自动控制论名词解释大全
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
自动控制原理专业词汇中英文对照中文 英文自动控制 automatic control;cybernation 自动控制系统 automatic control system自动控制理论 automatic control theory经典控制理论 classical control theory现代控制理论 modern control theory智能控制理论 intelligent control theory 开环控制 open-loop control闭环控制 closed-loop control输入量 input输出量 output给定环节 given unit/element比较环节 comparing unit/element放大环节 amplifying unit/element执行环节 actuating unit/element控制环节 controlling unit/element被控对象 (controlled) plant反馈环节 feedback unit/element控制器 controller扰动/干扰 perturbance/disturbance前向通道 forward channel反馈通道 feedback channel 恒值控制系统 constant control system随动控制系统 servo/drive control system 程序控制系统 programmed control system 连续控制系统 continuous control system离散控制系统 discrete control system线性控制系统 linear control system非线性控制系统 nonlinear control system定常/时不变控制系统 time-invariant control system 时变控制系统 time-variant control system 稳定性 stability快速性 rapidity准确性 accuracy数学模型 mathematical model微分方程 differential equation非线性特性 nonlinear characteristic线性化处理 linearization processing泰勒级数 Taylor series传递函数 transfer function比例环节 proportional element积分环节 integrating element一阶惯性环节 first order inertial element二阶惯性环节 second order inertial element二阶震荡环节 second order oscillation element 微分环节 differentiation element一阶微分环节 first order differentiation element二阶微分环节 second order differentiation element 延迟环节 delay element动态结构图 dynamic structure block串联环节 serial unit并联环节 parallel unit信号流图 signal flow graph梅逊增益公式 Mason’s gain formula时域分析法 time domain analysis method性能指标 performance index阶跃函数 step function斜坡函数 ramp function抛物线函数 parabolic function /acceleration function 冲击函数 impulse function正弦函数 sinusoidal function动态/暂态响应 transient response静态/稳态响应 steady-state response 延迟时间 delay time上升时间 rise time峰值时间 peak time调节时间 settling time最大超调量 maximum overshoot稳态误差 steady-state error无阻尼 undamping欠阻尼 underdamping过阻尼 overdamping特征根 eigen root极点 pole零点 zero实轴 real axis虚轴 imaginary axis 稳态/静态分量 steady-state component瞬态/暂态/动态分量 transient component 运动模态 motion mode衰减 attenuation系数 coefficient初相角 initial phase angle响应曲线 response curve主导极点 dominant pole 劳斯稳定判据 Routh stability criterion S平面 S plane胡尔维茨稳定判据 