函数连续性和间断点汇总
- 格式:ppt
- 大小:11.41 MB
- 文档页数:28
1.8函数的连续性与间断点一、函数的连续性变量的增量:设变量u 从它的一个初值u 1变到终值u 2, 终值与初值的差u 2-u 1就叫做变量u 的增量, 记作∆u , 即∆u =u 2-u 1.设函数y =f (x )在点x 0的某一个邻域内是有定义的. 当自变量x 在这邻域内从x 0变到x 0+∆x 时, 函数y 相应地从f (x 0)变到f (x 0+∆x ), 因此函数y 的对应增量为∆y = f (x 0+∆x )- f (x 0).函数连续的定义设函数y =f (x )在点x 0 的某一个邻域内有定义, 如果当自变量的增量∆x =x -x 0 趋于零时, 对应的函数的增量∆y = f (x 0+∆x )- f (x 0 )也趋于零, 即0lim 0=∆→∆y x , 或)()(lim 00x f x f x x =→, 那么就称函数y =f (x )在点x 0 处连续.注: ①0)]()([lim lim 0000=-∆+=∆→∆→∆x f x x f y x x ②设x =x 0+∆x , 则当∆x →0时, x →x 0, 因此0lim 0=∆→∆y x ⇔0)]()([lim 00=-→x f x f x x ⇔)()(lim 00x f x f x x =→. 函数连续的等价定义2:设函数y =f (x )在点x 0的某一个邻域内有定义, 如果对于任意给定义的正数ε , 总存在着正数δ , 使得对于适合不等式|x -x 0|<δ 的一切x , 对应的函数值f (x )都满足不等式|f (x )-f (x 0)|<ε ,那么就称函数y =f (x )在点x 0处连续.左右连续性:如果)()(lim 00x f x f x x =-→, 则称y =f (x )在点0x 处左连续. 如果)()(lim 00x f x f x x =+→, 则称y =f (x )在点0x 处右连续. 左右连续与连续的关系:函数在区间上的连续性:在区间上每一点都连续的函数, 叫做在该区间上的连续函数, 或者说函数在该区间上连续. 如果区间包括端点, 那么函数在右端点连续是指左连续, 在左端点连续是指右连续.连续函数举例:1. 如果f (x )是多项式函数, 则函数f (x )在区间(-∞, +∞)内是连续的. 这是因为, f (x )在(-∞, +∞)内任意一点x 0处有定义, 且)()(lim 00x P x P x x =→.2. 函数x x f =)(在区间[0, +∞)内是连续的.3. 函数y =sin x 在区间(-∞, +∞)内是连续的.证明: 设x 为区间(-∞, +∞)内任意一点. 则有∆y =sin(x +∆x )-sin x )2cos(2sin2x x x ∆+∆=,因为当x →0时,y 是无穷小与有界函数的乘积,所以0lim 0=∆→∆y x .这就证明了函数y x 在区间∞, ∞)内任意一点x 都是连续的.4. 函数y =cos x 在区间(-∞, +∞)内是连续的.二、函数的间断点间断定义:设函数f (x )在点x 0的某去心邻域内有定义. 在此前提下, 如果函数f (x )有下列三种情形之一:(1)在x 0没有定义;(2)虽然在x 0有定义, 但0lim x x →f (x )不存在;(3)虽然在x 0有定义且0lim x x →f (x )存在, 但0lim x x →f (x )≠f (x 0); 则函数f (x )在点x 0为不连续, 而点x 0称为函数f (x )的不连续点或间断点.例1. 正切函数y =tan x 在2 π=x 处没有定义, 所以点2π=x 是函数tan x 的间断点.因为∞=→x x tan lim 2π, 故称2π=x 为函数tan x 的无穷间断点.例2. 函数x y 1sin =在点x =0没有定义, 所以点x =0是函数x 1sin 的间断点.当x →0时, 函数值在-1与+1之间变动无限多次, 所以点x =0称为函数x1sin 的振荡间断点.例3. 函数112--=x x y 在x =1没有定义, 所以点x =1是函数的间断点. 