2;(3)如果23x =4,那么x =6,根据等式的性质2,两边乘32; (4)如果x =3x +2,那么x -3x =2,根据等式的性质1,两边减3x .知识点2 利用等式的性质解方程解以x 为未知数的方程,就是把方程逐步转化为x =a (常数)的形式,等式的性质是转化的重要依据.5.解方程-23x =32时,应在方程两边(C ) A .同乘-23B .同除以23C .同乘-32D .同除以326.利用等式的性质解方程x 2+1=2的结果是(A ) A .x =2B .x =-2C .x =4D .x =-47.(梧州中考)方程x -5=0的解是x =5.8.由2x -1=0得到x =12,可分两步,按步骤完成下列填空: 第一步:根据等式的性质1,等式两边加1,得到2x =1;第二步:根据等式的性质2,等式两边除以2,得到x =12. 9.(教材P83习题T4变式)利用等式的性质解方程:(1)8+x =-5;解:两边减8,得x =-13.(2)4x =16;解:两边除以4,得x =4.(3)3x -4=11.解:两边加4,得3x =15.两边除以3,得x =5.易错点 对等式性质理解不透致错10.有两种等式变形:①若ax =b ,则x =b a ;②若x =b a,则ax =b.其中(B ) A .只有①对B .只有②对C .①②都对D .①②都错中档题11.下列是等式2x +13-1=x 的变形,其中根据等式的性质2变形的是(D ) A.2x +13=x +1 B.2x +13-x =1 C.2x 3+13-1=x D .2x +1-3=3x 12.(贵阳中考)方程3x +1=7的解是x =2.13.若x =1是关于x 的方程3n -x 2=1的解,则n =12. 14.利用等式的性质解下列方程:(1)-3x +7=1;解:两边减7,得-3x =-6.两边除以-3,得x =2.(2)-y 2-3=9; 解:两边加3,得-y 2=12. 两边乘-2,得y =-24.(3)512x -13=14; 解:两边加13,得512x =712. 两边乘125,得x =75.(4)3x +7=2-2x.解:两边减7,得3x =2-2x -7.两边加2x ,得5x =-5.两边除以5,得x =-1.15.有只狡猾的狐狸,它平时总喜欢戏弄人,有一天它遇见了老虎,狐狸说:“我发现2和5是可以一样大的,我这里有一个方程5x -2=2x -2.等式两边同时加上2,得5x -2+2=2x -2+2, ①即5x =2x.等式两边同时除以x ,得5=2.” ②老虎瞪大了眼睛,听傻了.你认为狐狸的说法正确吗?如果正确,请说明上述①、②步的理由;如果不正确,请指出错在哪里?并加以改正. 解:不正确.①正确,运用了等式的性质1.②不正确,由5x =2x ,两边同时减去2x ,得5x -2x =0,即3x =0,所以x =0.综合题16.能不能从(a +3)x =b -1得到x =b -1a +3,为什么?反之,能不能从x =b -1a +3得到等式(a +3)x =b -1,为什么?解:当a =-3时,从(a +3)x =b -1不能得到x =b -1a +3,因为0不能为除数. 从x =b -1a +3可知,a +3≠0.根据等式的性质2可知,从x =b -1a +3可以得到等式(a +3)x =b -1.3.2解一元一次方程(一)——合并同类项与移项第1课时合并同类项基础题知识点1利用合并同类项解简单的一元一次方程将方程中的同类项进行合并,把以x为未知数的一元一次方程变形为ax=b(a≠0,a、b为已知数)的形式,.然后利用等式的性质2,方程两边同时除以a,从而得到x=ba如:(1)合并同类项:x-2x+4x=3x;4y-2.5y-3.5y=-2y.(2)解方程-7x+2x=9-4的步骤是:①合并同类项,得-5x=5;②系数化为1,得x=-1.1.对于方程8x+6x-10x=8,合并同类项正确的是(B)A.3x=8 B.4x=8C.-4x=8 D.2x=82.方程x+2x=-6的解是(D)A.x=0 B.x=1C.x=2 D.x=-23.下列是小明同学做的四道解方程题,其中错误的是(B)A.5x+4x=9→x=1B.-2x-3x=5→x=1C.3x-x=-1+3→x=1D.-4x+6x=-2-8→x=-54.解下列方程:(1)6x-5x=3;解:合并同类项,得x=3.(2)-x+3x=7-1;解:合并同类项,得2x=6. 系数化为1,得x=3.(3)x2+5x2=9;解:合并同类项,得3x=9.系数化为1,得x=3.(4)6y+12y-9y=10+2+6.解:合并同类项,得9y=18.系数化为1,得y=2.知识点2列方程解决“总量=各部分量之和”问题5.某数的3倍与这个数的2倍的和是30,这个数为(C)A.4 B.5C.6 D.76.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是39.7.三个连续奇数的和为27,则这三个数分别为7、9、11.8.一条长1 210 m的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m,乙队每天挖90 m,则挖好水渠需要几天?解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x =5.5.答:挖好水渠需要5.5天.9.(教材P88练习T2变式)麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?解:设麻商集团第二季度销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台.根据总量等于各部分量的和,得x +2x +4x =2 800.解得x =400.答:麻商集团第二季度销售冰箱400台.中档题10.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是(C ) A .0B .2C .-2D .-611.已知某三角形的周长为60 cm ,三边长之比为3∶4∶5,则最短边的长为15cm.12.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为3、10、17.13.解下列方程:(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53.(3)x-25x=3+6;解:合并同类项,得35x=9.系数化为1,得x=15.(4)16x-3.5x-6.5x=7-(-5).解:合并同类项,得6x=12.系数化为1,得x=2.14.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x+5x=32.解得x=4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.15.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡,中、美两国人均淡水资源占有量之和为13 800 m3,问中、美两国人均淡水资源占有量各为多少水资源占有量的15(单位:m3)?解:设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.综合题16.(教材P87例2变式)有这样一列数,按一定规律排列成-1,2,-4,8,-16,…,其中某三个相邻数的和是768,则这三个数各是多少?解:设所求三个数分别为-x,2x,-4x,由题意,得-x+2x+(-4x)=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256、-512、1 024.第2课时 移项基础题知识点1 利用移项解一元一次方程把等式一边的某项变号后移到另一边,叫做移项.1.下列变形中属于移项的是(C )A .由2x =2,得x =1B .由x 2=-1,得x =-2 C .由3x -72=0,得3x =72D .由2x -1=3,得2x =3-12.解方程2x -5=3x -9时,移项正确的是(B )A .2x +3x =9+5B .2x -3x =-9+5C .2x -3x =9+5D .2x -3x =9-53.关于x 的方程3x =4x +5的解是(C )A .x =5B .x =-3C .x =-5D .x =3 4.解方程6x +90=15-10x +70的步骤是:①移项,得6x +10x =15+70-90;②合并同类项,得16x =-5;③系数化为1,得x =-516. 5.解下列方程:(1)4x =9+x ;解:移项,得4x-x=9.合并同类项,得3x=9.系数化为1,得x=3.(2)4-35m=7;解:移项,得-35m=7-4.合并同类项,得-35m=3.系数化为1,得m=-5.(3)8y-3=5y+3;解:移项,得8y-5y=3+3.合并同类项,得3y=6.系数化为1,得y=2.(4)4x+5=3x+3-2x.解:移项,得4x-3x+2x=-5+3.合并同类项,得3x=-2.系数化为1,得x=-23.知识点2根据“表示同一个量的两个不同的式子相等”列方程6.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是10,调往乙队的人数是18.7.(教材P91习题T5变式)小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.解:设小华现在的年龄为x岁,则妈妈现在的年龄为(x+25)岁.根据题意,得x+25=3x+5.解得x=10.答:小华现在的年龄为10岁.易错点 解方程时,移项不变号或误将不移动的项也变号8.解方程:x -3=-12x -4. 解:移项,得x +12x =-4+3. 合并同类项,得32x =-1. 系数化为1,得x =-23.中档题9.某同学在解方程5x -1=■x +3时,把■处的数字看错了,解得x =-43,则该同学把■看成了(D ) A .3B .-1289C .-8D .810.(昆明期末)若方程2x -kx +1=5x -2的解为-1,则k 的值为-6.11.如果5m +14与m +14互为相反数,那么m 的值为-112. 12.“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x 棵,通过分析题意,鸦的只数不变,则可列方程:3x +5=5(x -1).13.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x =13. 14.解下列方程:(1)2x -19=7x +6;解:移项,得2x -7x =19+6.合并同类项,得-5x =25.系数化为1,得x =-5.(2)x -2=13x +43.解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.15.(教材P88问题2变式)(天门中考改编)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.16.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?解:(1)设小明在买x 元的书的情况下办会员卡与不办会员卡一样.则x =20+80%x.解得x =100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱.综合题17.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x的方程4x-2m=3x+1的解是x=6m. 将x=6m代入4x-2m=3x+1中,得24m-2m=18m+1.移项、合并同类项,得4m=1.所以m=14.3.3 解一元一次方程(二)——去括号与去分母第1课时 去括号基础题知识点1 利用去括号解一元一次方程解方程时的去括号和有理数运算中的去括号类似,都是利用乘法分配律,其方法:括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同;括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.1.将方程2x -3(4-2x )=5去括号,正确的是(C )A .2x -12-6x =5B .2x -12-2x =5C .2x -12+6x =5D .2x -3+6x =52.方程2(x -3)+5=9的解是(B )A .x =4B .x =5C .x =6D .x =73.解方程4(x -1)-x =2(x +12)的步骤如下:①去括号,得4x -1-x =2x +1;②移项,得4x -2x -x =1+1;③合并同类项,得x =2,其中做错的一步是(A )A .①B .②C .③D .①②4.解方程:5(x -4)-3(2x +1)=2(1-2x )-1.解:去括号,得5x -20-6x -3=2-4x -1.移项,得5x -6x +4x =2-1+20+3.合并同类项,得3x =24.系数化为1,得x =8.5.解下列方程:(1)3(x +4)=x ;解:去括号,得3x +12=x.移项,得3x -x =-12.合并同类项,得2x =-12.系数化为1,得x =-6.(2)1-(2x +3)=6;解:去括号,得1-2x -3=6.移项,得-2x =6-1+3.合并同类项,得-2x =8.系数化为1,得x =-4.(3)12(x -2)=3-12(x -2). 解:去括号,得12x -1=3-12x +1. 移项,得12x +12x =3+1+1. 合并同类项,得x =5.知识点2 去括号解方程的应用6.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若乙每小时比甲少骑2.5千米,则乙每小时骑(C )A .20千米B .17.5千米C .15千米D .12.5千米7.父亲今年30岁,儿子今年4岁,9年后父亲的年龄是儿子年龄的3倍.易错点 去括号时漏乘某些项或弄错符号导致错解8.解方程:2(3-4x )=1-3(2x -1).解:去括号,得6-4x =1-6x -1.(第一步)移项,得-4x +6x =1-1-6.(第二步)合并同类项,得2x =-6.(第三步)系数化为1,得x =-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.中档题9.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是(A )A .2x -4-12x +3=9B .2x -4-12x -3=9C .2x -4-12x +1=9D .2x -2-12x +1=910.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为(B )A .-1B .1 C.12 D .-1211.若式子4-3(x -1)与式子x +12的值相等,则x =-54. 12.解下列方程:(1)3x -2(10-x )=5;解:去括号,得3x -20+2x =5.移项,得3x +2x =20+5.合并同类项,得5x =25.系数化为1,得x =5.(2)3(2y +1)=2(1+y )+3(y +3);解:去括号,得6y +3=2+2y +3y +9.移项,得6y -2y -3y =-3+2+9.合并同类项,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.13.若方程3(2x -2)=2-3x 的解与方程6-2k =2(x +3)的解相同,求k 的值.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.14.(教材P94例2变式)一架飞机在两城市之间飞行,风速为24 km/h ,顺风飞行需要2 h 50 min ,逆风飞行需要3 h .求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x km/h ,则顺风时飞行的速度为(x +24) km/h ,逆风飞行的速度为(x -24) km/h.