函数及其图形解读
- 格式:ppt
- 大小:681.50 KB
- 文档页数:27
函数及其图形知识点总结引言在数学中,函数是一种描述自变量和因变量之间关系的工具。
它是一种非常重要的数学工具,可以用来描述各种各样的现象,包括物理、化学、经济、生物等领域中的问题。
在本文中,我将总结关于函数及其图形的重要知识点,包括函数的定义、性质、图像、分类以及一些相关的概念。
我将从基本概念开始,逐步深入,希望对读者有所帮助。
一、函数的定义函数是一种映射关系,它将一个集合中的元素映射到另一个集合中的元素。
通常情况下,我们用f(x)来表示函数,其中x是自变量,f(x)是因变量。
函数的定义包括以下几个要点:1. 定义域:函数的自变量的取值范围。
2. 值域:函数的因变量的取值范围。
3. 对应关系:自变量和因变量之间的对应关系。
4. 映射规则:描述自变量和因变量之间的映射关系的规则。
函数可以用各种形式表示,包括公式、图表、表格等。
在实际应用中,函数通常用符号、字母、数字、等式等来表示。
函数的定义对于理解和应用函数非常重要,因为它决定了函数的性质和特点。
二、函数的性质1. 有界性:函数的定义域和值域都可能是有界的或无界的。
有界性是函数性质的重要特点之一,对于函数的图像有着重要的意义。
2. 单调性:函数在定义域内可能是单调递增的、单调递减的或者不单调。
单调性是函数图像的一个关键特征,可以通过函数的导数来进行分析。
3. 周期性:某些函数具有周期性,即在一定的区间内具有重复的规律性。
正弦函数和余弦函数就是典型的周期函数的例子。
4. 奇偶性:函数的奇偶性描述了函数图像关于原点的对称性。
奇函数具有关于原点对称,偶函数具有关于y轴对称。
5. 渐近线:函数图像可能有水平渐近线、垂直渐近线或者斜渐近线。
这些渐近线在分析函数图像的特点时非常有用。
三、函数的图像函数的图像是函数性质与特点的重要体现。
数学中有很多种函数图像,每种函数图像都有其独特的特点。
以下是几种常见的图像:1. 直线的图像:表示成y = kx + b的线性函数具有直线的图像,直线的斜率决定了线的倾斜程度,截距决定了直线与坐标轴的交点位置。
五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。
六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
1(3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,xa y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,x a y =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅(2)nm n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm yxf x xxx g ⎪⎫⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
函数图形基本初等函数幂函数(1)幂函数(2)幂函数(3)指数函数(1)指数函数(2)指数函数(3)对数函数(1)对数函数(2)三角函数(1)三角函数(2)三角函数(3)三角函数(4)三角函数(5)反三角函数(1)反三角函数(2)反三角函数(3)反三角函数(4)反三角函数(5)反三角函数(6)反三角函数(7)反三角函数(8)双曲函数(1)双曲函数(2)双曲函数(3)双曲函数(4)双曲函数(5)双曲函数(6)双曲函数(7)反双曲函数(1)反双曲函数(2)反双曲函数(3)反双曲函数(4)反双曲函数(5)反双曲函数(6)y=sin(1/x) (1)y=sin(1/x) (2)y=sin(1/x) (3)y=sin(1/x) (4)y = [1/x](1)y = [1/x](2)y=21/xy=21/x (2)y=xsin(1/x)y=arctan(1/x)y=e1/xy=sinx (x->∞)绝对值函数y = |x| 符号函数y = sgnx 取整函数y= [x]极限的几何解释(1) 极限的几何解释(2)极限的几何解释(3)极限的性质(1) (局部保号性)极限的性质(2) (局部保号性) 极限的性质(3) (不等式性质) 极限的性质(4) (局部有界性) 极限的性质(5) (局部有界性)两个重要极限y=sinx/x (1)y=sinx/x (2)limsinx/x的一般形式y=(1+1/x)^x (1)y=(1+1/x)^x (2)lim(1+1/x)^x 的一般形式(1)lim(1+1/x)^x 的一般形式(2)lim(1+1/x)^x 的一般形式(3)e的值(1)等价无穷小(x->0)sinx等价于xarcsinx等价于x tanx等价于x arctanx等价于x1-cosx等价于x^2/2sinx等价于x数列的极限的几何解释海涅定理渐近线水平渐近线铅直渐近线y=(x+1)/(x-1)y=sinx/x (x->∞) 夹逼定理(1)夹逼定理(2)数列的夹逼性(1) 数列的夹逼性(2) pi 是派的意思(如果你没有切换到公式版本)^是次方的意思,$是公式的标记符,切换到公式版(安装mathplayer)就看不到$了文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。
函数图像总结函数图像是指函数在直角坐标系中的图形表示。
通过观察函数图像,可以了解函数的基本特征和性质。
下面我将对常见的函数图像进行总结。
一、一次函数图像:一次函数的一般形式为y = kx + b,其中k为斜率,b为截距。
当k>0时,函数图像呈现正斜率,向右上方倾斜;当k<0时,函数图像呈现负斜率,向右下方倾斜;当k=0时,函数图像为水平直线;当b>0时,函数图像在y轴上方截距b的位置;当b<0时,函数图像在y轴下方截距-b的位置。
二、二次函数图像:二次函数的一般形式为y = ax^2 + bx + c,其中a决定了函数的开口方向和开口大小,b决定了函数图像的对称轴位置,c决定了函数图像与y轴的交点。
当a>0时,函数图像向上开口;当a<0时,函数图像向下开口;当b=0时,函数图像的对称轴为y轴;当b>0时,函数图像的对称轴在原点的右侧;当b<0时,函数图像的对称轴在原点的左侧。
三、指数函数图像:指数函数的一般形式为y = a^x,其中a为底数。
当底数a>1时,函数图像呈现增长趋势,向上凸起;当0<a<1时,函数图像呈现递减趋势,向下凹陷;当a=1时,函数图像为水平直线。
四、对数函数图像:对数函数的一般形式为y = loga(x),其中a为底数。
当底数a>1时,函数图像呈现增长趋势,向右上方倾斜;当0<a<1时,函数图像呈现递减趋势,向右下方倾斜;当a=1时,函数图像为y轴。
五、三角函数图像:常见的三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数的图像呈现周期性的波形,振动范围在[-1,1]之间;余弦函数的图像也呈现周期性的波形,振动范围也在[-1,1]之间;正切函数的图像在某些点上发生突变,振动范围在整个坐标轴上。
总结以上几种函数图像,可以根据函数的数学表达式和特点来推测图像的形状和性质,进而帮助解决与函数相关的问题。
五大基本初等函数性质及其图像五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,在其定义域内单调减少的非奇非偶函数。
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:3y2.幂函数的性质;1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数yxx a x f =)(,xa x f ⎪⎭⎫ ⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) nm n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()n n n b a ab =b.根式的性质;f xxxx g ⎪⎫ ⎛=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。
经典数学函数图像(大全)1. 一次函数图像一次函数图像是一条直线,其一般形式为 y = mx + b,其中 m是斜率,b 是 y 轴截距。
当 m > 0 时,直线向上倾斜;当 m < 0 时,直线向下倾斜。
2. 二次函数图像二次函数图像是一个抛物线,其一般形式为 y = ax^2 + bx + c,其中 a、b、c 是常数。
当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。
3. 三角函数图像三角函数图像包括正弦函数、余弦函数和正切函数。