Hurwitz stability criterion 测量误差 measurement error扰动误差 agitation error结构性误差 structural error偏差 deviation根轨迹 root locus 常规根轨迹 routine root locus根轨迹方程 root locus equation 幅值 magnitude幅角 argument对称性 symmetry分离点 separation/break away point会合点 meeting/break-in point渐近线 asymptote出射角 emergence angle/angle of departure入射角 incidence angle/angle of arrival 广义根轨迹 generalized root locus零度根轨迹 zero degree root locus 偶极子 dipole/zero-pole pair 频域分析法 frequency-domain analysis method 频率特性 frequency characteristic极坐标系 polar coordinate system直角坐标系 rectangular coordinate system幅频特性 magnitude-frequency characteristic相频特性 phase-frequency characteristic 幅相频率特性 magnitude-phase frequency characteristic 最小相位系统 minimum phase system非最小相位系统 nonminimum phase system奈奎斯特稳定判据 Nyquist stability criterion 伯德定理 Bode theorem稳定裕度 stability margin幅值裕度 magnitude margin 相位/相角裕度 phase margin对数幅频特性 log magnitude-frequency characteristic 无阻尼自然震荡角频率 undamped oscillation angular frequency 阻尼震荡角频率 damped oscillation angular frequency 阻尼角 damping angle带宽频率 bandwidth frequency 穿越/截止频率 crossover/cutoff frequency 谐振峰值 resonance peak系统校正 system compensation超前校正 lead compensation滞后校正 lag compensation自激震荡 self-excited oscillation死区特性 dead zone characteristic饱和特性 saturation characteristic间隙特性 backlash characteristic描述函数法 describing function method相平面法 phase plane method 采样控制系统 sampling control system数字控制系统 digital control system频谱 frequency spectrum 采样定理 sampling theorem信号重现 signal recurrence拉氏变换 Laplace transformZ变换 Z transform终值定理 final-value theorem差分方程 difference equation迭代法 iterative method 脉冲传递函数 pulse transfer function零阶保持器 zero-order holder映射 mapping方框图 block diagram伯德图 Bode diagram特征方程 characteristic equation可控性 controllability临界阻尼 critical damping阻尼常数 damping constant阻尼比 damping ratio初始状态 initial state初值定理 initial-value theorem反Z变换 inverse Z-transformation负反馈 negative feedback正反馈 positive feedback 尼科尔斯图 Nichols chart部分分式展开 partial fraction expansion 幅角原理 argument principle相对稳定性 relative stability共振频率 resonant frequency劳斯表 Routh tabulation/array奇点 singularity渐进稳定性 asymptotic stability控制精度 control accuracy临界稳定性 critical stability耦合 coupling解耦 decoupling比例积分微分调节器 