因为11lim 21--→x x x 2)1(lim 1=+=→x x , 如果补充定义: 令x =1时y =2, 则所给函数在x =1成为连续. 所以x =1称为该函数的可去间断点.例4. 设函数⎪⎩⎪⎨⎧=≠==1 211 )(x x x x f y . 因为1lim )(lim 11==→→x x f x x ,21)1(=f , )1()(lim 1f x f x ≠→, 所以x =1是函数f (x )的间断点.如果改变函数f (x )在x =1处的定义:令f (1)=1, 则函数f (x )在x =1 成为连续, 所以x =1也称为该函数的可去间断点.例5. 设函数⎪⎩⎪⎨⎧>+=<-=010 00 1)(x x x x x x f . 因为1)1(lim )(lim 00-=-=--→→x x f x x , 1)1(lim )(lim 00=+=++→→x x f x x ,)(lim )(lim 00x f x f x x ++→→≠,所以极限)(lim 0x f x →不存在, x =0是函数f (x )的间断点. 因函数f (x )的图形在x =0处产生跳跃现象, 我们称x =0为函数f (x )的跳跃间断点.间断点的分类:通常把间断点分成两类:如果x 0是函数f (x )的间断点, 但左极限f (x 0-0)及右极限f (x 0+0)都存在, 那么x 0称为函数f (x )的第一类间断点. 不是第一类间断点的任何间断点, 称为第二类间断点. 在第一类间断点中, 左、右极限相等者称为可去间断点, 不相等者称为跳跃间断点. 无穷间断点和振荡间断点显然是第二间断点.。
函数连续性与间断点例题和知识点总结在高等数学中,函数的连续性与间断点是一个非常重要的概念。
理解这部分知识对于后续学习微积分等内容有着至关重要的作用。
接下来,我们将通过一些例题来深入探讨函数的连续性与间断点,并对相关知识点进行总结。
一、函数连续性的定义如果函数$f(x)$在点$x_0$ 的某个邻域内有定义,并且当$x$ 趋近于$x_0$ 时,函数值$f(x)$趋近于$f(x_0)$,则称函数$f(x)$在点$x_0$ 处连续。
用数学语言可以表示为:$\lim_{x \to x_0} f(x) = f(x_0)$二、函数连续性的条件函数在某点连续必须满足以下三个条件:1、函数在该点有定义;2、函数在该点的极限存在;3、函数在该点的极限值等于函数值。
三、函数间断点的定义如果函数$f(x)$在点$x_0$ 处不满足连续的条件,则称点$x_0$ 为函数$f(x)$的间断点。
四、间断点的类型间断点主要分为以下三类:1、第一类间断点:左右极限都存在的间断点。
可去间断点:左右极限相等,但不等于函数在该点的函数值,或者函数在该点无定义。
跳跃间断点:左右极限存在但不相等。
2、第二类间断点:左右极限至少有一个不存在的间断点。
无穷间断点:函数在该点的极限为无穷大。
振荡间断点:函数在该点的极限不存在且函数值在某两个值之间来回振荡。
五、例题解析例 1:讨论函数$f(x) =\frac{x^2 1}{x 1}$在$x = 1$ 处的连续性。
首先,当$x \neq 1$ 时,$f(x) =\frac{x^2 1}{x 1} =\frac{(x + 1)(x 1)}{x 1} = x + 1$而当$x = 1$ 时,函数在该点无定义。
$\lim_{x \to 1} f(x) =\lim_{x \to 1} (x + 1) = 2$由于函数在$x = 1$ 处无定义,且极限存在为 2,所以$x =1$ 为可去间断点。
例 2:判断函数$f(x) =\begin{cases} x + 1, & x < 1 \\ 2, &x = 1 \\ x 1, & x > 1 \end{cases}$在$x = 1$ 处的连续性。
函数的连续性与间断点一、函数的连续性1. 增量:变量x 从初值1x 变到终值2x ,终值与初值的差叫变量x 的增量,记作x ∆,即x ∆=1x -2x 。
(增量可正可负)。
例1 分析函数2x y =当x 由20=x 变到05.20=∆+x x 时,函数值的改变量。
