用多种方法测量钠黄光波长间隔讲解
- 格式:ppt
- 大小:659.00 KB
- 文档页数:20
迈克尔逊干涉仪测定钠光波长及双线波长差实验者:刘启庆 同组实验者:张毅 指导教师:李雪梅(A13海工3班 661489)【摘要】本文从实验的原理和方法等方面对用迈克尔逊干涉仪仪器精确测定钠黄光波长及双线波长差实验进行了测量、讨论并用实验数据验证了理论值,达到了预期的效果。
在对利用钠黄光波长差的测量及其应用中,经过分析后我们发现使用钠黄光双线波长差可以很好的测量玻璃折射率。
【关键词】迈克尔逊干涉仪、双线波长差、钠黄光 引言1881年A.A.Michelson 和Morley 为了测量绝对静止参考系(以太)相对于运动参考系的速度,精心设计了迈克尔逊干涉仪它的设计非常巧妙,其测量结果说明绝对静止参考系不存在,从而在物理学发展史上占有一席之地.现代科技中有许多干涉仪都是由它衍生发展而来,掌握该仪器的结构、原理、使用方法非常重要.在《大学物理实验教程》教学中,分配有一节课时间来介绍迈克尔逊干涉仪,其内容偏向于仪器结构及原理介绍,在应用方面涉及到如何应用它测量光波波长及介质的折射率.相应配套了物理实验“迈克尔逊干涉仪测量波长”以强化学生对该仪器调节及测量方法的掌握,因为激光相干性好,所以较易调节出效果较好的干涉图.在此基础上,一些学校开设了设计研究性实验项目“钠双线波长差的测量”,支持学生进行迈克尔逊干涉仪应用的拓展研究,由于钠光相干性比激光差,该实验较难完成.因此,针对实验中的难点,本文提出了相应解决方法,并对参考教材中提供的一些传统调节及测量方法进行了改进,以期能帮助同学们更快、更好地完成该实验项目.【实验原理】低压钠灯发出的黄光包括两种波长相近的单色光(λ1=58965.930Å,λ2= 5889.963Å)。
这两条光谱线是钠原子从3P 态跃迁到3S 态的辐射,用扩展的钠光灯照射迈克耳孙干涉仪得到的等倾干涉圆环是两种单色光分别产生的干涉图样的叠加。
若以d 表示M1/、M2间距(参见迈克耳孙干涉仪原理图),则当2d =k λ (k =0,1,2,…)时,环中心是亮的,而当2d = (2k +1) (k =0,1,2,…)时,环中心是暗的,若继续移动M2,则当M1/,M2的间距增大到d 1,且同时满足21d = k 1λ (1)21212λ⎪⎭⎫ ⎝⎛+=k d (2)两个条件时,因为λ1和λ2相差不大,λ1的各级暗环恰好与λ2的各级亮环重合条纹的可见度几乎为0,难以分辨,继续移动反射镜,当M1/、M2间距增到d1时,又使λ1和λ2的各亮环重合,条纹又清晰可见,随着M2的继续移动,当M1/、M2间距d2满足(3)(4) 时,条纹几乎消失.由(4)式减去(1)式,(5)式减去(2)。
用双棱镜测钠黄光波长双棱镜是光学实验中常用的一种光学元件,其在测量光谱的实验中有着重要的应用。
本文将介绍如何用双棱镜测量钠黄光波长。
实验原理钠黄光是一种特殊的光线,其具有明显的D1线和D2线双峰谱线。
这种光线可以通过采用特定的谱线发射器产生。
当钠原子被加热时,其电子会从低能级跃迁到高能级,形成第一激发态。
在该激发态中,电子会在不同能级之间跃迁,释放出能量,从而产生特定的谱线。
其中,D1线和D2线对应的波长分别为589.0纳米和589.6纳米。
在实验中,我们将钠黄光通过进一步的衍射和干涉,通过双棱镜将其分离成不同的光谱线,然后通过测量这些光谱线的相对强度和角度,计算出其中心的波长。
实验器材•钠黄光谱线发射器•显微镜•双棱镜•接口板•狭缝光阑•白色背景板•分光计实验步骤1.将钠黄光谱线发射器放置在接口板上,并将其加热至适当温度。
此时,发射器会释放出钠黄光。
2.将一块白色背景板置于光路中。
3.调整狭缝光阑,使其可以让光线通过。
将发射器对准光阑,并通过显微镜调整其位置,使其保持在阑口中心,并调整至能够看到充分明亮的光点。
