大学物理知识总结习题答案(第四章)静电场
- 格式:doc
- 大小:625.50 KB
- 文档页数:15
大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。
曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。
静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。
⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。
Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。
Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。
3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。
作业4 静电场四导线穿过外球壳上的绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
.A 不带电荷.B 带正电 .C 带负电荷.D 外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内的静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外的线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为q (这也就是内球壳带电量),外球壳带电为Q ,则由高斯定理可知,外球壳内表面带电为q -,外球壳外表面带电为Q q +。
这样,空间电场强度分布r r qr E ˆ4)(201πε=ρρ,(两球壳之间:32R r R <<)r r Qq r E ˆ4)(202πε+=ρρ,(外球壳外:r R <4)其他区域(20R r <<,43R r R <<),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Q q R R q r d r rQq r d r r q r d r E r d r E l d E U R R R R R R R πεπεπεπερρρρρρρρρρ则04432=++-R QR q R q R q ,4324111R R R R Q q +--=由于432R R R <<,0>Q ,所以0<q即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为σ,该处表面附近的场强大小为E ,则0E σ=。
那么,E 是[ ]。
.A 该处无穷小面元上电荷产生的场 .B 导体上全部电荷在该处产生的场 .C 所有的导体表面的电荷在该处产生的场 .D 以上说法都不对答案:【C 】解:处于静电平衡的导体,导体表面附近的电场强度为0E σ=,指的是:空间全部电荷分布,在该处产生的电场,而且垂直于该处导体表面。
4.4解:如图所示建立坐标系,在半圆 环上取一小段圆弧,其长度为θRd则其带电量为θλ=Rd q d此段圆弧在环心O 点产生的电场强度为R4d R 4dq dE 020πεθλ=πε=由半圆环的对称性可知0点的场强E沿y 轴负向,所以有R4d sin sin dE dE 0y πεθθλ=θ=故环心处的电场强度大小R2R 4d sin dE E E 000y y πελ=πεθθλ===⎰⎰π所以 j R2E 0πελ-=4.5解:(1)两电荷同号时,在其连线外侧电场强度方向相同,内侧电场强度方向相反,故电场强度为零的点在两电荷连线内侧,设该点与q 1距离为r 1 ,(r 1>0),由场强叠加原理有0)(4421022101=--r d q rq πεπε 可得2111q q d q r +=(2)两电荷异号时,在其连线内侧电场强度方向相同,外侧电场强度方向相反。
故电场强度为零的点在两电荷连线外侧,又由于q 2>q 1 ,所以电场强度为零的点在q 1的外侧,设该点与q 1的距离为2r ,由场强叠加原理得0)r d (4q r 4q 22022201=+πε-πε可得 1212q q d q r -=4.7 解:建立如图所示的坐标系。
将带电 线分成两部分半圆环和两条半无 限长直线进行考虑。