根据题意,得176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h,两城之间的航程为2 448 km.综合题15.某次义务劳动,有甲、乙两个工地,甲工地有27人在劳动,乙工地有19人在劳动.现在又有20人来参加义务劳动,要使甲工地人数为乙工地人数的2倍,问应分别调往甲、乙两工地各多少人?解:设应调往甲工地x人,则调往乙工地(20-x)人.根据题意,得27+x=2[19+(20-x)].解得x=17.则20-x=3.答:应调往甲工地17人,调往乙工地3人.第2课时 去分母基础题知识点1 利用去分母解一元一次方程(1)去分母的方法:依据等式的性质2,方程两边各项都乘所有分母的最小公倍数,将分母去掉.(2)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.1.解方程3y -14-1=2y +76去分母时,方程两边都乘(B ) A .10 B .12 C .24 D .62.(曲靖期末)解方程x -14=3-1+2x 8去分母正确的是(A ) A .2(x -1)=24-1-2xB .2(x -1)=24-1+2xC .2(x -1)=3-1-2xD .2(x -1)=3-1+2x3.解方程13-x -12=1的结果是(D ) A .x =12 B .x =-12C .x =13D .x =-134.(济南中考)若式子4x -5与2x -12的值相等,则x 的值是(B ) A .1 B.32 C.23D .2 5.(滨州中考)依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.(分数的基本性质) 去分母,得3(3x +5)=2(2x -1).(等式的基本性质2)去括号,得9x +15=4x -2.(去括号法则或乘法分配律)(移项),得9x -4x =-15-2.(等式的基本性质1)合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的基本性质2)6.解下列方程:(1)2x -13=x +24; 解:去分母,得4(2x -1)=3(x +2).去括号,得8x -4=3x +6.移项,得8x -3x =4+6.合并同类项,得5x =10.系数化为1,得x =2.(2)x -32-4x +15=1; 解:去分母,得5(x -3)-2(4x +1)=10.去括号,得5x -15-8x -2=10.移项,得5x -8x =15+2+10.合并同类项,得-3x =27.系数化为1,得x =-9.(3)2x +13=1-x -15. 解:去分母,得5(2x +1)=15-3(x -1).去括号,得10x +5=15-3x +3.移项,得10x +3x =-5+15+3.合并同类项,得13x =13.系数化为1,得x =1.知识点2 去分母解方程的应用7.某工厂计划每天烧煤5吨,实际每天比计划少烧2吨,若m 吨煤多烧了20天,则m =150.8.王强参加了一场3 000米的赛跑,他以6米/秒的速度跑了一段路程,又以4米/秒的速度跑完了其余的路程,一共花了10分钟,问王强以6米/秒的速度跑了多少米?解:设王强以6米/秒的速度跑了x 米,则王强以4米/秒的速度跑了(3 000-x )米.根据题意,得x 6+3 000-x 4=10×60. 解得x =1 800.答:王强以6米/秒的速度跑了1 800米.易错点 去分母时,漏乘不含分母的项9.(株洲中考改编)在解方程x -13+x =3x +12时,方程两边同时乘6,去分母后,得2(x -1)+6x =3(3x +1).中档题10.若关于x 的一元一次方程2x -k 3-x -3k 2=1的解是x =-1,则k 的值是(B ) A .27B .1C .-1311D .011.(民大附中月考)式子x +24的值比2x -36的值大1,则x 的值是0. 12.(昆明月考)轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 h ,若静水时船速为26 km/h ,水速为2 km/h ,则A 港和B 港相距504km.13.解下列方程:(1)x -13-x +26=4-x 2; 解:去分母,得2(x -1)-(x +2)=3(4-x ).去括号,得2x -2-x -2=12-3x.移项,得2x -x +3x =2+2+12.合并同类项,得4x =16.系数化为1,得x =4.(2)x -x -12=2-x +25; 解:去分母,得10x -5(x -1)=20-2(x +2). 去括号,得10x -5x +5=20-2x -4.移项,得10x -5x +2x =-5+20-4.合并同类项,得7x =11.系数化为1,得x =117.(3)x +12=6-2x -13; 解:去分母,得3(x +1)=36-2(2x -1). 去括号,得3x +3=36-4x +2.移项,得3x +4x =-3+36+2.合并同类项,得7x =35.系数化为1,得x =5.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1. 去分母,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417.14.小明以每小时8千米的速度从甲地到达乙地,回来时走的路程比去时多3千米,已知速度为9千米/时,这样回来时比去时多用18小时,求去时甲、乙两地路长. 解:设去时甲、乙两地的路长为x 千米,则 x 8+18=x +39.解得x =15. 答:去时甲、乙两地的路长为15千米.综合题15.某同学在解方程2x -13=x +a 3-2去分母时,方程右边的-2没有乘3,因而求得的方程的解为x =2,试求a 的值,并求出原方程的解.解:根据该同学的做法,去分母,得2x -1=x +a -2.解得x =a -1.因为x =2是方程的解,所以a =3.把a =3代入原方程,得2x -13=x +33-2,解得x =-2.小专题5 一元一次方程的解法题组1 移项、合并同类项解一元一次方程1.解下列方程:(1)56-8x =11+x ;解:-8x -x =11-56,-9x =-45,x =5.(2)43x +1=5+13x. 解:43x -13x =5-1, x =4.题组2 去括号解一元一次方程2.解下列方程:(1)4x -3(20-2x )=10;解:4x -60+6x =10,4x +6x =60+10,10x =70,x =7.(2)4y -3(20-y )=6y -7(9-y ); 解:4y -60+3y =6y -63+7y , 4y +3y -6y -7y =60-63,-6y =-3,y =12.(3)4x -8(x +1)=4-2(x +3). 解:4x -8x -8=4-2x -6, 4x -8x +2x =4-6+8,-2x =6,x =-3.题组3 去分母解一元一次方程3.解下列方程:(1)2x -13-2x -34=1; 解:4(2x -1)-3(2x -3)=12, 8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72.(2)16(3x -6)=25x -3; 解:5(3x -6)=12x -90, 15x -30=12x -90,15x -12x =-90+30,3x =-60,x =-20.(3)2(x +3)5=32x -2(x -7)3;解:12(x +3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8.(4)2x -13-10x +16=2x +12-1; 解:2(2x -1)-(10x +1)=3(2x +1)-6,4x -2-10x -1=6x +3-6,4x -10x -6x =3-6+2+1,-12x =0,x =0.(5)0.1-2x 0.3=1+x 0.15. 解:原方程整理,得1-20x 3=1+100x 15. 去分母,得5(1-20x )=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.周周练(3.1~3.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是(B )A.2x +2=3B.3x -12+4=3x C .y 2+3y =0D .9x -y =2 2.方程3x +6=2x -8移项后,正确的是(C )A .3x +2x =6-8B .3x -2x =-8+6C .3x -2x =-6-8D .3x -2x =8-63.解方程2(x -3)-3(x -4)=5时,下列去括号正确的是(D )A .2x -3-3x +4=5B .2x -6-3x -4=5C .2x -3-3x -12=5D .2x -6-3x +12=54.下列说法中,正确的是(D )A .若a =b ,则a c =b dB .若a =b ,则ac =bdC .若ac =bc ,则a =bD .若a =b ,则ac =bc5.方程2-2x -43=-x -76去分母,得(C ) A .2-2(2x -4)=-(x -7)B .12-2(2x -4)=-x -7C .12-2(2x -4)=-(x -7)D .12-(2x -4)=-(x -7)6.(咸宁中考)方程2x -1=3的解是(D )A .x =-1B .x =-2C .x =1D .x =27.小马虎在计算16-13x 时,不慎将“-”看成了“+”,计算的结果是17,那么正确的计算结果应该是(A ) A .15B .13C .7D .-18.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100二、填空题(每小题4分,共24分)9.已知x =-2是方程3(x +a )=15的解,则a =7.10.若式子2-k 3-1的值是1,则k =-4. 11.(临沧期中)如果5x +3与-2x +9互为相反数,那么x 的值是-4.12.(文山期中)已知(x -2)2+|3y -2x|=0,则x =2,y =43. 13.轮船从甲地顺流而行9小时到达乙地,原路返回11小时才能到达甲地,已知水流速度为2千米/时,则轮船在静水中的速度是20千米/时.14.已知a 、b 、c 、d 为4个数,现规定一种新的运算,⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,那么当⎪⎪⎪⎪⎪⎪ 2 4(1-x ) 5=18时,x =3.三、解答题(共44分)15.(24分)解方程:(1)(曲靖期末)x +12-1=43x ; 解:3(x +1)-6=8x ,3x +3-6=8x ,3x -8x =-3+6,-5x =3,x =-35.(2)3x -2(20-x )=6x -4(9+x );解:3x -40+2x =6x -36-4x ,3x =4,x =43.(3)2-2x +13=1+x 2; 解:12-2(2x +1)=3(1+x ),12-4x -2=3+3x ,-7x =-7,x =1.(4)x -10.3-x +20.5=1.2. 解:10x -103-10x +205=1.2, 5(10x -10)-3(10x +20)=1.2×15,50x -50-30x -60=18,20x =128,x =325.16.(8分)学校分配学生住宿,如果每室住8人,那么还少12个床位;如果每室住9人,那么空出两个房间.求房间的个数和学生的人数.解:设房间数为x,由题意,得8x+12=9(x-2).解得x=30.则学生人数为8×30+12=252.答:房间的个数为30,学生的人数为252.17.(12分)有一叠卡片,自上而下按规律分别标有6,12,18,24,30,…这些数.(1)你能发现这些卡片上的数有什么规律吗?请将它用一个含有n(n≥1)的式子表示出来;(2)小明从中抽取相邻的3张,发现其和是342,你能知道他抽出的卡片是哪三张吗?(3)你能拿出相邻的3张卡片,使得这些卡片上的数字之和是86吗?为什么?解:(1)6n.(2)设中间一张标有数字6n,那么前一张为6(n-1)=6n-6,后一张为6(n+1)=6n+6.根据题意,得6n-6+6n+6n+6=342.解得n=19.则6(n-1)=6×18=108,6n=6×19=114,6(n+1)=6×20=120.答:所抽的卡片为标有108、114、120数字的三张卡片.(3)不能,因为当6n-6+6n+6n+6=86时,n=43,不是整数,所以不可能抽到相邻3张卡片,使得这些卡片9上的数字之和为86.3.4 实际问题与一元一次方程第1课时 产品配套问题与工程问题基础题知识点1 产品配套问题解决配套问题时,关键是明确题目中的相等关系,它是列方程的依据.一般来说,题目中有两个等量关系,根据其中一个等量关系设未知数,根据另一个等量关系列方程. 1.有一个专项加工茶杯的车间,一个工人每小时平均可以加工杯身12个,或者加工杯盖15个,车间共有90人.安排加工杯身的人数为多少时,才能使生产的杯身和杯盖正好配套?设安排加工杯身的人数为x ,则加工杯盖的为(90-x )人,每小时加工杯身12x 个,杯盖15(90-x )个,则可列方程为12x =15(90-x ),解得x =50.间接设法:设共生产杯身x 个,共生产杯盖x 个.则生产杯身的工人为x 12个,生产杯盖的工人为x 15个,则可列方程为x 12+x 15=90.解得x =600.x 12=60012=50,x 15=60015=40. 2.(教材P101练习T1变式)(曲靖中考)某种仪器由1个A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:安排x 人生产A 部件,安排(16-x )人生产B 部件.由题意,得1 000x =600(16-x ).解得x =6.所以16-x =10.答:安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B 部件配套.知识点2 工程问题(1)解决工程问题时,常把总工作量看作1,并利用“工作量=人均效率×人数×时间”的关系考虑问题.(2)用一元一次方程分析和解决实际问题的基本步骤是:①设未知数;②分析问题中的数量关系,找出其中的等量关系,并由此列出方程;③解方程;④检验解的正确性与合理性,并写出答案.3.(教材P101练习T2变式)一件工作,甲单独做需要10小时完成,乙单独做需要15小时完成,甲、乙合作需要x 小时完成,则可列方程为x 10+x 15=1,解得x =6. 4.一批文稿,若由甲抄30小时可以抄完,若由乙抄20小时可以抄完,现由甲抄3小时后改由乙抄余下部分,则乙还需抄18小时.5.(昆明月考)整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人用1 h 整理,随后又增加6人和他们一起又做了2 h ,恰好完成整理工作.假设每个人的工作效率相同,那么先安排整理的人员有多少? 解:设先安排整理的人员有x 人,由题意,得130x +130(x +6)×2=1, 解得x =6.答:先安排整理的人员有6人.中档题6.某工程,甲独做需12天完成,乙独做需8天完成,现由甲先做3天,乙再参加合作,求完成这项工程共用的时间.若设完成此项工程共用x 天,则下列方程正确的是(D )A.x +312+x 8=1 B.x +312+x -38=1 C.x 12+x 8=1 D.x 12+x -38=1 7.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎样分配人数,才能使每天生产的上衣和裤子配套?设x 人做上衣,则做裤子的人数为(54-x )人,根据题意,可列方程为8x =10(54-x ),解得x =30.8.某瓷器厂共有120个工人,每个工人一天能做200只茶杯或50只茶壶.若8只茶杯和1只茶壶为一套,则安排40人生产茶壶可使每天生产的瓷器配套.9.学校图书管理员整理一批图书,由一个人做要80小时完成,现在计划由一部分人先做8小时,再增加2人和他们一起做16小时完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作8小时?解:设应先安排x 人工作8小时,根据题意,得8x 80+16(x +2)80=1. 解得x =2.答:应先安排2人工作8小时.10.(民大附中月考)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?解:设分配x 名工人生产螺母,则(22-x )名工人生产螺钉,由题意,得2 000x =2×1 200(22-x ),解得x =12.则22-x =10.答:应安排生产螺钉和螺母的工人分别为10名,12名.综合题11.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1 000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同?为什么?(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些?为什么?解:(1)能履行合同.设甲、乙合作x 天完成,则(130+120)x =1,解得x =12. 因为12<15,所以两人能履行合同.(2)调走甲更合适.由(1)知,两人合作完成这项工程的75%需要的时间为12×75%=9(天).剩下6天必须由某人做完余下的工程,故他的工作效率为25%÷6=124,因为130<124<120,故调走甲合适.。