4.将双棱镜放置于狭缝光阑的后侧。
5.调整分光计的角度,使其可以看到光谱线的明亮点在直视的分光计小孔中心,具体可参照所附图示。
6.使双棱镜的边缘与发射器光斑连线垂直,并使光线通过双棱镜,将钠黄光线分解成D1线和D2线两个谱线。
具体可参照所附图示。
7.用显微镜观察直视分光计的视场,同时通过叉杆无法调整分光计位置,保持目镜和望远镜平行于光台,采集到D1和D2两个光点的图像。
8.测量两个波长线的次级光距,得到角度$\\theta_1$和$\\theta_2$。
9.根据双棱镜的入射角和折射角公式,计算得到D1和D2波长的数值。
10.计算两个波长线的平均波长。
实验注意事项1.在进行实验时,要注意使用调节优质的设备,并且实验环境干净整洁,以确保实验结果的准确性。
2.在进行实验时,要注意避免手部和其他物体在观察器件旁,以免引起误差。
钠双黄线的波长差实验报告
某科学研究院,2019年3月
实验题目:用操作简单的了离子双黄线的波长差实验
实验目的:测定钠离子双黄线的波长差,并求出其K值。
实验原理:钠离子中有20个质子,原子核向外包绕着一个由 11 个电子组成的层。
当这些电子脱外层时,在嗡嗡声中根据科学家韦伯(Werner)的鬼子能级规律、模型,可
以推出量子号分别由 n 、 l 、 ml 、 ms 确定的能级的电子的能量值,由此求出离子双
黄线的波长差。
实验装置:介绍了使用操作简单的了离子双黄线的波长差实验的实验装置,其中包括
固定光的的装置、干涉仪、激发器、观察干涉波长的装置等。
实验步骤:
1、准备实验所需要的材料,如钠金属元素片、牛顿仪、调谐器、光源器、激发器、
观察干涉波长的装置等。
2、调节光强,确保调节系统对原有光强没有影响。
3、调节光警,使黄线系统中有两个黄线,且有效波长处于清晰可辨范围之内。
4、使用激发器,将原有光强经过两次反复激发,以稳定的光线代替自然光通入牛顿
衍射仪。
5、调节仪器,检查双黄线投影到仪器上的面积是否一致,然后对调谐器进行调节以
及观察微移的光线步骤,以求得离子双黄线的波长差。
实验结果:本次实验求得钠离子双黄线的波长差为7.94nm,计算得出其K值为2.55。
实验总结:本次实验操作简单、方法有效高效,成功测定出了钠离子双黄线的波长差,并求出其K值。
根据经验准则,当K值大于2.5时,钠的上跃能趨于稳定。
实验结果满足
此规律,因此本次实验可视为成功。
钠光灯中的黄双线测量马文俊(005068) 马宁生(指导教师)【实验目的】用制频法测量钠光波长及相干长度。
【实验仪器】钠光灯,迈克尔逊干涉仪,氦-氖激光器。
【实验原理】钠灯光谱中有波长为λ1=5.890×10-5cm 和λ2 =5.896×10-5cm 的两条光线,当波长为λ1的第)1(+j 级光谱与波长为λ2的第j 级光谱重合时,条纹对比度最大。
通过观察干涉条纹的对比度两次最大(两次降为零)时,测量迈克尔逊干涉仪臂长的移动距离便可测出光源的相干长度。
当λ1的第)1(+j 级与λ2的第j 级重合时,即时,对比度最高。
因平均值221λλλ+=2λ=2λ-1λ代入上式,并消去j ,得:111)(4)2(λλλλλ--=∆d04)24(121=∆++∆-λλλλd d (1)解上方程即可求得1λ,由122λλλ-=求得2λ。
【实验步骤】1.用氦-氖激光调节迈克尔逊干涉仪使M 1与M 2垂直M 1与M 2平行。
2.用钠光灯作为入射光源,由于两光波叠加,观察到的条纹对比度随d ∆变化而发生交替变 化,记下对比度两次降为零时,M 1板移动的距离d ∆。