设带电线线电荷密度为λ,分析半圆环部分:在半圆环上取一小段圆弧,其长度为dl ,则其带电量为 θλ=λ=d R dl dq 此段圆弧在环心0点产生的电场强度为: 20Rd R 41E d θλπε=电场分布关于x 轴对称:0=y E ,θθλπε=θ=sin R d R 41sin dE dE 20x所以R2d sin R 4sin R rd 41sin E E 000020πελ=θθπελ=θθλπε=θ=⎰⎰⎰ππ 方向沿x 轴正方向 分析两个半无限长直线:建立如图所示的坐标系,在带电直线上取电荷元dx dq λ=,它在O 点产生的电场强度大小为O ′)(4422020R x dxr dq dE +==πελπε 由带电线的对称性可知O 点的电场强度E沿x 轴负方向,所以有2/322022220)(4)(4cos R x xdxRx x R x dxdE dE x +=++==πελπελθ所以剩下部分在O 点产生的场强大小RR x xdxdE E E x x 002/32202)(4πελπελ=+===⎰⎰∞方向水平向左。
练习一 静电场(一)1.如图1-1所示,细绳悬挂一质量为m 的点电荷-q ,无外电场时,-q 静止于A 点,加一水平外电场时,-q 静止于B 点,则外电场的方向为水平向左,外电场在B 点的场强大小为qmg tan2.如图1-2所示,在相距为a 的两点电荷-q 和+4q产生的电场中,场强大小为零的坐标x= 2a 。
3.如图1-3所示,A 、B 为真空中两块平行无限大带电平面,已知两平面间的电场强度大小为0E ,两平面外侧电场强度大小都是0E /3,则A 、B 两平面上的电荷面密度分别为 和 。
4.(3)一点电荷q 在电场中某点受到的电场力,f很大,则该点场强E 的大小:(1)一定很大; (2)一定很小;(3)其大小决定于比值q f /。
5.(2)有一带正电金属球。
在附近某点的场强为E ,若在该点处放一带正电的点电荷q 测得所受电场力为f ,则:(1)E=f/q (2)E>f/q (3)E<f/q6.两个电量都是+q 的点电荷,相距2a 连线中点为o ,求连线中垂线上和。
相距为r 的P 点的场强为E ,r 为多少时P 点的场强最大?解:经过分析,E x =0a r dr E d drdE r a qr a q E r r y 220|,0|)(21sin 412222/3220220±=<=+=+=得:由πεθπε7.长L =15cm 直线AB 上,均匀分布电荷线密度λ=5.0⨯10-9c/m 的正电荷,求导线的延长线上与导线B 端相距d=5.0cm 的P 点的场强。
)/(67544120.005.02020C N x dx E x dxdE ===⎰πελλπε 练习二 静电场(二)1.场强为E 的均匀电场与半径为R 的半球面的轴线平行,则通过半球面的电通量Φe=E R 02επ2.边长为L 的正方形盒的表面分别平行于坐标面XY 、YZ 、ZX ,设均匀电场j i E ρρρ65+=,则通过各面电场强度通量的绝对值 ,6,5,022L L X Z Z Y Y X =Φ=Φ=Φ3.如用高斯定理计算:(1)无限长均匀带电直线外一点P的场强(图2-3(a));(2)两均匀带电同心球面之间任一点P的场强(图2-3(b)),就必须选择高斯面。
第四章 静电场本章提要1.电荷的基本性质两种电荷,量子性,电荷首恒,相对论不变性。
2.库仑定律两个静止的点电荷之间的作用力12122204kq q q q r r==F r r πε 其中922910(N m /C )k =⨯⋅122-1-2018.8510(C N m )4k -==⨯⋅επ3.电场强度q =F E 0q 为静止电荷。
由10102204kq q q q r r==F r r πε 得112204kq q r r ==E r r πε4.场强的计算(1)场强叠加原理电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。
i =∑E E(2)高斯定理电通量:在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电场强度通量定义为e cos E S ∆ψ=∆=⋅∆v S θ取积分可得电场中有限大的曲面的电通量ψd e sS =⋅⎰⎰E Ò高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。
即i 01d sq=∑⎰⎰E S g Ò内ε5.典型静电场(1)均匀带电球面0=E (球面)204q r πε=E r (球面外)(2)均匀带电球体304q R πε=E r (球体) 204q r πε=E r (球体外)(3)均匀带电无限长直线场强方向垂直于带电直线,大小为02E r λπε=(4)均匀带电无限大平面场强方向垂直于带电平面,大小为2E σε=6.电偶极矩电偶极子在电场中受到的力矩=⨯M P E思考题4-1 020 4qq r ==πεr 与FE E 两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
而公式0204q rπε=E r是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。