proportional integral derivative regulator(PID) 串联校正 series/cascade compensation 单输入单输出 single input single output(SISO)多输入多输出 multi input multi output(MIMO)低通滤波器 low pass filter非线性系统 nonlinear system复合控制 compound control衰减振荡 damped oscillation主反馈 monitoring feedback 转折(交接)频率 break frequency稳定焦点/节点 stable focus/node。
自控概念及定义1.开环控制的定义:若系统的被控制量对系统的控制作用没有影响,则此系统叫开环控制系统2.闭环控制的定义:凡是系统的被控制信号对控制作用有直接影响的系统都叫闭环控制系统3.恒值控制系统的定义:如果反馈控制系统的参考输入信号为常量则称这类反馈控制系统为恒值控制系统4.程序控制系统的定义:系统的参考输入信号按照一定的时间函数变化则称这类反馈控制系统为程序控制系统5.随动控制系统的定义:闭环控制系统中,如果参考输入信号为一任意时间函数,其变化规律无法预先予以确定,则承受这类输入信号的闭环控制系统叫做随动控制系统6.被控对象的定义:控制系统中被控制的设备或过程7.被控参数或输出量的定义:指被控对象中按一定规律变化的物理量,与输入信号间满足一定的函数关系8.扰动量的定义:所有妨碍控制量对被控量进行正常控制的因素称为扰动量9.控制量的定义:直接加到被控对象、直接改变被控量的变量,称为控制量10.反馈量的定义:由系统(或元件)输出端取出并反向送回系统(或元件)输入端的信号称为反馈量11.偏差量的定义:参考输入与主反馈信号之差12.控制器的定义:控制系统中除了被控对象外各个部分的组合13.负反馈控制基本原理:在反馈控制系统中,控制装置对被控对象施加的控制作用,是取自被控量的反馈信息,用来不断修正被控量与输入量之间的偏差,从而实现对被控对象进行控制的任务,这就是负反馈控制的原理。
14.前向通道的定义:在闭环控制系统中,从系统输入量到系统被控量之间的通道称为前向通道15.反馈通道的定义:在闭环控制系统中,从被控量到输入端的反馈信号之间的通道称为反馈通道16.对控制系统的基本要求:稳定,精确,迅速17.传递函数的定义:在初始条件为零时,线性定常系统或元件输出信号的拉氏变换式与输入信号的拉氏变换式之比称为该系统或元件的传递函数18.什么叫基本环节:一个复杂的控制系统分成的一个个小部分称为环节。
从动态方程、传递函数和运动特性的角度看不宜再分的最小环节称为基本环节19.比例环节传递函数:G(s)=K20.惯性环节传递函数:G(s)=1/(Ts+1)21.积分环节传递函数:G(s)=1/s22.振荡环节传递函数:G(s)=1/()=23.纯微分环节传递函数:G(s)=s24.一阶微分环节传递函数:G(s)=s+125.二阶微分传递函数:G(s)=26.延迟环节传递函数:G(s)=27.二阶系统五个性能指标:上升时间、峰值时间、最大超调量、过渡过程时间、振荡次数N28.闭环主导极点定义:假若距虚轴较远的闭环极点的实部与距虚轴最近的闭环极点的实部的比值大于或等于5,且在距虚轴最近的闭环极点附近不存在闭环零点。
自动控制理论复习题一、名词解释:1、频率响应 2、反馈 3、稳态误差4、最大超调量 5、单位阶跃响应6、相位裕量7、滞后一超前校正;8、稳态响应;9、频率特性;10、调整时间;11、峰值时间;12、截止频率;13、谐振峰值;14、谐振频率15、幅值穿越频率;16、相位穿越频率;17、幅值裕量;18、自动控制、19、状态变量、20、零阶保持器二、分别建立图示系统的微分方程,求传递函数,并说出图(c ),(d)属于何种 较正网络。
图中)(t x i ,)(0t x 为输入、输出位移;)(t u i ,)(0t u 为输入、输出电压。
三、已知系统方框图如下,求传递函数)(,)(,)(000s X s X s X)(a )(b )t )t )(c )(t x i 1)(0t x )(d )(0s )(b X i )s X i )s四、已知系统的开环的幅相特性(Nyguist )如图所示,图中P 为开环传递函数G(s)H(s)五、计算 1、设某二阶系统的单位阶跃响应曲线如图所示,如果该系统为单位反馈型式,试确定其开环传递函数。
2、某系统如图所示,n p t 调整时间 s t 。
(设误差带宽度取±2% ))(c )(a))(a )(b ))六、已知系统的开环传递函数)()(s H s G 的幅频特性曲线如图示,且)()(s H s G 为最小相位系统。
试求)()(s H s G = ?七、某系统的开环传递函数为)12()1()()(-+=s s sK s H s G ,试画出其乃奎斯特图,并说明当K取何值时系统稳定?八、已知系统闭环传递函数为))()(01221101a s a s a s a s a a s a s X s X n n n n i +++⋅⋅⋅+++=-- 试证明系统对速度输入的稳态误差为零。