正弦函数图像是一条波动曲线,余弦函数图像与正弦函数图像相似,但相位差为π/2。
正切函数图像是一条周期性振荡的曲线。
4. 指数函数图像指数函数图像是一条上升或下降的曲线,其一般形式为 y = a^x,其中 a 是底数,x 是指数。
当 a > 1 时,曲线上升;当 0 < a < 1 时,曲线下降。
5. 对数函数图像对数函数图像是一条上升或下降的曲线,其一般形式为 y =log_a(x),其中 a 是底数,x 是真数。
当 a > 1 时,曲线上升;当0 < a < 1 时,曲线下降。
6. 双曲函数图像双曲函数图像包括双曲正弦函数、双曲余弦函数和双曲正切函数。
双曲正弦函数和双曲余弦函数图像都是上升或下降的曲线,而双曲正切函数图像是一条周期性振荡的曲线。
7. 幂函数图像幂函数图像是一条上升或下降的曲线,其一般形式为 y = x^n,其中 n 是指数。
当 n > 0 时,曲线上升;当 n < 0 时,曲线下降。
8. 反比例函数图像反比例函数图像是一条双曲线,其一般形式为 y = k/x,其中 k是常数。
当 k > 0 时,曲线位于第一和第三象限;当 k < 0 时,曲线位于第二和第四象限。
经典数学函数图像(大全)3. 反三角函数图像反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数。
高中数学-函数图像详解基本初等函数的图像1. 一次函数性质:一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减2. 二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac 决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3. 反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图< span>不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的6. 幂函数y=x^a性质:先看第一象限,即x>0时,当a>1时,函数越增越快;当0<a<1时,函数越增越慢;当a<0时,函数单调递减;然后当x<0时,根据函数的定义域与奇偶性判断函数图像即可。
< span>7. 对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
函数图形的变换注意:对于函数图像的变换,有的时候,看到解析式,可能会有两种以上的变换,尤其是针对x轴上的,那么此时,一定要根据上面的规则,判断好顺序,否则顺序错了,可能就没办法经过变换得到了!例如:画出函数y=ln|2-x|的图像通过研究这个函数解析式,我们知道此函数是由基本初等函数y=lnx通过变换而来,那么这个函数经过了几步变换呢?变换的顺序又是如何?下面我们一起来看一看。
通过解析式x上附加的东西,我们会发现,会有对称变换,x前面加了负号,还有翻折变换,x上面还有绝对值,还有平移变换,前面加了一个2,既然有3种变换,那么顺序如何呢?牢记住一点:针对x轴上的变换,那就一定要看x这个符号有啥变化。
函数及其图像分析详解函数是高中数学中非常重要的一个概念,它可以描述两个变量之间的关系,或者将一个自变量的值映射到一个因变量的值上。
在实际应用中,各种函数及其图像都有着非常重要的作用,本文将对常见的函数及其图像进行详细的分析。
一、常见的函数类型1.线性函数线性函数是最简单的一类函数,它的定义域为全体实数集合R,表达式为:y=kx+b(其中k和b为常数)。
直线y=kx+b就是它的图像,这条直线在坐标系中的位置由直线的斜率和截距决定。
斜率表示函数在一定区间内自变量变化时因变量的变化幅度,截距表示函数与y轴的交点。
2.二次函数二次函数是一类带有平方项的函数,也是非常常见的函数类型。
它的定义域为全体实数集合R,表达式为:y=ax^2+bx+c(其中a,b,c为常数)。
二次函数的图像是一个抛物线,抛物线开口的方向由a的正负号决定。
当a>0时,抛物线开口朝上,当a<0时,抛物线开口朝下。
3.指数函数指数函数是一类用x的幂作为自变量的函数,自变量为x,因变量为y,通式为y=a^x,其中a为大于0且不等于1的常数。
指数函数的图像是一条右侧开口的曲线,曲线在x轴上向右无限延伸,当x趋近于负无穷大时,曲线趋近于y轴。