4-2一均匀带电球形橡皮气球,在气球被吹大的过程中,下列各场点的场强将如何变化?(1) 气球部 (2) 气球外部 (3) 气球表面答:取球面高斯面,由00d ni i q ε=⋅=∑⎰⎰ÒE S 可知(1)部无电荷,而面积不为零,所以E = 0。
作业4 静电场四它们离地球很远,内球壳用细导线穿过外球壳上得绝缘小孔与地连接,外球壳上带有正电荷,则内球壳上[ ]。
不带电荷 带正电 带负电荷外表面带负电荷,内表面带等量正电荷答案:【C 】解:如图,由高斯定理可知,内球壳内表面不带电。
否则内球壳内得静电场不为零。
如果内球壳外表面不带电(已经知道内球壳内表面不带电),则两壳之间没有电场,外球壳内表面也不带电;由于外球壳带正电,外球壳外表面带正电;外球壳外存在静电场。
电场强度由内球壳向外得线积分到无限远,不会为零。
即内球壳电势不为零。
这与内球壳接地(电势为零)矛盾。
因此,内球壳外表面一定带电。
设内球壳外表面带电量为(这也就就是内球壳带电量),外球壳带电为,则由高斯定理可知,外球壳内表面带电为,外球壳外表面带电为。
这样,空间电场强度分布,(两球壳之间:) ,(外球壳外:)其她区域(,),电场强度为零。
内球壳电势为041)11(4ˆ4ˆ4)()(403202020214324322=++-=⋅++⋅=⋅+⋅=⋅=⎰⎰⎰⎰⎰∞∞∞R Qq R R q r d r rQq r d rr q r d r E r d r E l d E U R R R R R R R πεπεπεπε则,由于,,所以即内球壳外表面带负电,因此内球壳负电。
2.真空中有一组带电导体,其中某一导体表面某处电荷面密度为,该处表面附近得场强大小为,则。
那么,就是[ ]。
该处无穷小面元上电荷产生得场 导体上全部电荷在该处产生得场 所有得导体表面得电荷在该处产生得场 以上说法都不对 答案:【C 】解:处于静电平衡得导体,导体表面附近得电场强度为,指得就是:空间全部电荷分布,在该处产生得电场,而且垂直于该处导体表面。
注意:由高斯定理可以算得,无穷小面元上电荷在表面附近产生得电场为;无限大带电平面产生得电场强度也为,但不就是空间全部电荷分布在该处产生得电场。
3.一不带电得导体球壳半径为,在球心处放一点电荷。
《大学物理》练习题及详细解答-—真空中的静电场 1. 1. 电荷为电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。
一试验电荷置于x 轴上何处,它受到的合力等于零?处,它受到的合力等于零?解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以,所以200200)1(π4)1(π42-=+x qq x qq e e 故 223+=x2. 2. 电量都是电量都是q 的三个点电荷,分别放在正三角形的三个顶点。
试问:的三个点电荷,分别放在正三角形的三个顶点。
试问:(1)(1)(1)在这三角形的中心放在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡一个什么样的电荷,就可以使这四个电荷都达到平衡((即每个电荷受其他三个电荷的库仑力之和都为零为零)?(2))?(2))?(2)这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系这种平衡与三角形的边长有无关系? ?解:解:(1) (1) (1) 以以A 处点电荷为研究对象,由力平衡知,q ¢为负电荷,所以为负电荷,所以2220)33(π4130cos π412a q q a q ¢=°e e故 qq33-=¢ (2)(2)与三角形边长无关。
与三角形边长无关。
与三角形边长无关。
3. 3. 如图所示,半径为如图所示,半径为R 、电荷线密度为1l 的一个均匀带电圆环,在其轴线上放一长为l 、电荷线密度为2l 的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
的均匀带电直线段,该线段的一端处于圆环中心处。
求该直线段受到的电场力。
解:先求均匀带电圆环在其轴线上产生的场强。
在带电圆环上取dl dq1l =,dq 在带电圆环轴线上x 处产生的场强大小为处产生的场强大小为)(4220R x dqdE +=p e根据电荷分布的对称性知,0==z y E E23220)(41cosR x xdqdE dEx+==p e q式中:q 为dq 到场点的连线与x 轴负向的夹角。
《大学物理》静电场练习题及答案一、简答题1、为什么在无电荷的空间里电场线不能相交?答案:由实验和理论知道,静电场中任一给定点上,场强是唯一确定的,即其大小和方向都是确定的.用电场线形象描述静电场的空间分布时,电场线上任一点的切线方向表示该点的场强方向.如果在无电荷的空间里某一点上有几条电场线相交的话,则过此交点对应于每一条电场线都可作出一条切线,这意味着交点处的场强有好几个方向,这与静电场中任一给定点场强具有唯一确定方向相矛盾,故无电荷的空间里电场线不能相交.2、简述静电场中高斯定理的文字内容和数学表达式。