十、判断正误1、各项时域指标(最大超调量,调整时间等)是在斜坡信号作用下定义的。
2、对于结构不稳定系统,可以通过改变某些系统结构参数而使其稳定。
自动控制的概念自动控制(automatic control)是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。
自动控制是相对人工控制概念而言的。
自动控制技术的研究有利于将人类从复杂、危险、繁琐的劳动环境中解放出来并大大提高控制效率。
自动控制是工程科学的一个分支。
扩展资料在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。
自动控制是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器,设备或生产过程(统称被控对象)的某个工作状态或参数(即被控制量)自动地按照预定的规律运行。
自动控制理论是研究自动控制共同规律的技术科学。
它的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制,二战期间为了设计和制造飞机及船用自动驾驶仪,火炮定位系统,雷达跟踪系统以及其他基于反馈原理的军用设备,进一步促进并完善了自动控制理论的发展。
自动控制(automatic control)是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作状态或参数自动地按照预定的规律运行。
自动控制是相对人工控制概念而言的。
简介自动控制技术的研究有利于将人类从复杂、危险、繁琐的劳动环境中解放出来并大大提高控制效率。
自动控制是工程科学的一个分支。
它涉及利用反馈原理的对动态系统的自动影响,以使得输出值接近我们想要的值。
从方法的角度看,它以数学的系统理论为基础。
我们今天称作自动控制的是二十世纪中叶产生的控制论的一个分支[1] 。
基础的结论是由诺伯特·维纳,鲁道夫·卡尔曼提出的。
举例室内温度的调节室内温度的调节是一个简明易懂的例子。
目的是把室内温度保持在一个定值θ,尽管开窗等因素使得室内热量散发出室外(干扰d)。
为了达到这个目的,加热必须被适当的影响。
通过阀门的调节,温度就会保持恒定。
除此之外,在人们有感觉之前,暖器热水的温度也会受外界温度的干扰。
自动控制原理概念最全整理要点自动控制原理是一门关于自动控制的基本理论和方法的学科。
它是制造业、能源、计算机、交通等各种工业和社会领域的核心技术之一。
自动控制原理是一种对变量随时间或空间的演化规律进行建模、设计控制器来调节被控对象状态,以实现所需性能的工程技术。
自动控制原理的内容包括模型建立、控制策略设计、控制器的构成、控制系统的分析与合成等几个方面。
而我们在学习自动控制原理时,要有清晰的思路和认真的学习态度,才能更好的将这些方面整合到一起。
下面是自动控制原理概念最全整理要点:1.自动控制的概念:自动控制指对一个工业过程或某些特定设备的监测、调整和控制技术,它是一种基于数学模型建立的最佳控制策略,并通过控制器对被控对象进行控制,达到所需的性能指标。
2.自动控制的分类:(1)按控制对象分类:可以分为物理系统控制、化学过程控制、工业制造和机械装置控制、电力系统控制、智能系统控制、社会经济系统控制等。
(2)按时域分类:可以分为时不变控制和时变控制。
(3)按控制器类型分类:可以分为模拟控制和数字控制。
3.自动控制的基本原理:对被控对象的动态特性进行建模,构建闭环控制系统,在不断实时监测和计算的基础上,设计出符合控制要求的控制器。
4.自动控制的基本理论:(1)系统动态时间响应:反映系统作出应变的速度和过程的稳定性。
(2)系统稳定性分析:指某个系统在给定输入下,稳定运行的能力。
(3)系统性能指标:包括超调量、稳态误差和响应时间等指标。
5.自动控制的主要部件:(1)传感器:用于检测被控对象的状态量和控制器输出的控制量。
(2)执行元件(执行器):负责对被控对象实施控制。
(3)控制器:用于将检测到的反馈信号与设定值进行比较后输出控制命令,实现自动化控制。
(4)信号转换器:将传感器和执行元件的信号转换为适合于控制器使用的信号形式。
6.自动控制中经常使用的方法:(1)PID控制:通过对比被控对象的实际值和设定值,对被控对象的输入量进行调整,以实现控制目标。
自动控制理论 ___自动控制理论是一门研究自动化系统行为和设计控制策略的学科,具有广泛的应用领域和重要性。
自动控制理论的研究对象是各种自动化系统,包括机械系统、电气系统、化工系统等。
通过研究自动化系统的动态特性和响应,我们可以设计合适的控制策略来实现系统的稳定性、精确性和优化性能。
自动控制理论不仅在工业领域得到广泛应用,也在生活中各种自动化设备和系统中发挥着重要作用。
例如,自动驾驶汽车、智能家居系统、工业生产自动化线等都依赖于自动控制理论的研究成果。
在本文中,我们将详细介绍自动控制理论的重要性和研究对象,探讨其在实际应用中的意义和挑战。