4.对数函数对数函数是指数函数的反函数,它的定义域为(0,+∞),值域为全体实数集合R,通式为y=loga x,其中a为大于0且不等于1的常数。
对数函数的图像是一条带左侧开口的曲线,曲线在y轴上向上无限延伸,当x趋近于正无穷大时,曲线趋近于x轴。
5.三角函数三角函数是用角度作为自变量的函数,它是解决几何问题中经常使用的函数。
常见的三角函数包括正弦函数、余弦函数、正切函数等,它们的定义域为全体实数集合R,值域为[-1,1]。
三角函数的图像是一条在[-1,1]区间内振荡的波形,波形周期的长度由函数的周期决定。
二、函数图像分析的相关概念1.函数的极值函数的极值是函数在定义域内的最大值和最小值。
在一段区间内,如果函数的导数在该区间内始终大于0,则该函数在这段区间内单调递增,在这段区间内的最大值即为函数的极大值。
函数及其图像总结知识点函数的图像是函数表示的一种形式,它是函数在坐标系中的图形表示。
函数的图像可以帮助我们更直观地理解函数的特点和性质。
在学习函数的过程中,函数的图像是一个非常重要的知识点。
本文将总结函数的相关知识点,以帮助读者更好地掌握这一重要的数学概念。
一、函数的定义在数学中,函数是一种特殊的关系。
如果存在一种依赖关系,使得除了x以外,对每个x都只有唯一的y和y唯一对应某个x,那么就称这种依赖关系为函数。
函数的符号表示通常是f(x)或者y=f(x),其中x为自变量,y为因变量。
函数的定义域是自变量的取值范围,值域是函数的输出范围。
二、常见函数1. 线性函数:y=ax+b,其中a和b为常数。
线性函数的图像是一条直线,斜率a决定了直线的斜率,常数b决定了直线的截距。
线性函数是最简单的函数之一,它们在数学建模中有着广泛的应用。
2. 二次函数:y=ax^2+bx+c,其中a、b和c为常数且a不等于0。
二次函数的图像是一条抛物线,开口向上或向下取决于a的正负。
二次函数在物理学、工程学等领域有着重要的应用。
3. 指数函数:y=a^x,其中a为正实数且不等于1。
指数函数的图像是一条逐渐增长或逐渐减小的曲线。
指数函数在自然科学和经济学中有着广泛的应用。
4. 对数函数:y=loga(x),其中a为正实数且不等于1。
对数函数的图像是一条渐进线,对数函数能够将指数函数的性质转化为更容易理解的形式。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三角函数在物理学、工程学和天文学中有着重要应用。
以上函数是常见的、在数学教育中重点研究的函数。
这些函数具有各自的特点和性质,通过学习这些函数,我们可以更好地理解数学中的各种问题,并且为进一步学习高等数学课程打下扎实的基础。
三、函数的性质1. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
通过奇偶函数的性质,我们可以推导出一系列关于函数图像的对称性质,以及某些函数值的简化表示。
函数及图像的知识点总结函数是数学中的一个重要概念,也是数学分析和高等代数的基础内容。
在数学中,函数是一种对应关系,可以简单的理解为一种特殊的映射关系,将一个变量的取值映射到另一个变量的取值。
在数学中,通常用f(x)来表示一个函数,其中x是自变量,f(x)是函数的因变量。
函数的定义:在数学中,函数是一个对应关系,它将一个或多个输入值映射到一个输出值。
函数通常用一个算式或图形来表示。
函数可以用以下的方式表示:f:A→B其中,A是函数的定义域,B是函数的值域。
定义域表示函数的输入值的集合,值域表示函数的输出值的集合。
函数的定义域和值域决定了函数的有效输入和输出的范围。
函数的图像:函数的图像是函数在平面直角坐标系中的图形,通常用函数的定义域和值域的点来表示。
函数的图像可以用直线、曲线或点来表示。
通过函数的图像可以直观地看出函数的性质和特点。
常见的函数类型:1. 线性函数:线性函数是指函数的图像是一条直线。
线性函数的一般形式为f(x) = ax + b,其中a和b为常数,a称为斜率,b称为截距。
线性函数的图像是一条斜率为a,截距为b的直线。
2. 二次函数:二次函数是指函数的图像是一条抛物线。
二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c为常数。
二次函数的图像是一条开口的抛物线,开口的方向由二次项的系数a的正负决定。
3. 指数函数:指数函数是指函数的自变量为指数的函数。