答案:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的所有电荷电量的代数和的01ε倍。
0ε∑⎰=⋅内S SqS d E3、写出静电场的环路定理,并分别说明其物理意义。
答案:静电场中,电场强度的环流总是等于零(或0l=⋅⎰l d E),静电场是保守场。
4、感生电场与静电场有哪些区别和联系?5、在电场中某一点的电场强度定义为0q F E=.若该点没有试验电荷,那么该点的电场强度又如何? 为什么?答案: 电场中某一点的电场强度是由该电场自身性质所决定,与这一点有无试验电荷没有任何关系。
6、在点电荷的电场强度公式中,如果0→r ,则电场强度E 将趋于无限大。
对此,你有什么看法? 答案: 这表明,点电荷只是我们抽象出来的一个物理模型,当带电体较小而作用距离较大时使用点电荷模型较为方便、精确。
但当作用距离r 很小时,点电荷模型的误差会变大,这时我们不能再用点电荷的电场强度公式而要采用更精确的模型。
二、选择题1、如图所示,两个同心均匀带电球面,内球面半径为1R 、带有电荷1Q ,外球面半径为2R 、带有电荷2Q ,则在外球面外面、距离球心为r 处的P 点的场强大小E 为 ( A ) A 、20214r Q Q επ+B 、()()2202210144R r Q R r Q -π+-πεε C 、()2120214R R Q Q -+επ D 、2024r Q επ2、A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。
1、在间距为d 的平行板电容器中,平行地插入一块厚为d/2的金属大平板,则电容变为原来的 倍,如果插入的是一块厚为d/2,相对介电常数为4r ε=的大介质平板,则电容变为原来的 倍。
平行地插入一块厚为d/2的金属大平板,相当于两平行板间的距离缩小了d/2,则000'2/2SC C d ε==,故电容变为原来的2倍;如果插入的是一块厚为d/3相对介电常数为4r ε=的大介质平板,相当于两个电容器串联,0108/2r SC C d εε==0202/2SC C d ε==1212' 1.6C C C C C C ==+2、如图,110C f μ= 25C f μ= 315C f μ= 100u V =,则此电容器组和的等效电容为 ,电容器1C 的储存的电能为 。
2、解:7.5f μ 0.0125J1C 与2C 并联12'10515C C C f μ=+=+='C 与3C 串联33'1515''7.5'1515C C C f C C μ⨯===++'C 与3C 串联 电容大小相等,所以'C 上分到一般的电压50V ,1C 的储存的电能为262111(1010)500.012522e W C V J -==⨯⨯=3、[ ] 真空中A 、B 两平行板相距为d ,面积均为S ,分别均匀带电q +和q -,不计边缘效应,则两板间的作用力为:(1) 220/4f q d πε=; (2) 20/f q S ε=; (3) 20/2f q S ε=解答:200/2/2f qE q q S q Sεε==⨯=4、[ ]真空中带电的导体球面与均匀带电的介质球体,它们的半径和所带的电量都相同,设带电球面的静电能为1W ,带电球体的静电能为2W ,则: (1) 12W W >; (2) 12W W =; (3) 12W W <解答:设电量为Q ,半径为R. 则均匀带电球面的静电能202222001820'422QR RVE R W dV r dr r πεεερπε∞⎛⎫=== ⎪⎝⎭⎰⎰则均匀带电球体的静电能22200022233220002408202004422323RQ Q Q RRRR VE r R W dV r dr r dr r πεπεπεεεερρππεε∞⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰所以12W W <。
第四章 静电场本章提要1.电荷的基本性质两种电荷,量子性,电荷首恒,相对论不变性。
2.库仑定律两个静止的点电荷之间的作用力12122204kq q q q rr==F r rπε其中922910(N m /C )k =⨯⋅122-1-2018.8510(C Nm )4k -==⨯⋅επ3.电场强度q =F E0q 为静止电荷。
由10102204kq q q q rr==F r rπε得112204kq q rr==E r rπε4.场强的计算(1)场强叠加原理电场中某一点的电场强度等于各个点电荷单独存在时在该点产生的电场强度的矢量和。