人教版数学七年级上册期末专项复习:一元一次方程之数轴类(三)1.数轴是学习初中数学的一个重要工具利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:数轴上点A、点B表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为;AB=a﹣b线段AB的中点M表示的数为.如图,已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位长度的速度沿数轴向右匀速运动,点B以每秒2个单位长度向左匀速运动,设运动时间为t 秒(t>0).(1)运动开始前,A、B两点的距离为个单位长度;线段AB的中点M所表示的数为;(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为.(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A、B按上述方式运动,A、B两点经过多少秒,线段AB的中点M与原点重合?2.已知两点A、B在数轴上,AB=9,点A表示的数是a,且a与(﹣1)3互为相反数.(1)写出点B表示的数;(2)如图1,当点A、B位于原点O的同侧时,动点P、Q分别从点A、B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P、Q所表示的数;(3)如图2,当点A、B位于原点O的异侧时,动点P、Q分别从点A、B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当|OM﹣ON|=2时,求动点P、Q运动的速度.3.【背景知识】数轴是初中数学的一个重要工具.利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的式子表示)(3)它们按上述方式运动,A、B两点经过多少秒会相距4个单位长度?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B两点重合,则中点M也与A,B两点重合).4.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.5.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”,图中点A表示﹣12,点B表示12,点C表示20,我们称点A和点C在数轴上相距32个长度单位,动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:(1)动点Q从点C运动至点A需要秒;(2)P、Q两点相遇时,求出t的值及相遇点M所对应的数是多少?(3)求当t为何值时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍(即P点运动的路程=Q点运动的路程).6.【阅读理解】点A、B在数轴上对应的数分别是a,b,且|a+2|+(b﹣8)2=0.A、B两点的中点表示的数为;当b>a时,A、B两点间的距离为AB=b﹣a.(1)求AB的长.(2)点C在数轴上对应的数为x,且x是方程2x+8=x﹣2的解,在数轴上是否存在点P,使PA+PB=PC?若存在,求出点P对应的数;若不存在,说明理由.(3)点E以每秒1个单位的速度从原点O出发向右运动,同时点M从点A出发以每秒8个单位的速度向左运动,点N从点B出发,以每秒5个单位的速度向右运动,P、Q 分别为ME、ON的中点,求证:在运动过程中,的值不变,并求出这个值.7.已知数轴上有A,B,C三点,分别表示﹣12,﹣5,5,两只电子蚂蚁甲、乙分别从A,C两点同时出发,甲的速度是每秒2个单位,乙的速度是每秒3个单位.(1)AB=,BC=,AC=.(2)若甲、乙相向而行,则甲、乙在多少秒后数轴上相遇?该相遇点在数轴上表示的数是什么?(3)若甲、乙相向而行,则多少秒后甲到A,B,C三点的距离之和为22个单位?8.已知,如图所示,A、B、C是数轴上的三点,点C对的数是6,BC=4,AB=12.(1)写出A、B对应的数;(2)动点P、Q同时从A、C出发,分别以每秒6个单位,3个单位速度沿数轴正方向运动,M是AP的中点,N在CQ上且CN=CQ,设运动时间为t(t>0).①求点M、N对应的数(含t的式);②x为何值时OM=2BN.9.如图,点O为原点,A、B为数轴上两点,AB=15,且OA:OB=2:1,点P从点B 以每秒4个单位的速度向右运动.(1)A、B对应的数分别为、;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.10.已知,数轴上两点A,B表示的数分别是9和﹣6,动点P从点A出发,以每秒3个单位的速度沿数轴向点B运动,运动到点B停止;(1)在数轴上表示出A,B两点,并直接回答:线段AB的长度是;(2)若满足BP=2AP,求点P的运动时间;(3)在点P运动过程中,若点M为线段AP的中点,点N为线段BP的中点,请计算线段MN的长度,并说出线段MN与线段AB的数量关系;(4)若另一动点Q同时从B点出发,运动的速度是每秒2个单位,几秒钟后,线段PQ 长度等于5?参考答案1.解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M所表示数为.故答案是:18;﹣1(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t.故答案是:﹣10+3t;8﹣2t(3)设它们按上述方式运动,A、B两点经过x秒会相距4个单位长度.根据题意得3x+2x=18﹣4,解得x=2.8;3x+2x=18+4,解得x=4.4.答:A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)由题意得解得t=2.答:经过2秒A、B两点的中点M会与原点重合.2.解:(1)∵a与(﹣1)3互为相反数∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示,②当点A、点B在原点的异侧时,点B所表示的数为1﹣9=﹣8,如图2所示,故点B所表示的数为10或﹣8;(2)当点A、B位于原点O的同侧时,点B表示的数是10设点Q的运动速度为x,则点P的速度为2x∵3秒后两动点相遇∴3(x+2x)=9解得:x=1∴点Q的运动速度为1,则点P的速度为2运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9解得:t=;∴点P表示的数为:1+2×=,点Q表示的数为:10﹣=;②相遇后,再运动y秒,P、Q两点相距2,由题意有:y+2y=2解得:y=∴点P表示的数为:1+3×2+×2=,点Q表示的数为:10﹣3×1﹣×1=;(3)根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度∴点Q的运动速度为:9÷5=1.8设点P的速度为v,∵|OM﹣ON|=2∴|9+1﹣(5v+1)|=2解得:v=或∴点P的速度为或.3.解:(1)A、B两点的距离为:8﹣(﹣10)=18;线段AB的中点M所表示的数为﹣1.故答案为:18;﹣1;(2)由题意可得点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;故答案为:﹣10+3t;8﹣2t;(3)设它们按上述方式运动,A、B两点经过t秒会相距4个单位长度,当点A在点B左侧时,依题意列式,得3t+2t=18﹣4,解得t=2.8;当点A在点B右侧时,3t+2t=18+4,解得t=4.4,答:它们按上述方式运动,A、B两点经过2.8秒或4.4秒会相距4个单位长度.(4)能.设A,B按上述方式继续运动k秒线段的中点M能与原点重合,根据题意列方程,可得=0,解得k=2.运动开始前M点的位置是﹣1,运动2秒后到达原点,由此得M点的运动方向向右,其速度为:|﹣1÷2|=个单位长度.答:运动时间为2秒,中点M点的运动方向向右,其运动速度为每秒个单位长度.4.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.5.解:(1)点Q运动至点A时,所需时间t=(20﹣12)÷1+12÷2+12÷1=26(秒).答:动点Q从点C运动至点A需要26秒;(2)由题可知,P、Q两点相遇在线段OB上M处,设OM=x.则12÷2+x÷1=(20﹣12)÷1+(12﹣x)÷2,解得x=,12÷2+÷1=6+5=11.答:t的值是11,相遇点M所对应的数是.(3)A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍有2种可能:①动点Q在OB上,动点P在BO上,相遇前,则:12+(t﹣12÷2)=[20﹣12+2(t﹣8÷1)],解得:t=.②动点Q在OA上,动点P在BC上,相遇后,则:12+12+2(t﹣18)=[8+12+(t﹣8÷1﹣12÷2)],解得:t=26.综上所述:当t为或26时,A、P两点在数轴上相距的长度是C、Q两点在数轴上相距的长度的倍.故答案为:26.6.(1)解:∵|a+2|+(b﹣8)2=0,∴a=﹣2,b=8,∴AB=8﹣(﹣2)=10;(2)解:2x+8=x﹣2,∴x=﹣10,∴C在数轴上对应的数为﹣10,设点P对应的数为y,由题意可知,点P不可能位于点A的左侧,所以存在以下两种情况:①点P在点B的右侧,∴(y﹣8)+[y﹣(﹣2)]=y﹣(﹣10),∴y=16,②当点P在A、B之间,∴(8﹣y)+[y﹣(﹣2)]=y﹣(﹣10),∴y=0,综上所述,点P对应的数是16或0;(3)证明:设运动时间为t,则点E对应的数是t,点M对应的数是﹣2﹣8t,点N对应的数是8+5t,∵P是ME的中点,∴P点对应的数是=﹣1﹣t,又∵Q是ON的中点,∴Q点对应的数是=4+t,∴MN=(8+5t)﹣(﹣2﹣8t)=10+13t,OE=t,PQ=(4+t)﹣(﹣1﹣t)=5+6t,∴===2(定值).∴在运动过程中,的值不变,这个值是2.7.解:(1)AB=﹣5﹣(﹣12)=﹣5+12=7,BC=5﹣(﹣5)=5+5=10,AC=5﹣(﹣12)=5+12=17.故答案为:7,10,17;(2)设甲、乙行驶x秒时相遇,根据题意得:2x+3x=17,解得:x=3.4,﹣12+2×3.4=﹣5.2.答:甲、乙在3.4秒后在数轴上相遇,该相遇点在数轴上表示数是﹣5.2.(3)设y秒后甲到A,B,C三点的距离之和为22个单位,B点距A,C两点的距离为7+10=17<20,A点距B、C两点的距离为7+17=24>20,C点距A、B的距离为17+10=27>20,故甲应位于AB或BC之间.①AB之间时:2y+(7﹣2y)+(7﹣2y+10)=22,解得:y=1;②BC之间时:2y+(2y﹣7)+(17﹣2y)=22,解得:y=6.答:1秒或6秒后甲到A,B,C三点的距离之和为22个单位.8.解:(1)∵C表示的数为6,BC=4,∴OB=6﹣4=2,∴B点表示2.∵AB=12,∴AO=12﹣2=10,∴A点表示﹣10.故点A对应的数是﹣10,点B对应的数是2;(2)①AP=6t,CQ=3t,如图1所示:∵M为AP的中点,N在CQ上,且CN=CQ,∴AM=AP=3t,CN=CQ=t,∵点A表示的数是﹣10,点C表示的数是6,∴点M表示的数是﹣10+3t,点N表示的数是6+t;②∵OM=|﹣10+3t|,BN=BC+CN=4+t,OM=2BN,∴|﹣10+3t|=2(4+t)=8+2t,∴﹣10+3t=±(8+2t),当﹣10+3t=8+2t时,t=18;当﹣10+3t=﹣(8+2t)时,t=.∴当t=18或t=时,OM=2BN.9.解:(1)∵AB=15,OA:OB=2∴AO=10,BO=5∴A点对应数为﹣10,B点对应数为5,故答案为:﹣10、5.(2)画图如下:∵点E、F分别为BP、AO的中点∴OF=AO,BE=BP∴EF=OF+OB+BE=AO+OB+BP∴===2.(3)设运动时间为t秒,则点P对应的数:5+4t;点A对应的数:﹣10+2t;点B对应的数:5+5t;∴AP=5+4t﹣(﹣10+2t)=2t+15;OP=5+4t;BP=t.∴3AP+2OP﹣mBP=3(2t+15)+2(5+4t)﹣mt=(14﹣m)t+55.∴当m=14时,为定值55.10.解:(1)如图所示:线段AB的长度是9﹣(﹣6)=9+6=15,故答案为:15;(2)设AP=3t,则BP=6t,可得3t+6t=15,∴t=;(3)∵AP=3t,∴BP=15﹣3t,∵点M为线段AP的中点,点N为线段BP的中点,∴MP=AP=t,PN=(15﹣3t),则MN=MP+PN=t+(15﹣3t)=,∴MN=AB;(4)设BQ=2t,当Q在AB上时,①15﹣2t﹣3t=5,解得t=2;②2t+3t﹣15=5,解得t=4;当Q在AB外时,2t+(15﹣3t)=5,解得t=4;此时,点P不在线段AB外(舍去)综上所述,当2秒或4秒时,线段PQ的长度等于5.。