指数函数的一般形式为f(x) =a^x,其中a为常数且a>0,a不等于1。
指数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。
4. 对数函数:对数函数是指函数的自变量为对数的函数。
对数函数的一般形式为f(x) =log_a(x),其中a为常数且a>0,a不等于1。
对数函数的图像是一条递增或递减的曲线,曲线的斜率由底数a的大小和正负决定。
函数的性质:1. 定义域和值域:函数的定义域和值域决定了函数的有效输入和输出的范围。
函数与其图像知识点总结函数与其图像是数学中常见的概念,对于理解数学问题和解决实际问题具有重要意义。
在高中阶段,学生已经接触到了函数与其图像的相关知识,下面将从函数的定义、性质、图像绘制及应用等方面进行总结。
一、函数的定义1. 自变量和因变量函数是一个映射关系,它描述了自变量和因变量之间的对应关系。
通常情况下,自变量用x表示,因变量用y表示。
在函数中,自变量的取值范围我们称之为定义域,因变量的取值范围称之为值域。
2. 函数的定义函数的定义包括了自变量的定义域和因变量的值域,以及自变量和因变量之间的对应关系。
一般情况下,我们用符号y=f(x)表示函数的定义,其中f表示函数名称,x表示自变量,y表示因变量。
3. 函数的表示函数可以用表达式、图像、数据表等形式进行表示。
常见的函数表示形式包括解析式表示、图像表示、数据表示等。
二、函数的性质1. 奇偶性函数的奇偶性是指当自变量x的取值变化时,因变量y的取值是否满足某种对称性。
若对于任意x∈D,都有f(-x) = f(x),则函数f(x)是偶函数;若对于任意x∈D,都有f(-x) = -f(x),则函数f(x)是奇函数。
2. 单调性函数的单调性是指当自变量x的取值增大时,因变量y的取值是单调递增还是单调递减。
若对于任意x1 > x2,有f(x1) > f(x2),则函数f(x)是递增函数;若对于任意x1 > x2,有f(x1) < f(x2),则函数f(x)是递减函数。
3. 周期性函数的周期性是指函数在一定范围内具有重复性。
若存在正数T,使得对于任意x∈D,有f(x+T) = f(x),则函数f(x)是周期函数,其中T称为函数的周期。
4. 上下界函数的上下界是指函数在定义域内取值的最大值和最小值。
若存在常数M,使得对于任意x∈D,都有f(x) ≤ M,则M称为函数f(x)的上界;若存在常数m,使得对于任意x∈D,都有f(x) ≥ m,则m称为函数f(x)的下界。
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);二、幂函数 αy =1.幂函数的图像:2.幂函数的性质;3y1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.1(1)当1>a 时函数为单调增,当10<<a 时函数为单调减;2)不论x 为何值,y总是正的,图形在x 轴上方;3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
3.(选,补充)指数函数值的大小比较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ⎪⎭⎫⎝⎛=1)(的函数图像关于y 轴对称。
b.1.当1>a 时,a 值越大,x a y =的图像越靠近y 轴;b.2.当10<<a 时,a 值越大,xay =的图像越远离y 轴。
4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=⋅ (2) n m n m a a a -=÷(3)()()mn nmnm aaa ==(4)()nn n b a ab =yxf x xxx g ⎪⎫ ⎛=1)(b.根式的性质;(1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,⎩⎨⎧<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a an m nm(2))1,,,0(11*>∈>==-n Z n m a a aanmnm nm 四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [无界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式。