2.函数在点连续的定义定义1:设函数y =)(x f 在点0x 的某个邻域内有定义,如果自变量x 的增量x ∆=0x x -趋向于零时,对应的函数增y ∆=)()(0x f x f -也趋向于零,则称函数y =)(x f 在点0x 处连续。
定义2:设函数y =)(x f 在点0x 的某个邻域内有定义,如果函数)(x f 当0x x →时的极限存在,即)()(lim 00x f x f x x =→,则称函数y =)(x f 在点0x 处连续。
定义3:设函数y =)(x f 在点0x 的某个邻域内有定义,如果对任意给定的正数ε,总存在正数δ,使得对于适合不等式δ<-0x x 的一切x ,所对应的函数值)(x f 都满足不等式:ε<-)()(0x f x f ,则称函数y =)(x f 在点0x 连续。
注:1、上述的三个定义在本质上是一致的,即函数)(x f 在点0x 连续,必须同时满足下列三个条件:(1) 函数y =)(x f 在点0x 的某个邻域内有定义(函数y =)(x f 在点0x 有定义),(2) )(lim 0x f x x →存在;(3))()(lim 00x f x f x x =→。
3.函数y =)(x f 在点0x 处左连续、右连续的定义:(1)函数y =)(x f 在点0x 处左连续⇔)(x f 在(]00,x x δ-内有定义,且)()(lim 000x f x f x x =-→(即)()0(00x f x f =-)。
(2)函数y =)(x f 在点0x 处右连续⇔)(x f 在[)δ+00,x x 内有定义,且)()(lim 000x f x f x x =+→(即)()0(00x f x f =+)。
函数连续性与间断点例题和知识点总结在数学分析中,函数的连续性与间断点是一个非常重要的概念。
理解函数的连续性和间断点对于解决许多数学问题都有着至关重要的作用。
下面我们将通过一些例题来深入探讨这一概念,并对相关知识点进行总结。
一、函数连续性的定义如果函数$f(x)$在点$x_0$的某个邻域内有定义,并且当$x$趋近于$x_0$时,函数$f(x)$的极限等于函数在$x_0$处的函数值,即$\lim_{x \to x_0} f(x) = f(x_0)$,那么我们就说函数$f(x)$在点$x_0$处连续。
通俗地说,函数在某一点连续,意味着在这一点附近,函数的图像没有“断裂”。
二、函数间断点的定义如果函数$f(x)$在点$x_0$处不满足连续的条件,那么我们就称点$x_0$为函数$f(x)$的间断点。
间断点可以分为以下几种类型:1、可去间断点:函数在该点的极限存在,但函数在该点无定义,或者函数在该点的函数值与极限值不相等。
例如,函数$f(x) =\frac{x^2 1}{x 1}$,在$x = 1$处无定义,但$\lim_{x \to 1} \frac{x^2 1}{x 1} =\lim_{x \to 1} (x + 1)= 2$,所以$x = 1$是可去间断点。
2、跳跃间断点:函数在该点的左极限和右极限都存在,但不相等。
比如,函数$f(x) =\begin{cases} 1, & x < 0 \\ 2, & x \geq 0\end{cases}$,在$x = 0$处,左极限为$1$,右极限为$2$,左右极限不相等,所以$x = 0$是跳跃间断点。
3、无穷间断点:函数在该点的极限为无穷大。
例如,函数$f(x) =\frac{1}{x}$,在$x = 0$处的极限为无穷大,所以$x = 0$是无穷间断点。
4、振荡间断点:函数在该点的极限不存在,且函数值在某个区间内来回振荡。
比如,函数$f(x) =\sin \frac{1}{x}$,在$x = 0$处,极限不存在,函数值在$-1$和$1$之间来回振荡,所以$x =0$是振荡间断点。
函数连续性与间断点例题和知识点总结在数学分析中,函数的连续性与间断点是一个非常重要的概念。
理解它们对于解决各种数学问题,特别是涉及到函数的性质和极限的问题,具有关键作用。
下面我们将通过一些例题来深入探讨函数的连续性与间断点,并对相关知识点进行总结。
一、函数连续性的定义设函数$f(x)$在点$x_0$ 的某一邻域内有定义,如果当自变量的增量$\Delta x$ 趋近于零时,函数对应的增量$\Delta y = f(x_0 +\Delta x) f(x_0)$也趋近于零,那么就称函数$f(x)$在点$x_0$ 处连续。