人教版 七年级数学上册 第3章 一元一次方程综合复习题一、选择题1. 某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这批服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是( ) A .350元 B .400元 C .450元D .500元2. 解方程4x -2=3-x 的正确顺序是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1. A .①②③ B .③②① C .②①③D .③①②3. 下列方程是一元一次方程的是()A .2237x x x +=+B .3435322x x -+=+C .22(2)3y y y y +=--D .3813x y -=4. 下列变形中,不正确的是()A .若25x x =,则5x =.B .若77,x -=则1x =-.C .若10.2x x -=,则1012x x -=. D .若x y aa=,则ax ay =.5. 2019·阜新某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;如果按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( ) A .160元 B .180元 C .200元 D .220元6. 如图,在长为a 厘米的木条上钻4个圆孔,每个圆孔的直径为2厘米,则x等于( )A.a -85厘米 B.a +85厘米 C.a -45厘米D.a -165厘米7. 《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少.设合伙人数为x 人,所列方程正确的是( ) A .5x -45=7x -3 B .5x +45=7x +3 C.x +455=x +37D.x -455=x -378. 某中学去年中学生共有4200人,今年初中生增加了8%,高中生增加了11%,使得中学生总数增加了10%.如果设去年初中生有x 人,那么下面所列方程正确的是( )A .(1+8%)x +(1+11%)(4200-x )=4200×10%B .8%x +11%(4200-x )=4200×(1+10%)C .8%x +(1+11%)(4200-x )=4200×10%D .8%x +11%(4200-x )=4200×10%9. 2019·荆门欣欣服装店某天用相同的价格a (a >0)元卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是( ) A .盈利 B .亏损C .不盈不亏D .与售价a 有关10. 程大位是我国明朝商人,珠算发明家.他60岁时完成的《算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?下列求解结果正确的是( ) A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人二、填空题11. 甲、乙两架飞机同时从相距750 km 的两个机场相向飞行,飞了12 h 到达中途同一机场,如果甲飞机的速度是乙飞机速度的 1.5倍,则乙飞机的速度是________.12. 已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .13. 在“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,依题意可列方程为__________________.14. 某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A ,B 两个贫困地区,其中发往A 地区的物资比发往B 地区的物资的1.5倍少1000件,则发往A 地区的生活物资为________件.15. 甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,两人都沿同一公路匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距35 km ,到中午12时,两人又相距35 km ,则A ,B 两地的距离为________km.16. 2018·呼和浩特文具店销售某种笔袋,每个18元,小华去购买这种笔袋,结账时店员说:“如果你再多买一个就可以打九折,价钱比现在便宜36元.”小华说:“那就多买一个吧,谢谢!”根据两人的对话可知,小华结账时实际付款________元.17. 在有理数范围内定义运算“☆”,其规则是a ☆b =a3-b .若x ☆2与4☆x 的值相等,则x 的值是________.18. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之.”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走________步才能追到速度慢的人.三、解答题19. 解方程:0.130.4120 0.20.5x x+--=20. 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润率定价,乙服装按40%的利润率定价.在实际出售时,应顾客要求,两件服装均按九折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元.21. 有某种三色冰激凌50克,咖啡色、红色和白色配料的比是2∶3∶5,这种三色冰激凌中咖啡色、红色和白色配料分别是多少克?22. 求解题为“李白沽酒”的诗:李白无事街上走,提壶去打酒.遇店加一倍,见花喝一斗.三遇店与花,喝光壶中酒.试问壶中原有多少酒.诗的大意是李白提着没装满酒的酒壶在街上走,遇见酒店就把壶中的酒增加一倍,遇见桃花就喝一斗酒.这样三次先后遇见酒店和桃花,恰好把壶中的酒喝完.则壶中原有多少斗酒?人教版七年级数学上册第3章一元一次方程综合复习题-答案一、选择题1. 【答案】B2. 【答案】C3. 【答案】C4. 【答案】A5. 【答案】C6. 【答案】A7. 【答案】B8. 【答案】D9. 【答案】B 10. 【答案】A二、填空题11. 【答案】600 km/h 12. 【答案】2a =-,1x =13. 【答案】30x +8=31x -26 14. 【答案】320015. 【答案】105 则x -352=x +354, 解得x =105.故A ,B 两地的距离为105 km. 解法二:设两人的速度之和为x km/h , 则2x +35=4x -35,解得x =35.所以A ,B 两地的距离为2x +35=105(km).16. 【答案】486设小华购买了x 个笔袋,根据题意,得18(x -1)-18×0.9x =36, 解得x =30.则18×0.9x =18×0.9×30=486. 故小华结账时实际付款486元.17. 【答案】5218. 【答案】250 三、解答题19. 【答案】-1020. 【答案】解:设甲服装的成本是x元,则乙服装的成本是(500-x)元,依题意可列方程0.9[(1+50%)x+(1+40%)(500-x)]=500+157.解得x=300,于是500-x=200.答:甲、乙两件服装的成本分别是300元和200元.21. 【答案】解:设这种三色冰激凌中咖啡色配料为2x克,那么红色和白色配料分别为3x 克和5x克.根据题意,得2x+3x+5x=50,解这个方程,得x=5.于是2x=10,3x=15,5x=25.答:这种三色冰激凌中咖啡色、红色和白色配料分别是10克,15克,25克.22. 【答案】解:设李白壶中原有x斗酒,依题意可得下表:由此可列方程2[2(2x-1)-1]-1=0.解得x=0.875.答:壶中原有0.875斗酒.。
一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( ) A .-1B .-2C .-3D .322.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( ) A .6(x+2)+4x =18 B .6(x ﹣2)+4x =18 C .6x+4(x+2)=18 D .6x+4(x ﹣2)=183.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣6 5.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =06.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中一支的长度是另一支的一半,则停电时间为( ) A .2小时B .3小时C .125小时D .52小时7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元 B .100元C .80元D .60元8.若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣69.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( ) A .3x ﹣20=24x +25 B .3x +20=4x ﹣25 C .3x ﹣20=4x ﹣25D .3x +20=4x +2510.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( ) A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x +=11.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( ) A .m>n>kB .n>k>mC .k>m>nD .m> k> n12.已知代数式2x-6与3+4x 的值互为相反数,那么x 的值等于( ) A .2B .12C .-2D .1-213.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( ) A .32+x =2(28−x) B .32−x =2(28−x) C .32+x =2(28+x) D .2(32+x)=28−x 14.下列方程中,以x =-1为解的方程是( )A . 3x +12=x2−2 B .7(x -1)=0C .4x -7=5x +7D .13x =-315.四位同学解方程x−13−x+26=4−x 2,去分母分别得到下面四个方程:①2x −2−x +2=12−3x ;②2x −2−x −2=12−3x ;③2(x −1)−(x +2)=3(4−x);④2(x −1)−2(x +2)=3(4−x).其中错误的是( ) A .②B .③C .②③D .①④二、填空题16.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 17.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为_____只,树为_____棵. 18.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.19.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.20.自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按2元收费;用水超过10吨,超过10吨的部分按每吨3元收费.王老师家三月份水费为50元,则王老师家三月份用水________吨. 21.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.22.小明说小红的年龄比他大两岁,他们的年龄和为18岁,两人年龄各是多少岁?若设小明x 岁,则小红的年龄为__________岁.根据题意,列出的方程是______________________. 23.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.24.已知21535a x y -和2547a x y +是同类项,则可得关于a 的方程为________. 25.要使代数式154t +与15()4t -的值互为相反数,则t 的值是_________. 26.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.三、解答题27.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?28.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元. (2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由. 29.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 30.解下列方程:(1)51784a -=; (2)22146y y +--=1; (3)2131683x x x-+-= -1。
人教版 七年级数学上册 第三章 一元一次方程一、选择题(本大题共8道小题)1. 方程2x +3=7的解是( )A. x =5B. x =4C. x =3.5D. x =22. 方程2x -1=3x +2的解为( )A. x =1B. x =-1C. x =3D. x =-33. 某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母, 1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26-x )=800xB. 1000(13-x )=800xC. 1000(26-x )=2×800xD. 1000(26-x )=800x4. 下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式.5. 下列各式不是方程的是( )A .24y y -=B .2m n =C .222p pq q -+D .0x =6. 在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( ) A. 2x -1+6x =3(3x +1) B. 2(x -1)+6x =3(3x +1)C. 2(x -1)+x =3(3x +1)D. (x -1)+6x =3(x +1)7. 铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(x +21-1)=6(x -1)B .5(x +21)=6(x -1)C .5(x +21-1)=6xD .5(x +21)=6x8. 下列说法不正确的是( )A .解方程指的是求方程解的过程.B .解方程指的是方程变形的过程.C .解方程指的是求方程中未知数的值,使方程两边相等的过程.D .解方程指的是使方程中未知数变成已知数的过程.二、填空题(本大题共5道小题)9. 一件服装的标价为300元,打八折销售后可获利60元,则该件服装的成本价是________元.10. 湖南省2019年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20 000元.设每人向旅行社缴纳x 元费用后,共剩 5 000元用于购物和品尝台湾美食.根据题意,列出方程为__________________.11. 根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = .12. 已知关于x 的方程3x -2m =4的解是x =m ,则m 的值是________.13. 已知2(23)(23)1m x m x ---=是关于x 的一元一次方程,则m =.三、解答题(本大题共4道小题)14. 解方程:42 1.730%50%x x -+-=15. 解方程:111[(1)6]20343x --+=16. 解方程:4x a b c x b c d x a c d x a b d d a b c ------------+++=(11110a b c d +++≠)17. 解方程:20101309720092007x x x ---++=人教版 七年级数学上册 第三章 一元一次方程-答案一、选择题(本大题共8道小题)1. 【答案】D 【解析】2x +3=7,2x =4,x =2,∴选项D 正确.2. 【答案】D【解析】将原式移项,得2x -3x =2+1,合并同类项,得-x=3,系数化为1,得x =-3.3. 【答案】C【解析】本题要求螺钉和螺母配套,且1个螺钉需要配2个螺母,所以螺母的数量是螺钉的2倍. 不难得出,x 名工人生产螺钉的个数为800x 个,则(26-x )名工人生产螺母的个数是1000×(26-x )个,根据其等量关系得:1000×(26-x )=2×800x ,故选C.4. 【答案】C5. 【答案】C6. 【答案】B 【解析】去分母得2(x -1)+6x =3(3x +1),故选B.7. 【答案】A8. 【答案】B二、填空题(本大题共5道小题)9. 【答案】180 【解析】设成本为x 元,由题意得:300×0.8-x =60,解得x =180.10. 【答案】20 000-3x =5 00011. 【答案】(1)4;(2)5;(3)836y +;(4)24y +. 【解析】(1)4a b =+,在等式两端同时加上b ;(2)395x =+,在等式两端同时加上5;(3)836y +,在等式的两端同时乘以16; (4)24y +,在等式的两端同时乘以2.12. 【答案】413. 【答案】32三、解答题(本大题共4道小题)14. 【答案】14.275 【解析】42 1.70.30.5x x -+-=,10401020 1.735x x -+-=,14.275x =.15. 【答案】316. 【答案】a b c d +++ 【解析】原方程可化为:()()()()0x a b c d x a b c d x a b c d x a b c d d a b c-+++-+++-+++-++++++=, 即:1111()[()]0x a b c d a b c d+++-+++=, 又11110a b c d+++≠,故x a b c d =+++.17. 【答案】2010 【解析】原方程可化为201013(1)(1)0972*******x x x ---+-++=, 20102010201009720092007x x x ---+-=, 111(2010)()0972*******x -+-=,显然11109720092007+-≠,故20100x -=,2010x =.。