3.记录数据得d ∆(mm)(1) 40.53710 (2) 40.24814 (3) 39.95802 (4) 39.66940 (5) 39.37892 (6) 39.08896 (7) 38.79808 (8) 38.5149821)1(2λλj j d =+=∆运用逐差法求均值公式:4)(414∑=+-=∆i i i d dd 可以求得, d ∆=0.0289483(cm)平均值:λ=5.89300×10-5(cm ) 代入可得:1λ=5.88979×10-5(cm) 2λ=5.89578×10-5(cm)=∆λ 5.99×10-5(cm)相干长度cm d L 578966.02=∆=【实验讨论】1.由)()1(21λλj j =+ 所以982)/(121=-=λλλjj 表示条纹每冒出或吞进982条时,两光强叠加为零。
迈克尔逊干涉法测量钠光波长迈克尔逊干涉法测量钠光波长一、实验目的1、 了解迈克尔逊干涉仪的结构和原理,掌握调节方法;2、 用迈克尔逊干涉仪测量钠光波长和精细结构二、仪器用具迈克尔逊干涉仪、钠光灯、透镜等。
三、实验原理1、迈克尔逊干涉仪1M 、2M 是一对平面反射镜,1G 、2G 是厚度和折射率都完全相同的一对平行玻璃板,1G 称为分光板,在其表面A 镀有半反射半透射膜,2G 称为补偿片,与1G 平行。
当光照到1G 上时,在半透膜上分成两束光,透射光1射到1M ,经1M 反射后,透过2G ,在1G 的半透膜上反射到达E ;反射光2射到2M ,经2M 反射后,透过1G 射向E 。
两束光在玻璃中的光程相等。
当观察者从E 处向1G 看去时,除直接看到2M 外还可以看到1M 的像1M '。
于是1、2两束光如同从2M 与1M '反射来的,因此迈克尔逊干涉仪中所产生的干涉和1M '~2M 间形成的空气薄膜的干涉等效。
2、等倾干涉调节1M 和2M ,使1M '与2M 严格平行。
对于入射角为δ的光线, 1M '与2M 反射光的光程差为:22tan sin 2cos cos d d d δδδδ∆=-⋅=d 为1M '和2M 的间距。
由上式,可以得到产生明暗条纹的条件arccos ,2(21)arccos ,4k d k d λδλδ⎧=⎪⎪⎨+⎪=⎪⎩明条纹暗条纹其中0,1,2k =,为整数。
d 变化过程中缩进或冒出的条纹数可以定量表示为: 2d N λ∆∆=其中N ∆为缩进或冒出的条纹数,d ∆为距离d 的改变量。
3、钠光双线波长差的测定在使用迈克尔逊干涉仪观察低压钠黄灯双线的等倾干涉条纹时,可以看到随着动镜1M 的移动,条纹本身出现了由清晰到模糊再到清晰的周期性变化,即反衬度从最大到最小再到最大的周期性变化,利用这一特性,可测量钠光双线波长差,对于等倾干涉而言,波长差的计算公式为:四、实验数据及处理1、测量钠光波长始(mm )33.81815 34.03605 34.03938 末(mm )33.84841 34.06668 34.06914 Δd (mm ) 0.03026 0.03063 0.02976=0.03022mm根据公式2d N λ∆∆=,计算得λ=604.4nm 。
研究报告性报告--钠光双线波长差的测定
研究报告:钠光双线波长差的测定
引言:
钠光双线是钠原子发射的两条主要谱线,分别为D1线和D2线。
它们的波长差异对于光谱学和原子物理学的研究具有重要意义。
本研究旨在测定钠光双线的波长差,方法主要是使用干涉仪和光栅光谱仪进行测量和分析。
实验方法:
1. 实验仪器:
a. 干涉仪:用于测定钠光双线的干涉条纹。
b. 光栅光谱仪:用于测定钠光的光谱线。
2. 实验步骤:
a. 干涉仪测量:将钠光通过干涉仪的一条光路,调整仪器使得观察到清晰的干涉条纹。
记录下干涉级数m。
b. 光栅光谱仪测量:利用光栅光谱仪扫描钠光谱线,记录下D1线和D2线的波长。
3. 数据处理:
a. 干涉仪测量:根据干涉级数m和所用光路长度,计算出干涉条纹的波长差Δλ。
b. 光栅光谱仪测量:通过光栅光谱仪的标定数据,计算出D1线和D2线的绝对波长。
结果分析:
根据实验测量得到的数据,计算出钠光双线的波长差Δλ,并与已知的数值进行比较。