i=∑E E(2)高斯定理电通量:在电场强度为E 的某点附近取一个面元,规定S ∆=∆S n ,θ为E 与n 之间的夹角,通过S ∆的电场强度通量定义为e cos E S ∆ψ=∆=⋅∆v Sθ取积分可得电场中有限大的曲面的电通量ψd e sS=⋅⎰⎰E高斯定理:在真空中,通过任一封闭曲面的电通量等于该封闭曲面内的所有电荷电量的代数和除以0ε,与封闭曲面外的电荷无关。
即i 01d sq=∑⎰⎰E S 内ε5.典型静电场(1)均匀带电球面0=E (球面内)204q rπε=E r(球面外)(2)均匀带电球体304q R πε=E r(球体内)204q rπε=E r(球体外)(3)均匀带电无限长直线场强方向垂直于带电直线,大小为02E rλπε=(4)均匀带电无限大平面场强方向垂直于带电平面,大小为2E σε=6.电偶极矩电偶极子在电场中受到的力矩=⨯M P E思考题4-1 020 4q q r==πεr 与FE E两式有什么区别与联系。
答:公式q FE =是关于电场强度的定义式,适合求任何情况下的电场。
而公式204q rπε=E r是由库仑定理代入定义式推导而来,只适于求点电荷的电场强度。
4-2一均匀带电球形橡皮气球,在气球被吹大的过程中,下列各场点的场强将如何变化?(1) 气球内部 (2) 气球外部 (3) 气球表面答:取球面高斯面,由00d nii q ε=⋅=∑⎰⎰ E S 可知(1)内部无电荷,而面积不为零,所以E 内= 0。
(2)E 外=204r q πε与气球吹大无关。
(3)E 表=204Rq πε随气球吹大而变小。
4-3 下列几种说法是否正确,为什么?(1) 高斯面上电场强度处处为零时,高斯面内必定没有电荷。
(2) 高斯面内净电荷数为零时,高斯面上各点的电场强度必为零。
(3) 穿过高斯面的电通量为零时,高斯面上各点的电场强度必为零。
(4) 高斯面上各点的电场强度为零时,穿过高斯面的电通量一定为零。
答:(1)错因为依高斯定理,E = 0 只说明高斯面内净电荷数(所有电荷的代数和)为零。
(2)错高斯面内净电荷数为零,只说明整个高斯面的d s⎰⎰ E S 的累积为零。
并不一定电场强度处处为零。
(3)错穿过高斯面的电通量为零时,只说明整个高斯面的d s⎰⎰ E S 的累积为零。
并不一定电场强度处处为零。
(4)对E = 0,则整个高斯面的d s⎰⎰ E S 的累积为零。
所以电通量φ=0。
4-4 试利用电场强度与电势的关系式d d l U E l=-分析下列问题:(1) 在电势不变的空间内,电场强度是否为零? (2) 在电势为零处,电场强度是否一定为零? (3) 在电场强度为零处,电势是否一定为零? 答:(1)是 由d d l U E l=-可知,当电势处处相等时,d 0U =,E l =0实际例子:静电平衡的导体内。
(2)否电势为零处电势梯度d d U l不一定为零,所以E l 也不一定为零。
实际例子:电偶极子连线中点处。
(3)否如果E l 等于零,则电势梯度为零,但电势不一定为零。
实际例子:两个相同电荷连线中点处。
4-5 如图4-1所示,将两个完全相同的电容器串联起来,在与电源保持连接时,将一电介质板摩擦插入电容器C 2的两板间,试定性地描述C 1、C 2上的电量、电容、电压、及电场强度的变化。
答:插入电介质板后,C 2的增大,致使整个电路电容1/C=1/C 1+1/C 2增大,而总电压U 又没变,所以每个电容器所储存的电量q 1 = q 2增加。
由于无摩擦,这种增加的电量全部由电源提供。
C 1=ε0S/d 不变,而储存的电量增加时,U 1= q 1/C 增大,故U 2减小。
由U = Ed 可知E 2减小。
U 1增大而两极板距离d 不变,故E 1增大。
4-6 一空气电容器充电后切断电源,然后灌入煤油,问电容器的能量有何变化?如果在灌煤油时电容器一直与电源相连,能量又如何变化?答:电容器灌入煤油后,电容量增大,但极板上的电量没有改变,由C q W e 22=可知电容器的能量W e 会减少。
减少的那部分能量,由煤油分子在静电场极化过程中转化成煤油的内能。
如果灌煤油时,电容器一直与电源相连,由能量公式22CU W e =可知,C 增大而U 不变时,电容器的能量W e 增大。
这时电源向电容器充电,将电源的化学能转化为电容器的内能。
练习题4-1 由相距较近的等量异号电荷组成的体系称电偶极子,生物细胞膜及土壤颗粒表面的双电层可视为许多电偶极子的集合。
因此,电偶极子是一个十分重要的物理模型。
图4-2所示的电荷体系称电四极子,它由两个电偶极子组合而成,图4-1其中的q 和l 均为已知,对图4-2中的P 点(O P 平行于正方形的一边),证明当x l 时4043x pl E p πε≈其中,p=ql 称电偶极矩。