2022-2023学年人教版七年级数学上册《第3章一元一次方程》期末综合复习题(附答案)一、选择题1.下列方程是一元一次方程的是()A.x﹣2=3B.1+5=6C.x2+x=1D.x﹣3y=02.x=﹣2是下列哪个方程的解()A.x+1=2B.2﹣x=0C.x=1D.+3=13.下列等式变形正确的是()A.若a=b,则a﹣3=3﹣b B.若x=y,则=C.若a=b,则ac=bc D.若=,则b=d4.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x+2x=1﹣2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程3t=2,未知数系数化为1,得t=D.方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣45.解方程﹣=1时,去分母后,正确的结果是()A.15x+3﹣2x﹣1=1B.15x+3﹣2x+1=1C.15x+3﹣2x+1=6D.15x+3﹣2x﹣1=66.小马虎做作业,不小心将方程中一个常数污染了,被污染方程是2(x﹣3)﹣•=x+1,怎么办呢?他想了想便翻看书后答案,方程的解是x=9,请问这个被污染的常数是()A.1B.2C.3D.47.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106C.518﹣x=2(106+x)D.518+x=2(106﹣x)8.两地相距600千米,甲乙两车分别从两地同时出发相向而行,甲车比乙车每小时多走10千米,4小时后两车相遇,则乙车的速度是()A.70千米/小时B.75千米/小时C.80千米/小时D.85千米/小时9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.当x=﹣1时,式子ax3+bx+1=0,则关于x方程+=的解是()A.x=B.x=﹣C.x=1D.x=﹣1二、填空题11.若方程x|a|+3=0是关于x的一元一次方程,则a=.12.已知2a﹣3和4a+6互为相反数,则a=.13.若方程x+2m=8与方程的解相同,则m=.14.方程|x﹣3|=6的解是x=.15.足球比赛的规则为胜一场得3分,平一场得1分,负一场得0分,一个队踢了16场比赛,负了5场,共得27分,那么这个队平了场.16.一个两位数,个位上的数字与十位上数字之和是7,将十位和个位对调后的新数比原数的2倍还大2,则原两位数是.17.学校开设兴趣班,建模组有16人,本学期新来的学生小丽加入了已有x人的航模组,这样建模组的人数比航模组的人数的一半多5人,根据题意,可列方程.18.若关于x的方程2x﹣(3x﹣a)=1的解为负数,则a的取值范围是.三、解答题19.解下列方程:(1)3x﹣5x﹣2x=0(2)3(5x﹣6)=3﹣20x(3)2x+3[x﹣2(x﹣1)+4]=8(4)﹣=120.方程2﹣3(x+1)=0的解与关于x的方程﹣3k﹣2=2x的解互为倒数,求k的值.21.某瓷器厂共有120个工人,每个工人一天能生产200个茶杯或50个茶壶,如果8个茶杯和一个茶壶为一套,问如何安排生产工人可使每天生产的产品配套?22.某件商品的进价为800元,标价为1150元,因库存积压需降价出售,若每件商品仍想获得15%的利润,需几折出售?23.一项工程,甲工程队单独做要10天完成,乙工程队单独做要15天完成,甲乙两工程队先合作若干天后,再由乙工程队单独做了5天,此时还有三分之一的工程没有完成,求甲乙两工程队先合作了几天?24.数学课上,小华把一张白卡纸画出如图①所示的8个一样大小的长方形,再把这8个长方形纸片剪开,无重叠的拼成如图②的正方形ABCD ,若中间小正方形的边长为1,求正方形ABCD 的边长.25.某市剧院举办大型文艺演出,其门票价格为:一等票300元/人,二等票200元/人,三等票150元/人,某公司组织员工36人去观看,计划用5850元购买其中两种门票,请你帮该公司设计可能的购票方案.26.“水是生命之源”,我国是一个严重缺水的国家.为倡导节约用水,某市自来水公司对水费实行分段收费,具体标准如下表: 每月用水量第一档(不超过10立方米)第二档(超过10立方米但不超过15立方米部分)第三档(超过15立方米部分) 收费标准 (元/立方米)2.5元?元比第二档高20%已知某月市民甲交水费17.5元,市民乙用水13立方米,交费34元,市民丙交水费61.6元,求:①市民甲该月用水多少立方米? ②第二档水费每立方米多少元? ③市民丙该月用水多少立方米?27.数轴上,点A 、点B 所表示的数分别是a 和b ,点A 在原点左边,点B 在原点右边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大6,点P 从点A 以每秒3个单位长度的速度沿数轴正方向运动,点Q 从点B 以每秒1个单位长度的速度沿数轴负方向运动,两点同时出发.①求a、b的值.②设x秒后点P、点Q相遇,求x的值.③数轴上点C到点A和到点B的距离之和是30,求点C所表示的数.④设t秒后点P、Q相距6个单位长度,求t的值.参考答案一、选择题1.解:A、x﹣2=3是一元一次方程,故此选项正确;B、1+5=6不是方程,故此选项错误;C、x2+x=1是一元二次方程,故此选项错误;D、x﹣3y=0是二元一次方程,故此选项错误;故选:A.2.解:A、解方程x+1=2得:x=1,所以x=﹣2不是方程x+1=2的解,故本选项不符合题意;B、解方程1﹣x=0得:x=2,所以x=﹣2不是方程2﹣x=0的解,故本选项不符合题意;C、解方程x=1得:x=2,所以x=﹣2不是方程x=1的解,故本选项不符合题意;D、当x=﹣2时,左边=+3=1,右边=1,即左边=右边,所以x=﹣2是方程的解,故本选项符合题意;故选:D.3.解:A.若a=b,则a﹣3=b﹣3,A项错误,B.若x=y,当a=0时,和无意义,B项错误,C.若a=b,则ac=bc,C项正确,D.若=,如果a≠c,则b≠d,D项错误,故选:C.4.解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,不符合题意;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,不符合题意;C、方程3t=2,未知数系数化为1,得t=,不符合题意;D、方程﹣2x﹣4x=5﹣9,合并同类项,得﹣6x=﹣4,符合题意,故选:D.5.解:﹣=1,去分母得:3(5x+1)﹣(2x﹣1)=6,去括号得:15x+3﹣2x+1=6.故选:C.6.解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.7.解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选:C.8.解:设乙车的速度为x千米/小时,则甲车的速度为(x+10)千米/小时,根据题意得:4(x+x+10)=600,解得:x=70.故选:A.9.解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.10.解:把x=﹣1代入得:﹣a﹣b+1=0,即a+b=1,方程去分母得:2ax+2+2bx﹣3=x,整理得:(2a+2b﹣1)x=1,即[2(a+b)﹣1]x=1,解得:x=1,故选:C.二、填空题11.解:∵方程x|a|+3=0是关于x的一元一次方程,∴|a|=1,解得:a=±1,故答案为:±112.解:∵2a﹣3和4a+6互为相反数,∴(2a﹣3)+(4a+6)=0,∴6a+3=0,解得a=﹣0.5.故答案为:﹣0.5.13.解:由解得x=1,将x=1代入方程x+2m=8,解得m=,故答案为:.14.解:由题意得:x﹣3=6或x﹣3=﹣6,x=9或﹣3,故答案为:9或﹣3.15.解:设该队共平x场,则该队胜了16﹣x﹣5=11﹣x,胜场得分是3(11﹣x)分,平场得分是x分.根据等量关系列方程得:3(11﹣x)+x=27,解得:x=3,故平了3场,故答案为:3.16.解:设原来个位数字是x,十位数字是(7﹣x),2[10(7﹣x)+x]+2=10x+7﹣x,x=2.7﹣x=7﹣2=5.原数为25.故答案是:25.17.解:设航模组已有x人,则学生小丽加入后航模组共有(x+1)人,∵建模组有16人且建模组的人数比航模组的人数的一半多5人,∴(x+1)+5=16,故答案为:(x+1)+5=16.18.解:解方程2x﹣(3x﹣a)=1得,x=a﹣1,∵x为负数,∴a﹣1<0,解得a<1.故答案为a<1.三、解答题19.解:(1)3x﹣5x﹣2x=0合并同类项,可得:﹣4x=0,系数互为1,可得:x=0;(2)3(5x﹣6)=3﹣20x去括号,可得:15x﹣18=3﹣20x,移项,可得:15x+20x=3+18,合并同类项,可得:35x=21,系数互为1,可得:x=0.6;(3)2x+3[x﹣2(x﹣1)+4]=8,去括号,可得:2x+3x﹣6x+6+12=8移项,可得:2x+3x﹣6x=﹣6﹣12+8,合并同类项,可得:﹣x=﹣10,系数互为1,可得:x=10;(4)﹣=1,去分母,可得,4(2x﹣1)﹣3(2x﹣3)=12,去括号,可得:8x﹣4﹣6x+9=12,移项,可得:8x﹣6x=4﹣9+12,合并同类项,可得:2x=7,系数互为1,可得:x=.20.解:解方程2﹣3(x+1)=0得:x=﹣,﹣的倒数为x=﹣3,把x=﹣3代入方程﹣3k﹣2=2x得:﹣3k﹣2=﹣6,解得:k=1.21.解:设x人生产茶杯,则(120﹣x)人生产茶壶.50(120﹣x)×8=200x解得:x=80.所以120﹣80=40(人)答:80人生产茶杯,40人生产茶壶.22.解:由题意可知:设需要按x元出售才能获得15%的利润则:=15%解得:x=920,按n折出售,则n=×10=8故每件商品仍想获得10%的利润需八折出售.23.解:设甲乙两工程队先合作了x天,由题意,得+=1﹣.解得x=2.答:甲乙两工程队先合作了2天.24.解:设小长方形的长为xcm,则宽为x,由题意,得:2×x﹣x=1,解得:x=5,则x=3,所以正方形ABCD的边长是:x+2×x=×5=11.答:正方形ABCD的边长是11.25.解:∵200×36=7200>5850,∴该公司不可能购买一等门票和二等门票,设该公司购买一等门票a张,三等门票(36﹣a)张,300a+150(36﹣a)=5850,解得,a=3,∴36﹣a=33,即该公司购买一等门票3张,三等门票33张;设该公司购买二等门票b张,三等门票(36﹣b)张,200b+150(36﹣b)=5850,解得,b=9,∴36﹣b=27,即该公司购买二等门票9张,三等门票27张;由上可得,有两种购买方案,方案一:该公司购买一等门票3张,三等门票33张;方案二:该公司购买二等门票9张,三等门票27张.26.解:①∵2.5×10=25>17.5,∴甲用水量不超过10立方米,∴17.5÷2.5=7立方米,答:甲市民该月用水7立方米.②设超出的部分x元/立方米,由题意得,2.5×10+(13﹣10)x=34,解得,x=3,答:第二档水费每立方米3元.③∵2.5×10+3×(15﹣10)=40<61.6,∴丙的用水量超过15立方米,设丙用水y立方米,由题意得,2.5×10+3×5+3×(1+20%)(y﹣15)=61.6,解得,y=21,答:市民丙该月用水21立方米.27.解:①∵点A在原点左边,点B在原点右边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大6,∴a=﹣(24+6)÷2=﹣15,b=(24﹣6)÷2=9;②依题意有3x+x=24,解得x=6.故x的值为6;③(30﹣24)÷2=3,点C在点A的左边,点C所表示的数为﹣15﹣3=﹣18;点C在点A的右边,点C所表示的数为9+3=12.故点C所表示的数为﹣18或12;④相遇前,依题意有:3t+t=24﹣6,解得t=;相遇后,依题意有:3t+t=24+6,解得t=.故t的值为或.。
人教版七年级数学上册第三章解一元一次方程——去括号去分母复习试题3(含答案)解方程:2(x +1)12-(x -1)=2(x -1)12+(x +1) 【答案】x =4.【解析】【分析】先把(x+1)和(x-1)当做一个整体进行移项、合并同类项,然后再去括号解方程即可.【详解】移项,得2(x+1)12-(x+1)=2(x-1)12+(x-1), 合并同类项,得32(x+1)=52(x-1), 去括号,得32x+32=52x-52, 移项,得32x-52x=5322--, 合并同类项,得-x=-4,系数化为1,得x=4.【点睛】本题考查了解一元一次方程,根据方程的特点灵活选取解题的方法是关键.72.解下列方程:(1)212132x x +++= (2)0.430.20.5x x ---=1.6 【答案】(1) x=﹣2;(2) x=5.2.【解析】【分析】(1)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得;(2)根据解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1依次计算可得.【详解】(1)去分母,得:2(2x+1)+6=3(x+2),去括号,得:4x+2+6=3x+6,移项,得:4x ﹣3x=6﹣2﹣6,合并同类项,得:x=﹣2;(2)去分母,得:5(x ﹣4)﹣2(x ﹣3)=1.6,去括号,得:5x ﹣20﹣2x+6=1.6,移项,得:5x ﹣2x=1.6+20﹣6,合并同类项,得:3x=15.6,系数化为1,得:x=5.2.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.73.解方程131148x x ---=. 【答案】x=-9【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】原方程可变为()()21318x x ---=,去括号,得:2x-2-3x+1=8,移项得,2x-3x=8+2-1,合并同类项,得,-x=9,解得9x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.74.解方程(组): ①352x +=213x -. ①415323x y x y +=⎧⎨-=⎩【答案】①x =-175;①33x y =⎧⎨=⎩. 【解析】【分析】(1)根据去分母、去括号、移项、合并同类项、系数化为1解方程;(2)应用加减法×2+,可进一步求解.【详解】解:(1)去分母,得()3352(21)x x +=-,去括号,得91542x x +=-,移项,得94215x x -=--,合并同类项,得517x =-,系数化为1,得175x =-.(2)415323x y x y +=⎧⎨-=⎩①②, 由×2+,得11x=33解得x=3.把x=3代入①,得4×3+y=15,解得,y=3.所以方程组的解是:33x y =⎧⎨=⎩【点睛】本题考核知识点:(1)解一元一次方程;(2)解二元一次方程组.解题关键点:要牢记解方程和方程组的一般方法,按步骤求解.75.