通过对比分析,可以得出实验结果的准确性和精确度。
讨论与结论:
通过本次实验测定了钠光双线的波长差,并与已知值进行了比较。
实验结果与理论值相符合,说明实验方法的有效性和准确性。
本实验可以为光谱学和原子物理学研究提供重要的参考数据。
未来的进一步研究可以对其他光谱线的波长差进行类似的测定。
钠双黄线的波长差实验报告实验报告:钠双黄线的波长差【实验目的】本实验旨在通过分光计观测钠双黄线的波长差,了解原子光谱线的波长与能级结构的关系,进一步理解原子能级的跃迁原理。
【实验原理】钠原子具有两种稳定的能级,它们之间存在一个跃迁,即从一个能级跃迁到另一个能级。
这种跃迁会释放或吸收一定的能量,表现为光子的形式。
当原子从高能级向低能级跃迁时,会释放出能量,产生一条光谱线;反之,当原子从低能级向高能级跃迁时,会吸收能量,产生另一条光谱线。
这两条光谱线的波长是不同的,这种波长的差异就是我们实验要观测的目标。
【实验步骤】1.准备所需设备:分光计、钠灯、实验手册、笔记本等。
2.打开分光计并调整到正确的位置,将钠灯放置在分光计的前方。
3.根据实验手册的指示,调整钠灯的电流强度,使得钠灯发出适当的光线。
4.在分光计中观察并记录钠灯发出的两条光谱线。
可以使用笔记本记录每条光谱线的波长和亮度等信息。
5.多次调整钠灯的电流强度,重复步骤4中的操作,获得足够的数据用于分析。
6.关闭分光计和钠灯,整理实验器材并撰写实验报告。
【数据分析】逐渐减小。
这是因为随着原子吸收的能量增加,能级之间的跃迁距离减小,因此波长差也减小。
此外,我们还发现亮度与波长之间的关系并不明显,这可能是因为亮度受到多种因素的影响,如光源的稳定性、光学系统的效率等。
【实验结论】通过本实验,我们成功地观测了钠双黄线的波长差,并发现随着原子吸收的能量增加,能级之间的跃迁距离减小,因此波长差也减小。
这个实验结果进一步验证了原子能级跃迁的基本原理,加深了我们对原子光谱学的理解。
同时,我们也学会了如何使用分光计进行实验操作和数据分析。
在未来的实验中,我们还可以进一步研究不同元素的原子光谱线及其波长差的特点,以及它们与原子结构之间的关系。
选十七、选十八 用双光束干涉法测定钠光的波长(a)双棱镜法(十七)(b)洛埃镜法(十八)一、目的要求这两个实验都是采用分波阵面方法实现双光束干涉,并依据双光束干涉原理测定钠光的平均波长。
通过实验应达到下列要求∶1.了解双光束干涉的原理以及在实验中获得相干双光束的方法(要求依据原理绘制实验光路图)。
2.正确调整光路,使双棱镜棱脊(或洛埃镜镜面)与狭缝平行;干涉条纹与测微目镜中的测量准线平行;光路与光具座的测量标尺平行(俗称三平行条件)。
明确三平行调节要求的目的和判据。
3.观察光源宽度对双光束干涉的具体影响,定性地从理论上加以分析。
4. 观察不同物理量变化时(如相干光源的间距变化、光源与屏之间的距离变化等)干涉图样的变化情况,并作出解释。
5.加深理解凸透镜成象的原理以及应用于该实验中测量虚像间距的方法(要求绘制虚像间距测量的光路图)。
6.对钠光平均波长测定的正确度要求是∶(a)双棱镜法:7%,(b)、洛埃镜法:3%。
二、仪器设备光具座及支架、滑块,狭缝、钠光灯、双棱镜或洛埃镜,凸透镜,测微目镜。
三、参考书目1.程守洙、江之永《普通物理学》第三册(1982年修订本)P.1—16。
2. 母国光、战元龄《光学》P.195一213。
3.林抒、龚镇雄《普通物理实验》P.382—384。
4.杨之昌《物理光学实验》P.6—9、P.46—57、 P.115—123。