解:将左边和右边的电偶极子在P 点产生的场强分别称为E 左和E 右,则:()()3024l p E x πε=+左方向向下()()302 4l p E x πε=-右方向向上P点处的合场强为()()()()3223332200022232444ll l l x l p p pE E E x x x πεπεπε+=-=-=-+⎡⎤-⎣⎦左右∵2l x∴()4034pl E xπε=方向向上原题证毕。
4-2 一个均匀带电的细棒长为l ,带电总量为q ,证明,在棒的垂直平分线上离棒为a 处的电场强度为220421a l a q E +=πε解:棒的线电荷密度为q l ρ=。
如图4-3,对称地取距中点为x 处的电荷 d d d /q x q x l ρ==。
其d E 和d 'E 的水平方向的分量相互抵消,P 点的场强为d E 和d 'E 沿竖直向上分量之和:()()()122222032220 d 2d cos 2d 4d 2 E E q aa xaxaq xl a xθπεπε==++=+合棒在P 处的场强为()2232220d d 2 l l aq xE E l a xπε==+⎰⎰合将tan x a θ=代入上式,并考虑x 由0积分到2l 时,s i n θ由0变化到,后对E 积分可得:220421a l a q E +=πε4-3 一个半径为R 的带电圆盘,电荷面密度为σ,求: (1)圆盘轴线上距盘心为x 处的任一点P 的电场强度; (2)当R →∞时,P 点的电场强度为多少? (3)当x R 时,P 点的电场强度又为多少? 解:(1)取半径为r —r+d r 的圆环,如图4-4所示,因其上电荷对P 点的产生的场强垂直分量相互抵消,所以其对P 点场强为()()()()12222203232222200 d d d 4 2 d d 42SxE x rxrx r r x r r x rx rσθπεσπσπεε==++==++E cos整个圆盘的电荷在P 点的产生的场强为()()3212222200 d 122R x r r x E x rx R σσεε⎛⎫ ⎪==- ⎪++⎝⎭⎰(2)当R →∞时,可将带电圆盘看作无限大带电平面,因此P 点电场强度为2E σε'=(3)当x R 时,可将带电圆盘看作点电荷,因此P 点电场强度为:22220044RR E xxσπσπεε''==4-4 大多数生物细胞的细胞膜可以用两个分别带有电荷的同心球壳系统来模拟。
在本题图4-5中,设半径为1R 和2R 的球壳上分别带有电荷1Q 和2Q ,求:σ图4-4(1)I 、II 、III 三个区域中的场强; (2)若1Q =-2Q 各区域的电场强度又为多少?画出此时的电场强度分布曲线 (即E -r 关系曲线)。
从这个结果,你可以对细胞膜的电场强度分布有个概略的了解。
解:(1)I :以r 1﹤R 1为半径作球面高斯面,因面内无电荷,依1d i Siqε=∑⎰⎰E S 内可得:E 1= 0II :以122R r R <<为半径作球面高斯面,面内的电荷为Q 1,依1d SQ ε=⎰⎰E S可得:122024Q E r πε=III :以23R r <为半径作球面高斯面,面内的电荷为Q 1+Q 2,同理可得:E 3 =230214r Q Q πε+(2)根据上部分结果可得 I : E 1= 0 II :122024Q E r πε=III :E 3= 0根据已知条件画出E r -关系曲线如图4-6所示4-5 实验表明,在靠近地面处有相当强的大气电场,电场强度方向垂直地面向下,大小约为-1100N C ⋅;在离地面1.5 km 高的地方,电场强度方向也是垂直地面向下的,大小约为-125N C ⋅。
(1)计算从地面到此高度的大气中电荷的平均体密度;(2)若地球上的电荷全部分布在地球表面,求地球表面的电荷面密度; (3)已知地球的半径为6610m ⨯,地球表面的总电量为多少?图4-5解:(1)由已知可得,离地面高度为1.5km 的大气电场-1225N C E =⋅,地面的大气电场为-11100N C E =⋅。
从 1.5km 高处至地面作圆柱体高斯面,依题意得:120e qE S E S φε∑=-=得()012q E E S ε=-∑故()()01212313-38.8510751.5104.4310C m E E q q VhShερ----∑∑===⨯⨯=⨯=⨯⋅(2)靠近地球表面作球面高斯面∵10 E S S σ=∴()121021 1008.85108.910C m E S σ---==-⨯⨯=-⨯⋅(3)()()21065 8.9104610 4.010C q S σπ--==-⨯⨯⨯=-⨯∑4-6 随着温度的升高,一般物质依次表现为固态、液态和气态。
当温度继续升高时,气体中的大量分子将由于激烈碰撞而离解为电子和正离子。
这种主要由带电离子组成的状态为物质的第四态,处于该态的物质称等离子体。
如果气体放电时形成的等离子体圆柱内的体电荷分布有如下关系()()2222ra a r e +=ρρ其中,e ρ为电荷体密度,0ρ为圆柱轴线上的e ρ值,a 为常量,求电场强度分布。