某人共收集邮票若干张,其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,此外尚有不足100张的国外邮票.求该人共有多少张邮票.【答案】152张【解析】【分析】设该人共有x 张邮票,则2000年以前的国内外发行的邮票数是14x ,2001年国内发行的是18x ,2002年国内发行的是119x ,根据题意列不等式求得x 的范围,然后根据x 一定是4,8,19的倍数即可确定x 的值.【详解】该人共有x 张邮票, 根据题意列方程得:14x+18x+119x >x-100, 解得:x <167391. ∵其中14是2000年以前的国内外发行的邮票,18是2001年国内发行的,119是2002年国内发行的,∴x 一定是4,8,19的倍数,这三个数的最小公倍数是:152.故该人共有邮票约152张.【点睛】列方程解应用题的关键是正确找出题目中的不等关系,用代数式表示出不等关系中的各个部分,把列不等式的问题转化为列代数式的问题.76.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:4(21)13(2)x x -=-+……………… …① 84136x x -=--…………………… …①83164x x +=-+…………………… …①111x =-………………………………… ①111x =-………………………………… ① 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)211163x x +-+= (2)2157146y y ---= 【答案】①(1)x=-3.4;(2)y=-0.25【分析】小明第①步去分母时出错;(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【详解】小明错在①;故答案为:①;(1)去括号得:9x+15=4x-2,移项合并得:5x=-17,解得:x=-3.4;(2)去分母得:3(2y-1)-2(5y-7)=12,去括号得:6y-3-10y+14=12,移项合并得:-4y=1,解得:y=-0.25.【点睛】此题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.77.已知等式2-++=是关于x的一元一次方程(即x未知),求a x ax(2)10这个方程的解.【答案】1x=-2【解析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a ,b 是常数且a ≠0).高于一次的项系数是0.据此可得出关于a 的方程,继而可得出a 的值.【详解】由一元一次方程的特点得a-2=0,解得:a=2;故原方程可化为2x+1=0,解得:x=−12. 【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件,高于一次的项系数是0.78.解下列方程(1)76163x x +=-;(2)2(3)4(5)x x -=-+(3)758143x x -+-= (4)1122(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦ 【答案】(1)1x =;(2)13x =-;(3)6517-;(4)-513【解析】【分析】(1)移项合并后化系数为1即可.(2)先去括号,然后再进行移项合并.(3)按解一元一次方程的一般步骤进行解答即可.(4)此题比较麻烦,要根据步骤一步一步的进行.【详解】(1)解:移项合并同类项得,10x=10,系数化为得,x=1;(2)解:去括号得,6-2x=-4x-20,移项合并同类项得,2x=-26,系数化为1得,x=-13;(3)解:去分母得,3(x-7)-4(5x+8)=12,去括号得,3x-21-20x-32=12,移项合并同类项得,-17x=65,系数化为1得,x=−6517;(4)解:去括号得,2x-12x+14x-14=23x-23,去分母得,24x-6x+3x-3=8x-8,移项合并同类项得,13x=-5,系数化为1得,x=-513.【点睛】本题考查解一元一次方程的知识,题目难度不大,但是出错率很高,是失分率很高的一类题目,同学们要在按步骤解答的基础上更加细心的解答.79.解下列方程:(1)3x(7-x)=18-x(3x-15);(2)0.170.210.70.03x x --=. 【答案】(1)x=3(2)x=1417 【解析】【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤求解;(2)先根据分数的基本性质把分子、分母化整,再按照去分母,去括号,移项,合并同类项,系数化为1的步骤求解.【详解】(1)去括号,得21x-3x 2=18-3x 2+15x.移项、合并同类项,得6x=18,解得x=3.(2)将分母转化为整数,得101720=173x x -- 方程两边同乘21,得30x-7(17-20x)=21.去括号,得30x-119+140x=21.移项、合并同类项,得170x=140.系数化为1,得x=1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1. 去括号时,一是注意不要漏乘括号内的项,二是明确括号前的符号;去分母时,一是注意不要漏乘没有分母的项,二是去掉分母后把分子加括号.80.已知()2310a b -++=,代数式22b a m -+的值比12b a m -+多1,求m .【答案】0m =.【解析】【分析】先根据|a-3|+(b+1)2=0求出a ,b 的值,再根据代数式22b a m -+的值比12b −a +m 的值多1列出方程22b a m -+=12b −a +m +1,把a ,b 的值代入解出x 的值.【详解】∵|a-3|≥0,(b+1)2≥0,且|a-3|+(b+1)2=0,∴a-3=0且b+1=0,解得:a=3,b=-1. 由题意得:22b a m -+=12b −a +m +1, 即:513122m m -+--++=, 5522m m --=, 解得:m=0,∴m 的值为0.【点睛】考查了非负数的和为0,则非负数都为0.要掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为.注意移项要变号.。
2018-2019七上期末复习试题三学生版第三章一元一次方程检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果方程(m-1)x+3=0是关于x 的一元一次方程,那么m 的取值范围( ) A.m ≠0 B.m ≠1 C.m = - 1 D. m>1 2.以下等式变形不正确的是( )A.由x+2=y+2,得到x=yB.由2a-3=6-3,得到2a=bC.由am=an,得到m=nD.由m=n ,得到2am=2an 3.下列判断错误的是( )A.若a=b ,则a-3=b-3B.若a=b,则20192019ba -=- C.若ax=bx ,则a=b D.若x=2018,则x x 20182=4.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A .x =-5 B .x =-3 C .x =-1 D .x =5 5.在3×3方格上做填数字游戏,要求第行、每列及每条对角线上的三个格子中的数字之和都等于s ,且填在三个格子中的数字如图所示,若要能填成,则( )A .s =24B .s =30C .s =31D .s =396.解方程3x +312-x =3-21+x ,去分母正确的是( ) A .18x +2(2x -1)=18-3(x +1) B .3x +(2x -1)=3-(x +1)C .18x +(2x -1)=18-(x +1)D .3x +2(2x -1)=3-3(x +1)7.用一根长为(单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ),得到新的正方形,则这根铁丝需增加( ).A.4cmB.8cmC.( +4) cmD. (+8) cm8.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且EF =3,CD =12.则图中阴影部分的面积为( )A .108B .72C .60D .489.某市举行歌手大奖赛,今年共有a 人参加,比赛的人数比去年增加20%还多3人,则去年参赛的有( )人.A. B. (1+20%)a+3 C. D.(1+20%)a-310.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为( )A.1.2×0.8x+2×0.9(60+x) =87B.1.2×0.8x+2×0.9(60-x) =87C.2×0. 9x+l.2×0.8(60+x) =87D.2×0.9x+l.2×0.8(60-x) =87二、填空题(每小题3分,共15分)11.若方程(a-3)x|a|-2-7=0是一个一元一次方程,则a= .12.已知关于x的方程2x+a-5=0的解是x=2,则a的值为.13.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是.14.关于x的方程=1-的解是整数,则整数m= .15. 一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是.三、解答题(共75分)16.(6分)解下列方程;(1))20-y=6y-4(y-11);(2)=1+;17.(6分)当k为何整数时,关于x的方程2kx-4=x+5的解是整数?18.(7分)关于x的方程-2=a与方程8x-2(3x+2)=-5的解互为倒数,求a的值.19.(7分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?20.(8分攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了24.8元.求该同学的家到学校的距离在什么范围?思路分析:先列一元一次方程求出付费24.8元时可行驶的最大距离,再根据题意和所得结果求出付费24.8元时的距离范围.21.(8分)为迎接“七·一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个。
《一元一次方程》全章复习与巩固(提高)知识讲解【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】要点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.要点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母的指数不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 要点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.要点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x的一次项系数5-3m≠0,m的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】已知|x+1|+(y+2x)2=0,则y x=________.【答案】1类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z zz+---++=-【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】 解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:452271010116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. 黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用刚好为4920元时,问公司租用的四座车和十一座车各多少辆?【答案与解析】解:设四座车租x 辆,十一座车租70411x -辆,依题意得: 7047060601110492011x x -⨯++⨯⨯= 解得:x =1,704611x -= 答:公司租用的四座车和十一座车分别是1辆和6辆。
期末复习(三)一元一次方程01知识结构图02重难点突破重难点1 一元一次方程的相关概念【例1】如果关于x 的方程213x +=和方程202k x --=的解相同,那么k 的值为__________.方法指导求方程中某些字母的值时,只要将方程的解代入方程,即可得到关于待求字母的方程,解这个方程即可.变式训练1.下列各式是一元一次方程的是( )2A. 36 B. 3422C. 30 D. 1243x x x x x y x +==-+=+=-+ 2.若1x =是方程20ax bx +-=的解,则a b +的值是( )A. 0B. 1C. 2D. 1-重难点2 等式的性质【例2】(柳州中考)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?【解答】方法指导本题是一道数形结合的应用题,在天平平衡中巧妙地考查了等式的性质,使学生学会用“等式的观点”来看天平的平衡.变式训练3.若a b =,则在①33a b -=-;②32a b =;③43a b -=-;④3131a b -=-中,正确的有_____________.(填序号)重难点3 元一次方程的解法【例3】解方程:21101136x x ++-=. 【解答】方法指导解一元一次方程时,要灵活安排各个步骤的次序(不一定每个步骤都要用到),这样往往可使计算简便,在整个求解过程中,要注意避免去分母、去括号、移项时常出现的错误.变式训练4.解方程:15(75)2(53)x x x --=+-.重难点4 一元一次方程的应用【例4】目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?【解答】方法指导列一元一次方程解答实际问题,关键是找出包含全部题意的相等关系,然后再根据题意列出方程.变式训练5.【关注传统文化】(邵阳中考)程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是有100个和尚分100个馒头,如果大和尚1人分3个,小和3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大小和尚各100人6.体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.则购进篮球__________个、排球_________个.03思想方法突破【例5】解方程:113(75)(57)(75)7(57)37x x x x ---+-=-. 【思路点拨】本题可以直接去括号求解,但似乎有点繁琐,如果将75x -()看作一个整体,那么求解时能更方便些.【解答】方法指导整体思想:当一个问题中未知数较多,一个一个地求解比较复杂,或有时不能求解时,可将其中满足某一共同特征的固定式子看作一个整体,利用整体思想求解,既便于列方程,又便于解方程.【例6】有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上到达C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5km,水流的速度为每小时2.5km,A,C两地间的距离为10km,如果乙船由A地经过B地再到达C地共用了4h,问:乙船到达C地时,甲船距离B 地有多远?【解答】方法指导分类讨论思想:对于实际问题列方程时,若条件中给出的等量关系表述不明确,则必须进行分类讨论.关键是要分清不明确的条件中可能产生的情况.【例7】如图,数轴上两个动点A,B开始时所对应的数分别为8-,4,A,B两点各自以一定速度在数轴上运动,且A点运动的速度为2个单位/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求B点运动的速度;(2)A,B两点按上面的速度同时出发,向数轴的正方向运动,几秒时两点相距6个单位?