通过深入理解自动控制理论,我们可以应用合适的控制方法来优化系统的性能,提高工作效率和质量,推动技术的进步和创新。
本文探讨自动控制理论的基本原理和主要概念。
自动控制理论是研究如何通过系统的设计和调整,使得系统能够自动地对外界变化做出相应的调节和控制的一门学科。
它是现代科学技术中的重要部分,被广泛应用于工业、交通、航空、航天等领域。
自动控制理论的核心原理是反馈控制。
通过测量系统的输出,并与预定的输入进行比较,然后根据差异来调整系统的行为,以使系统输出与预期目标保持一致。
这种反馈过程是实现自动控制的关键。
在自动控制理论中,有一些重要的概念需要理解。
首先是系统模型,它描述了系统的动态行为和性能。
系统模型可以是数学方程、图表或仿真模拟等形式。
其次是控制器,它是根据系统模型和目标要求设计的,用于调节系统行为的装置或算法。
还有传感器和执行器,它们分别用于测量系统输出和对系统进行控制。
除了基本原理和概念,自动控制理论还涉及许多方法和技术。
例如,经典控制理论包括比例、积分、微分控制等方法。
现代控制理论则包括状态空间方法、最优控制、自适应控制等方法。
不同的方法适用于不同的系统和控制需求。
总之,自动控制理论是一门重要的学科,它提供了对系统进行智能调节和控制的方法和工具。
通过理解自动控制理论的基本原理和主要概念,我们可以更好地设计和优化系统,提高系统的稳定性和性能。
名词解释
31.准确性指调整过程结束后输出量与给定的输入量之间的偏差
32.速度误差指输入为速度信号(或者斜坡信号)时所引起的输出位置上的误差。
33.峰值时间.响应曲线从零上升到第一个峰值点所需要的时间
34.负穿越当乃氏图从大于-π的第三象限越过负实轴到第二象限时称为负穿越
35.根轨迹的终止角指根轨迹的起点处的切线与水平线正方向的夹角。
31.奇点奇点即平衡点,是系统处于平衡状态相平面上的点。
32.比较元件用来比较输入信号与反馈信号之间的偏差的元件
33.上升时间响应从稳态值的10%上升到稳态值的90%所需的时间
34.负反馈把运动的结果所决定的量作为信息再反馈回控制仪器中
35.加速度误差.指输入为匀加速度信号时所引起的输出位置上的误差。
31.随动系统被调量随着给定量(或输入量)的变化而变化的系统就称为随动系统。
32.死区死区也称不敏感区,通常以阈值、分辨率等指标衡量。
33.振荡次数在调整时间t s 内响应曲线振荡的次数。
34.快速性指当系统输出量与给定的输入量之间产生偏差时,消除这种偏差过程的快速程度。
35.根轨迹的分离点几条根轨迹在s 平面上相遇后又分开的点。
31.延迟时间:响应曲线从零上升到稳态值的50%所需要的时间。
32.32.比例环节:在时间域里,输入函数成比例,即:()()t kx t x i =0
33.稳态响应:时间t 趋于无穷大时,系统输出的状态,称为系统的的稳态响应
34.闭环截止:频率响应从稳态值的10%上升到稳态值的90%所需的时间
35.位置误差:指输入时阶跃信号时所引起的输出位置上的误差。
30.误差平方积分性能的特点重视大的误差,忽略小的误差
31.最优滤波当输出已知时,确定系统,以识别输入或输出的有关信息称为最优滤波
32.积分环节输出变量正比于输入变量的积分
33.极坐标图是反映频率响应的几何表示。
34.相位裕量 在ω为剪切频率c ω时,相频特性()()g g j H j G ωω∠距-180︒线的相位差γ 称为相位裕量。
35.根轨迹的起始角 指起于开环极点的根轨迹在起点处的切线与水平线正方向的夹角。
31.自动控制在没有人直接参与的情况下,使被控对象的某些物理量准确地按照预期规律变化。
32.传递函数传递函数的定义是对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入的拉氏变换之比
33.瞬态响应系统在某一输入信号的作用下其输出量从初始状态到稳定状态的响应过程。
34.最小相位传递函数.在右半s 平面上无极点和零点的传递函数称为最小相位传递函数。
35.复现频率.在允许误差范围内的最高工作频率
1.数学模型如果一物理系统在信号传递过程中的动态特性能用数学表达式描述出来,该数学表达式就称为数学模型。
32.反馈元件用于测量被调量或输出量,产生主反馈信号的元件
33.最大超调量二阶欠阻尼系统在单位阶跃输入时,响应曲线的最大峰值与稳态值的差
34.频率响应系统对正弦输入的稳态响应
35幅值裕量g ω.在频率ω为相位交界频率时,开环幅频特性)()(g g j H j G ωω的倒数称为系统的幅值裕度,)()(1
g g g j H j G K ωω=。
31.稳定性指动态过程的振荡倾向和系统能够恢复平稳状态的能力
32.理想微分环节.输出变量正比于输入变量的微分
33.调整时间系统响应曲线达到并一直保持在允许衰减范围内的最短时间
34.正穿越当乃氏图随ω增加逆时针从第二象限越过负实轴向第三象限去时,叫正穿越。
35.根轨迹指当系统某个参数(如开环增益K )由零到无穷大变化时,闭环特征根在s 平面上移动的轨迹。