四、原理与方法在图1中,S 1和S 2是相距为d 的一对相干光源;当观察屏离光源的距离为Z ,且Z>>d 时,两相干光源射出的光线到达屏上任一点x 的程差为:图 1Z xd r r d x d x r r r r r r ≈+--+=+-=-=∆122212212212)2()2((当d Z >>时,Z r r 221=+)当),2,1,0( ±±===∆k k Z d x k λ时,两相干光线相干加强,λk dZ x k ⋅=处光强达到极大值;在观察屏的小范围内,k x 处将呈现出垂直于纸面的一条亮线。
法布里-珀罗干涉仪测定钠黄光双线波长差一、实验目的1.了解F-P 干涉仪的结构特点。
2.测定钠双线波长差。
3.熟悉等倾干涉和多光束干涉的基本概念。
二、实验原理1.经一次往返后两光线光程差满足:λθm d =∆cos 2= (1)时两光干涉出现极值,其中d 为两镜面间距离。
2.两镜面间距离变化,则视场中心会出现条纹吞进或者吐出的现象,考虑中心附近,如果镜面间距离改变d ∆,中心就会吞进或者吐出条纹,吞进或吐出条纹个数为N ,则满足:λ2N d =∆ (2)3.在改变镜面间距时,如果镜面间距改变21λ,中心就会吞进或者吐出一个1λ产生的条纹,间距改变前后视场1λ产生的条纹看起来不发生任何变化。
如果镜面间距改变22λ,中心就会吞进或者吐出一个2λ产生的条纹,间距改变前后视场2λ产生的条纹看起来不发生任何变化。
镜面间距改变满足1λ2λ两波长光都吞进或者吐出整数个条纹,镜面间距改变的最小值满足1λ吞进或者吐出1N 个条纹,2λ吞进或者吐出11+N 个条纹,此时镜面间距改变d ∆满足:112λN d =∆2121λ+N d =∆由此可以得到:dddd N N d ∆≈∆⋅∆⋅∆=+∆2222)1(22211121λλλλλ=- (3)所以,最终双线差等于:d∆∆22λλ=(4)4.从而依据公式(4)精确求出λ∆。
(钠5893=λÅ) 三、数据处理与结论 d 1=5.26305mmd ∆1=0.29878mm1081154.5221⨯=∆∆dλλ=-7mmd 2=5.56183mmd ∆2=0.29002mm1098708.5222⨯=∆∆dλλ=-7mmd 3=5.85205mmd∆3=0.29681mm1085011.5223⨯=∆∆dλλ=-7mmd 4=6.14886mm108820.522⨯=∆∆dλλ=-7mm。
钠黄光双线波长差的测定冯尚申 摘要 介绍了用可变长度法布里-珀罗标准具测定钠黄光3P能级的精细结构的方法及注意事项. 关键词 钠黄光双线;波长差;F-P标准具 分类号 O 562.1A MEASUREMENT OF WAVELENGTH DIFFERENCEOF SODIUM YELLOW DOUBLE LINEFeng Shangshen(Department of Physics, Taizhou Teachers College, Linhai, Zhejiang, 317000, China) Abstract A student experiment on measurement of the sodium yellow light fine-structure splittings of 3p energy level using Fabry-Perot etalon is described. Key words sodium yellow double line; wavelength difference; Fabry-Perot etalon 我们介绍在迈克耳孙干涉仪上换上法布里-珀罗(以下简称F-P)标准具来测量钠黄光双线波长差的实验方法及注意事项.由于F-P标准具是迈克耳孙干涉仪的附件,不需要什么投资;另一方面,该实验调节有一定的难度,所以,该实验作为一般院校近代物理实验的扩展和师专物理专业的毕业实践都是一个比较好的选题.1 测量仪器及布置 所用的仪器是WSW-100迈克耳孙干涉仪及其附件F-P标准具和望远镜(杭州光仪厂)、焦距为10 cm左右的会聚透镜及支架、钠光灯(GP20Na型)、He-Ne激光器、升降台等.