(3)A,B两点按上面的速度同时出发,向数轴的负方向运动,与此同时,C点从原点出发向同方向运动,且在运动的过程中,始终有:1:2CB CA=,若干秒后,C点在10-处,求此时B点的位置.【思路点拔】(1)利用路程÷时间即可;(2)需分情况讨论:①B点在A点右边;②A点在B点右边;(3)设C点速度为y,利用:1:2CB CA=可列方程,求出y值,从而求出B点位置.【解答】方法指导数形结合思想:在研究问题的过程中,由数思形、由形想数,把图形和蕴含的数量关系巧妙地结合起来,使问题更直观,更容易解决.如:解决在数轴上的行程问趣,关键运用数形结合思想,将运动路程用数轴上两点间的距离表示. 04复习自测一、选择题(每小题4分,共32分)1.已知下列方程:①123x =;②13x =;③212x x =-;④221x =;⑤2x =;⑥21x y +=.其中一元一次方程的个数是( )A. 2B. 3C. 4D. 52.下列方程中变形正确的是( )①360x +=变形为20x +=;②2853x x +=-变形为3x =; ③423x x +=去分母,得3224x x +=; ④(2)2(1)0x x +--=去括号,得2220x x +--=.A.①③B.①②③C.①④D.①③④3.当3x =时,式子23510x ax -+的值为7,则a 等于( ).2 B. 2C. 1D. 1A -- 4.解方程5121126x x +--=时,去分母后,正确的结果是( ) A. 153211 B. 153211C. 153216 D. 153216x x x x x x x x +--=+-+=+-+=+--= 5.(曲靖中考)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A. 54(2)44B. 54(2)44C. 9(2)44D. 9(2)4244x x x x x x ++=+-=+=+-⨯= 6.现有9人14天完成一件工作的35,而剩下的工作要在4天内完成,假设每个人的工作效率相同,则需增加( )A.11人B.12人C.13人D.14人7.(枣庄中考)某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元8.(台州中考)甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点⋅⋅⋅⋅⋅⋅若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A. 5B. 4C. 3D. 2二、填空题(每小题4分,共24分)9.如果43260a x -+=是一元一次方程,那么方程的解为___________.10.已知23x =是方程333542m x x m ⎛⎫-+= ⎪⎝⎭的解,则m =___________. 11.(襄阳中考)王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝,如果每人分5袋还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜___________袋.12.现规定一种新的运算a bad bc c d =-,那么33924x =-时,x =_________.13.一列方程如下排列:1142x x -+=的解是22,162x x x -=+=的解是33,182x x x -=+=的解是4,x =⋅⋅⋅,根据观察得到的规律,写出其中解是6x =的方程:____________.14.(绍兴中考)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________元.三、解答题(共44分)15.(16分)解方程:(1)31223x x --=+; (2)3(56)320x x -=-;(3)321123x x x --+=-; (4)0.10.2130.020.5x x -+-=. 16.(8分)已知方程232353x x -=-与方程133()24n x n n -=+-的解相同,求2(227)n -的值.17.(8分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__________cm ,放入一个大球水面升高_______cm ;(2)如果要使水面上升到50cm ,应放入大球、小球各多少个?18.(12分)商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请求出商场有哪几种进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元.销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?参考答案【例1】5【例2】由题意,得50y =+①,30050x y +=+②,把①代人②,得250350y +=.解得150y =.所以200x =.故两个苹果的重量分别是200g ,150g.【例3】去分母,得2(21)(101)6x x +-+=.去括号,得421016x x +--=.移项,得410621x x -=-+.合并同类项,得65x -=.系数化为1,得56x =-. 【例4】(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元,(2)商场购进甲型节能灯450只,购进乙型节能灯750只,利润为13500元.【例5】将75x -()视作整体,原方程可变形为:113(75)(75)(75)7(75)37x x x x -+-+-=--,去分母、整体移项、合并同类项,得220(75)0x -=,即75x =.系数化为1,得57x =. 【例6】设乙船到达C 地时,甲船距离B 地x km.①当C 地在A ,B 两地之间时,由题意,得(7.5 2.5)4(7.5 2.5)107.5 2.57.5 2.5x x ⎛⎫+⨯---⨯= ⎪++⎝⎭,解得20x =.②当C 地在A 地的上游时,由题意,得(7.5 2.5)(7.5 2.5)4107.5 2.57.5 2.5x x ⎛⎫-⨯-+-= ⎪++⎝⎭,解得1003x =.答:乙船到达C 地时,甲船距离B 地20km 或1003km. 【例7】(1)4821x =÷÷=()(单位/秒).(2)设经过时间为t.①当B 在A 的右边时,则1226t t +-=,解得6t =.②当A 在B 的右边时,则2126t t -=+,解得18t =.综上,6秒或18秒时,A ,B 两点相距6个单位.(3)设C 点运动的速度为y 单位/秒,根据:1:2CB CA =,得221y y -=-().解得43y =.当C 点停留在10-处时,所用时间为4151032÷=(秒),所以B 点的位量为157422-=-.变式训练1.B2.C3.①④4.解:12x =- 5.A 6.12 8复习自测1.B2.A3.A4.C5.A6.B7.A8.B9.3x =- 10.14- 11.33 12.1 13.51122x x -+= 14.248或296 15.解:(1)1118x =-.(2)35x =.(3)5x =.(4)5x =. 16.解:解方程232353x x -=-,得9x =.把9x =代入133()24n x n n -=+-中,得12274n -=,所以21(227)16n -=. 17.解:(1)2 3(2)设应放入x 个大球,10x -()个小球,由题意,得32(10)5026x x +-=-,解得4x =.则106x -=.答:应放入4个大球,6个小球.18.解:(1)①设购进甲种电视机x 台,购进乙种电视机(50)x -台,根据题意,得150021005090000x x +-=().解得25x =.则5025x -=.故第一种进货方案是购甲、乙两种型号的电视机各25台;②设购进甲种电视机y 台,购进丙种电视机50y -()台,根据题意,得15002500(50)90000x y +-=.解得35y =.则5015y -=.故第二种进货方案是购进甲种电视机35台,丙种电视机15台;③设购进乙种电视机z 台,购进两种电视机50z -()台,根据题意,得2100250509000z z +-=().解得87.5z =(不合题意).故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8750(元);第二种方案可获利:150×35+250×15=9000(元).因为8750<9000.所以应选择第二种进货方案,即购进甲种电视机35台,丙种电视机15台.。
人教版七年级上册数学期末专题复习(3)一元一次方程满分:150分时间:120分钟一、单选题(共10题;共40分)1.已知关于x的方程4x-3m=2的解是x=-m,则m的值是()A. 2B. –2 C. 27D. −272.将方程2- 2x−43=−x−46去分母得()A. 2-2(2x-4)=-(x-4)B. 12-2(2x-4) =-x-4C. 12-2(2x-4) =-(x-4)D. 12-4x-8=-x+43.关于x的方程4x﹣3m=2的解是x=m,则m的值是()A. ﹣2 B. 2C. ﹣27D. 274.下列等式是一元一次方程的是( )A. x2 + 1 = 0B. x + 1 =C. x + y = 0D. 2 -1=-3 +45.解方程1- x+33=x2时,去分母后可以得到( )A. 1-x-3=3xB. 6-2x-6=3xC. 6-x+3=3xD. 1-x+3=3x6.已知方程(a﹣2)x|a|﹣1+6=0是关于x的一元一次方程,则a的值为()A. ±2B. ﹣2 C. 1D. 27.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A. 120元B. 125元 C. 135元 D. 140元8.若方程2x+1=-1的解是关于x的方程1-2(x- a)=2的解,则a的值为()A. -1 B. 1C. −32D. −129.若方程:的解互为相反数,则a的值为()A. B.C. D. -110.方程x3+x15+x35+...+x2005×2007=1的解是x等于()A. 20062007B. 20072006C. 20071003D. 10032007二、填空题(共6题;共24分)11.列等式表示:比a的3倍大4的数等于a的5倍,得________.12.若(m−2)x|m|−1=6是一元一次方程,则 m 是________.13.在如图所示的运算流程中,若输出的数y=7,则输入的数x=________.14.定义|a bc d|=ad−bc,若|x−1x−3x+7x−1|=10,则 x 的值为________.15.一桶汽油,第一次倒出全桶的14,第二次倒出的比第一次多20千克,这时桶里的汽油已经倒出的与剩下的比是7:5.这桶汽油共重________千克.16.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%.三、计算题(共1题;共16分)17.解方程:(1)2x−56+3−x4=1;(2)7x−13−5x+12=2−3x+24.四、解答题(共4题;共43分)18.力“皖”狂澜,新冠肺炎期间,安徽共出动八批,共计1362位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回合肥,其中第二批人数是第八批人数的3倍还多10人,第八批安徽共出动了多少名医护人员?19.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.20.小颖解方程2x−13=x+m3−2去分母时,方程右边的−2没有乘以3,因而求得方程的解为x=−1,求m的值,并正确地求出方程的解.21.建桥中学有A、B两台速印机.用于印刷学习资料和考试试卷,该校七年级举行期末考试,其数学试卷如果用速印机A、B单独印刷,分别需要50分钟和40分钟,在考试时为了保密需要.不能过早提前印刷试卷,决定在考试前由两台速印机同时印刷.在印刷20分钟后B 机出现故障.此时离发卷还有10分钟,请你算一算,如果由A机单独完成剩余的印刷任务,会不会影响按时发卷?为什么?(要求列一元一次方程解应用题)五、综合题(共2题;共27分)22.请同学们完成下列甲、乙两种商品从包装到销售的一系列问题:(1)某包装车间有22名工人,每人每小时可以包装120个甲商品或200个乙商品,且1个甲商品需要搭配2个乙商品装箱,为使每天包装的甲商品和乙商品刚好配置,应安排包装甲商品和乙商品的工人各多少名?(2)某社区超市一次用6000元购进一批甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,两种商品的进价和售价如下图所示:超市将这批货全部售出一共可以获利多少元?23.已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?(3)若点O到点M,N其中一个点的距离是到另一个点距离的2倍,则称点O是[M,N]的“好点”,设点C是点A,B的中点,点P,Q分别从A,B两点同时出发,点P向左运动到C点时返回到A点时停止,动点Q一直向右运动到A点后停止运动,求当t为何值时,点C为[P,Q]的“好点”?答案解析部分一、单选题1.【答案】 D【解析】根据方程的解就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=-m代入原方程即可求得m的值.【解答】由题意得:x=-m,∴4x-3m=2可化为:4×(-m)-3m=2,.可解得:m=-27故选:D.【点评】此题主要考查了代入消元法解一次方程组,将原方程看作是关于m的一元一次方程,代入x的值求出是解决问题的关键.2.【答案】C【解析】【解答】方程左右两边同时乘以6,得:12-2(2x-4)=-(x-4),故答案为:C.【分析】根据等式的基本性质,方程两边同时乘以6可得:12-2(2x-4)=-(x-4)。