用数学语言表示为:$\lim_{\Delta x \to 0} \Delta y =\lim_{\Delta x \to 0}f(x_0 +\Delta x) f(x_0) = 0$或者$\lim_{x \to x_0} f(x) = f(x_0)$二、函数连续性的条件1、函数$f(x)$在点$x_0$ 处有定义。
2、$\lim_{x \to x_0} f(x)$存在。
3、$\lim_{x \to x_0} f(x) = f(x_0)$三、间断点的定义如果函数$f(x)$在点$x_0$ 处不满足上述连续性的条件,那么就称点$x_0$ 为函数$f(x)$的间断点。
四、间断点的类型1、可去间断点函数在该点处的左极限、右极限都存在且相等,但不等于该点的函数值,或者函数在该点无定义。
例如,函数$f(x) =\frac{x^2 1}{x 1}$在$x = 1$ 处无定义,但$\lim_{x \to 1} \frac{x^2 1}{x 1} = 2$ ,所以$x = 1$ 是可去间断点。
2、跳跃间断点函数在该点处的左极限、右极限都存在,但不相等。
比如,函数$f(x) =\begin{cases} x + 1, & x < 0 \\ x 1, & x\geq 0 \end{cases}$在$x = 0$ 处,左极限为$1$ ,右极限为$-1$ ,所以$x = 0$ 是跳跃间断点。
数学知识点:函数的连续性_知识点总结
(1)如果函数y=f(x)在点x=x0处及其附近有定义,并且满足,则称函数y=f(x)在点x=x0处连续;否则称y=f(x)在点x=x0处不连续,或间断点。
(2)如果函数f(x)在某一开区间(a,b)内每一点处都连续,就说函数f(x)在开区间(a,b)内连续,对于闭区间[a,b]上的函数f(x),高考语文,如果在开区间(a,b)内连续,在左端点x=a处有,在右端点x=b处有,就说函数f(x)在闭区间[a,b]上连续。
3、如果f(x)是闭区间[a,b]上的连续函数,那么在闭区间[a,b]上f(x)一定有最大值和最小值。
函数的连续性的特点:
(1)f(x)在x0处有定义;
(2)f(x)在x0处的极限存在;
(3)f(x)在点x0处的极限等于函数值。
三大特点,缺一不可。
常用结论:
如果f(x)是闭区间[a,b]上的连续函数,那么在闭区间[a,b]上f(x)一定有最大值和最小值。
第一章 函数与极限第八节 函数连续性与间断点主讲 武xx 教授一、函数的连续性定义(连续) ,0lim 0=∆→∆y x 或),()(lim 00x f x f x x =→)(x f 0x 则称在处连续.左连续:)()(lim 00x f x f x x =-→右连续:)()(lim 00x f x f x x =+→ 连续⇔左连续且右连续)(x f 在区间上连续 ;若【例1】试证:x sin ),(+∞-∞在区间上连续.二、函数的间断点)(x f 0x 在处连续)(x f 0x 1)在有定义2))(lim 0x f x x →存在3))()(lim 00x f x f x x =→间断点)(x f 0x 在某去心邻域有定义间断点分类:第一类间断点:1)可去间断点:)0()0(00+=-x f x f 2)跳跃间断点:)0()0(00+≠-x f x f (左、右极限都存在)第二类间断点(左、右极限至少有一个不存在)【例2】判断下列函数的间断点0=x 的类型xx x f sin )()1=(可去)x x f sgn )()2= (跳跃)xx f 1sin )()3=(振荡)21)()4x x f = (无穷)内容小结)()(lim 00x f x f x x =→0)]()([lim 000=-∆+→∆x f x x f x )()()(000+-==x f x f x f 左连续右连续)(.2x f 0x 第一类间断点可去间断点跳跃间断点左右极限都存在 第二类间断点无穷间断点振荡间断点左右极限至少有一个不存在在点间断的类型)(.1x f 0x 在点连续的等价形式作业P61:3; 4; 5;6..。