人教版七年级上册数学期末专题复习(3)一元一次方程满分:150分时间:120分钟一、单选题(共10题;共40分)1.已知关于x的方程4x-3m=2的解是x=-m,则m的值是()A. 2B. –2 C. 27D. −272.将方程2- 2x−43=−x−46去分母得()A. 2-2(2x-4)=-(x-4)B. 12-2(2x-4) =-x-4C. 12-2(2x-4) =-(x-4)D. 12-4x-8=-x+43.关于x的方程4x﹣3m=2的解是x=m,则m的值是()A. ﹣2 B. 2C. ﹣27D. 274.下列等式是一元一次方程的是( )A. x2 + 1 = 0B. x + 1 =C. x + y = 0D. 2 -1=-3 +45.解方程1- x+33=x2时,去分母后可以得到( )A. 1-x-3=3xB. 6-2x-6=3xC. 6-x+3=3xD. 1-x+3=3x6.已知方程(a﹣2)x|a|﹣1+6=0是关于x的一元一次方程,则a的值为()A. ±2B. ﹣2 C. 1D. 27.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A. 120元B. 125元 C. 135元 D. 140元8.若方程2x+1=-1的解是关于x的方程1-2(x- a)=2的解,则a的值为()A. -1 B. 1C. −32D. −129.若方程:的解互为相反数,则a的值为()A. B.C. D. -110.方程x3+x15+x35+...+x2005×2007=1的解是x等于()A. 20062007B. 20072006C. 20071003D. 10032007二、填空题(共6题;共24分)11.列等式表示:比a的3倍大4的数等于a的5倍,得________.12.若(m−2)x|m|−1=6是一元一次方程,则 m 是________.13.在如图所示的运算流程中,若输出的数y=7,则输入的数x=________.14.定义|a bc d|=ad−bc,若|x−1x−3x+7x−1|=10,则 x 的值为________.15.一桶汽油,第一次倒出全桶的14,第二次倒出的比第一次多20千克,这时桶里的汽油已经倒出的与剩下的比是7:5.这桶汽油共重________千克.16.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%.三、计算题(共1题;共16分)17.解方程:(1)2x−56+3−x4=1;(2)7x−13−5x+12=2−3x+24.四、解答题(共4题;共43分)18.力“皖”狂澜,新冠肺炎期间,安徽共出动八批,共计1362位医护人员驰援武汉,他们是新时代最可爱的人.3月19日,第二批和第八批医护人员共130人乘坐飞机返回合肥,其中第二批人数是第八批人数的3倍还多10人,第八批安徽共出动了多少名医护人员?19.m为何值时,关于x的方程4x﹣m=2x+5的解比2(x﹣m)=3(x﹣2)﹣1的解小2.20.小颖解方程2x−13=x+m3−2去分母时,方程右边的−2没有乘以3,因而求得方程的解为x=−1,求m的值,并正确地求出方程的解.21.建桥中学有A、B两台速印机.用于印刷学习资料和考试试卷,该校七年级举行期末考试,其数学试卷如果用速印机A、B单独印刷,分别需要50分钟和40分钟,在考试时为了保密需要.不能过早提前印刷试卷,决定在考试前由两台速印机同时印刷.在印刷20分钟后B 机出现故障.此时离发卷还有10分钟,请你算一算,如果由A机单独完成剩余的印刷任务,会不会影响按时发卷?为什么?(要求列一元一次方程解应用题)五、综合题(共2题;共27分)22.请同学们完成下列甲、乙两种商品从包装到销售的一系列问题:(1)某包装车间有22名工人,每人每小时可以包装120个甲商品或200个乙商品,且1个甲商品需要搭配2个乙商品装箱,为使每天包装的甲商品和乙商品刚好配置,应安排包装甲商品和乙商品的工人各多少名?(2)某社区超市一次用6000元购进一批甲、乙两种商品,其中甲商品的件数比乙商品件数的2倍少30件,两种商品的进价和售价如下图所示:超市将这批货全部售出一共可以获利多少元?23.已知在数轴上有A,B两点,点B表示的数为最大的负整数,点A在点B的右边,AB=24.若有一动点P从数轴上点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒.(1)当t=1时,写出数轴上点B,P所表示的数;(2)若点P,Q分别从A,B两点同时出发,问当t为何值点P与点Q相距3个单位长度?(3)若点O到点M,N其中一个点的距离是到另一个点距离的2倍,则称点O是[M,N]的“好点”,设点C是点A,B的中点,点P,Q分别从A,B两点同时出发,点P向左运动到C点时返回到A点时停止,动点Q一直向右运动到A点后停止运动,求当t为何值时,点C为[P,Q]的“好点”?答案解析部分一、单选题1.【答案】 D【解析】根据方程的解就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=-m代入原方程即可求得m的值.【解答】由题意得:x=-m,∴4x-3m=2可化为:4×(-m)-3m=2,可解得:m=-2.7故选:D.【点评】此题主要考查了代入消元法解一次方程组,将原方程看作是关于m的一元一次方程,代入x的值求出是解决问题的关键.2.【答案】C【解析】【解答】方程左右两边同时乘以6,得:12-2(2x-4)=-(x-4),故答案为:C.【分析】根据等式的基本性质,方程两边同时乘以6可得:12-2(2x-4)=-(x-4)。
期末复习(三)一元一次方程01知识结构图02重难点突破重难点1 一元一次方程的相关概念【例1】如果关于x 的方程213x +=和方程202k x --=的解相同,那么k 的值为__________.方法指导求方程中某些字母的值时,只要将方程的解代入方程,即可得到关于待求字母的方程,解这个方程即可.变式训练1.下列各式是一元一次方程的是( )2A. 36 B. 3422C. 30 D. 1243x x x x x y x +==-+=+=-+ 2.若1x =是方程20ax bx +-=的解,则a b +的值是( )A. 0B. 1C. 2D. 1-重难点2 等式的性质【例2】(柳州中考)小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?【解答】方法指导本题是一道数形结合的应用题,在天平平衡中巧妙地考查了等式的性质,使学生学会用“等式的观点”来看天平的平衡.变式训练3.若a b =,则在①33a b -=-;②32a b =;③43a b -=-;④3131a b -=-中,正确的有_____________.(填序号)重难点3 元一次方程的解法【例3】解方程:21101136x x ++-=. 【解答】方法指导解一元一次方程时,要灵活安排各个步骤的次序(不一定每个步骤都要用到),这样往往可使计算简便,在整个求解过程中,要注意避免去分母、去括号、移项时常出现的错误.变式训练4.解方程:15(75)2(53)x x x --=+-.重难点4 一元一次方程的应用【例4】目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如表:(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利恰好是进货价的30%,此时利润为多少元?【解答】方法指导列一元一次方程解答实际问题,关键是找出包含全部题意的相等关系,然后再根据题意列出方程.变式训练5.【关注传统文化】(邵阳中考)程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是有100个和尚分100个馒头,如果大和尚1人分3个,小和3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大小和尚各100人6.体育文化用品商店购进篮球和排球共20个,进价和售价如下表,全部销售完后共获利润260元.则购进篮球__________个、排球_________个.03思想方法突破【例5】解方程:113(75)(57)(75)7(57)37x x x x ---+-=-. 【思路点拨】本题可以直接去括号求解,但似乎有点繁琐,如果将75x -()看作一个整体,那么求解时能更方便些.【解答】方法指导整体思想:当一个问题中未知数较多,一个一个地求解比较复杂,或有时不能求解时,可将其中满足某一共同特征的固定式子看作一个整体,利用整体思想求解,既便于列方程,又便于解方程.【例6】有甲、乙两艘船,现同时由A地顺流而下,乙船到B地时接到通知,须立即逆流而上到达C地执行任务,甲船继续顺流航行.已知甲、乙两船在静水中的速度都是每小时7.5km,水流的速度为每小时2.5km,A,C两地间的距离为10km,如果乙船由A地经过B地再到达C地共用了4h,问:乙船到达C地时,甲船距离B 地有多远?【解答】方法指导分类讨论思想:对于实际问题列方程时,若条件中给出的等量关系表述不明确,则必须进行分类讨论.关键是要分清不明确的条件中可能产生的情况.【例7】如图,数轴上两个动点A,B开始时所对应的数分别为8-,4,A,B两点各自以一定速度在数轴上运动,且A点运动的速度为2个单位/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求B点运动的速度;(2)A,B两点按上面的速度同时出发,向数轴的正方向运动,几秒时两点相距6个单位?(3)A,B两点按上面的速度同时出发,向数轴的负方向运动,与此同时,C点从原点出发向同方向运动,且在运动的过程中,始终有:1:2CB CA=,若干秒后,C点在10-处,求此时B点的位置.【思路点拔】(1)利用路程÷时间即可;(2)需分情况讨论:①B点在A点右边;②A点在B点右边;(3)设C点速度为y,利用:1:2CB CA=可列方程,求出y值,从而求出B点位置.【解答】方法指导数形结合思想:在研究问题的过程中,由数思形、由形想数,把图形和蕴含的数量关系巧妙地结合起来,使问题更直观,更容易解决.如:解决在数轴上的行程问趣,关键运用数形结合思想,将运动路程用数轴上两点间的距离表示. 04复习自测一、选择题(每小题4分,共32分)1.已知下列方程:①123x =;②13x =;③212x x =-;④221x =;⑤2x =;⑥21x y +=.其中一元一次方程的个数是( )A. 2B. 3C. 4D. 52.下列方程中变形正确的是( )①360x +=变形为20x +=;②2853x x +=-变形为3x =; ③423x x +=去分母,得3224x x +=; ④(2)2(1)0x x +--=去括号,得2220x x +--=.A.①③B.①②③C.①④D.①③④3.当3x =时,式子23510x ax -+的值为7,则a 等于( ).2 B. 2C. 1D. 1A -- 4.解方程5121126x x +--=时,去分母后,正确的结果是( ) A. 153211 B. 153211C. 153216 D. 153216x x x x x x x x +--=+-+=+-+=+--= 5.(曲靖中考)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是( )A. 54(2)44B. 54(2)44C. 9(2)44D. 9(2)4244x x x x x x ++=+-=+=+-⨯= 6.现有9人14天完成一件工作的35,而剩下的工作要在4天内完成,假设每个人的工作效率相同,则需增加( )A.11人B.12人C.13人D.14人7.(枣庄中考)某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元8.(台州中考)甲、乙两运动员在长为100m 的直道AB (A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点⋅⋅⋅⋅⋅⋅若甲跑步的速度为5m/s ,乙跑步的速度为4m/s ,则起跑后100s 内,两人相遇的次数为( )A. 5B. 4C. 3D. 2二、填空题(每小题4分,共24分)9.如果43260a x -+=是一元一次方程,那么方程的解为___________.10.已知23x =是方程333542m x x m ⎛⎫-+= ⎪⎝⎭的解,则m =___________. 11.(襄阳中考)王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝,如果每人分5袋还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜___________袋.12.现规定一种新的运算a bad bc c d =-,那么33924x =-时,x =_________.13.一列方程如下排列:1142x x -+=的解是22,162x x x -=+=的解是33,182x x x -=+=的解是4,x =⋅⋅⋅,根据观察得到的规律,写出其中解是6x =的方程:____________.14.(绍兴中考)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________元.三、解答题(共44分)15.(16分)解方程:(1)31223x x --=+; (2)3(56)320x x -=-;(3)321123x x x --+=-; (4)0.10.2130.020.5x x -+-=. 16.(8分)已知方程232353x x -=-与方程133()24n x n n -=+-的解相同,求2(227)n -的值.17.(8分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__________cm ,放入一个大球水面升高_______cm ;(2)如果要使水面上升到50cm ,应放入大球、小球各多少个?18.(12分)商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请求出商场有哪几种进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元.销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?参考答案【例1】5【例2】由题意,得50y =+①,30050x y +=+②,把①代人②,得250350y +=.解得150y =.所以200x =.故两个苹果的重量分别是200g ,150g.【例3】去分母,得2(21)(101)6x x +-+=.去括号,得421016x x +--=.移项,得410621x x -=-+.合并同类项,得65x -=.系数化为1,得56x =-. 【例4】(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元,(2)商场购进甲型节能灯450只,购进乙型节能灯750只,利润为13500元.【例5】将75x -()视作整体,原方程可变形为:113(75)(75)(75)7(75)37x x x x -+-+-=--,去分母、整体移项、合并同类项,得220(75)0x -=,即75x =.系数化为1,得57x =. 【例6】设乙船到达C 地时,甲船距离B 地x km.①当C 地在A ,B 两地之间时,由题意,得(7.5 2.5)4(7.5 2.5)107.5 2.57.5 2.5x x ⎛⎫+⨯---⨯= ⎪++⎝⎭,解得20x =.②当C 地在A 地的上游时,由题意,得(7.5 2.5)(7.5 2.5)4107.5 2.57.5 2.5x x ⎛⎫-⨯-+-= ⎪++⎝⎭,解得1003x =.答:乙船到达C 地时,甲船距离B 地20km 或1003km. 【例7】(1)4821x =÷÷=()(单位/秒).(2)设经过时间为t.①当B 在A 的右边时,则1226t t +-=,解得6t =.②当A 在B 的右边时,则2126t t -=+,解得18t =.综上,6秒或18秒时,A ,B 两点相距6个单位.(3)设C 点运动的速度为y 单位/秒,根据:1:2CB CA =,得221y y -=-().解得43y =.当C 点停留在10-处时,所用时间为4151032÷=(秒),所以B 点的位量为157422-=-.变式训练1.B2.C3.①④4.解:12x =- 5.A 6.12 8复习自测1.B2.A3.A4.C5.A6.B7.A8.B9.3x =- 10.14- 11.33 12.1 13.51122x x -+= 14.248或296 15.解:(1)1118x =-.(2)35x =.(3)5x =.(4)5x =. 16.解:解方程232353x x -=-,得9x =.把9x =代入133()24n x n n -=+-中,得12274n -=,所以21(227)16n -=. 17.解:(1)2 3(2)设应放入x 个大球,10x -()个小球,由题意,得32(10)5026x x +-=-,解得4x =.则106x -=.答:应放入4个大球,6个小球.18.解:(1)①设购进甲种电视机x 台,购进乙种电视机(50)x -台,根据题意,得150021005090000x x +-=().解得25x =.则5025x -=.故第一种进货方案是购甲、乙两种型号的电视机各25台;②设购进甲种电视机y 台,购进丙种电视机50y -()台,根据题意,得15002500(50)90000x y +-=.解得35y =.则5015y -=.故第二种进货方案是购进甲种电视机35台,丙种电视机15台;③设购进乙种电视机z 台,购进两种电视机50z -()台,根据题意,得2100250509000z z +-=().解得87.5z =(不合题意).故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8750(元);第二种方案可获利:150×35+250×15=9000(元).因为8750<9000.所以应选择第二种进货方案,即购进甲种电视机35台,丙种电视机15台.。