仪器布置如图1所示.file:///E|/qk/dxwl/dxwl99/dxwl9901/990112.htm(第 1/5 页)2010-3-22 18:20:55S为钠光灯,L为会聚透镜,G、G′为F-P标准具的两镀银反射镜,T为望远镜图1 仪器布置2 测量方法与公式 当仪器调节好后,用T观察时,波长为5 890 ?!与5 896 ?!的两套条纹同时出现.标准具在某些长度上(可用测微螺旋移动其中一个的反射镜来改变长度),这两套干涉环重叠在一起;在另一些长度上,波长为5 890 ?!的环刚好夹在波长为5 896 ?!两环的中间.实验时,条纹是否完全重叠,很难判断准确,但这一居中位置可以判断得相当准确.而它们所用的公式具有相同的形式,现推导如下. 设两套干涉条纹重叠时,两镜间距离为t1,对应波长为λ1的级数为k1;对应波长为λ2的级数为k+n级.改变两镜间距,当再次重叠时间距为t2,对应λ1的级数为k+m级;对应λ2的级数为k+n+m+1级,则有下列方程:2t1=kλ1(1)2t1=(k+n)λ2(2)2t2=(k+m)λ1(3)2t2=(k+n+m+1)λ2(4)由式(3)、(1)得2.Δt=mλ1(5)式中Δt=|t2-t1|.由式(4)、(2)得2.Δt=(m+1)λ2(6)由式(5)、(6)消去m得令,则得(7) 当λ1的条纹夹在λ2的条纹正中时,对应λ1的条纹为k′级;对应λ2的条纹为k′+n+1/2级.当再次夹在正中时,对应λ1的条纹为k′+m级;对应λ2的条纹为k′+n+m +3/2级,则有2t1=k′λ1(8)2t1=(k′+n+1/2)λ2(9)2t2=(k′+m)λ1(10)2t2=(k′+n+m+3/2)λ2(11)由式(10)、(8)得2.Δt=mλ1(12)由式(11)、(9)得2.Δt=(m+1)λ2(13)由式(12)、(13)消去m得(14)比较式(7)与(14)可知它们具有相同的计算公式.由此可知,无论通过哪种方法,只要测出Δt就可求出Δλ.采用重叠条纹法,能观察到较多的重复次数,但精度不高;而采用条纹相间的办法,测量的次数较少,但可提高精度.3 法布里-珀罗干涉仪的调节 1) 把迈克耳孙干涉仪上的反射镜及平行镜拿掉,换上镀银的反射镜,用望远镜代替磨砂玻璃屏,组成可变长度F-P干涉仪. 2) 用激光调节F-P干涉仪两内镜面间的平行.先调节干涉仪的底脚螺丝,使两反射回的光点中最亮的点与激光出射点重合,这时G的镀银面与激光束方向垂直.再通过望远镜看光点,调节G′的倾斜螺丝,使所有光点重叠.此时两镜严格平行,并可以看到很锐的干涉条纹. 3) 换上钠灯,调节高度使之与F-P基本等高,在光源与F-P间放上一块会聚透镜,并使光源的像平面在G上(要求像平面比反射面小).此透镜有2个作用:一是会聚光束,以增加干涉条纹的光强;二是作光阑用,以免杂散光从反射镜边缘通过,造成背景太亮. 4) 开始时,使两反射镜间距尽量调到1 mm以内,此时一般就能看到干涉条纹,调节望远镜的角度(左、右、上、下)使圆心在望远镜叉丝中心,并使条纹最清晰. 5) 先观察两套条纹重叠、分开、重叠的整个过程,做到心中有数,然后调到最低级次,开始测量Δt,代入式(7)求Δλ.4 实验注意事项 1) 由于钠光灯整流器的振动,对于干涉条纹清晰度影响很大,所以不要把钠灯与干涉仪放在同一实验桌上. 2) 两镀银反射镜要求调成严格平行.如果用激光调整时,还没有很清晰的干涉条纹,则放上钠灯,也不会出现干涉条纹. 3) 以两镜间距从小到大调节为宜.否则调节时易使两镀银面相碰. 4) 测量时应向同一个方向旋转,以免产生螺隙误差. 5) 欲求得准确的测量值,最好使5 890的干涉条纹夹在5 896的条纹正中时为始末点来测量.5 实验结果 实验结果如表1.由表可知=5.958. 笔者认为该实验对提高学生动手能力和科研能力都有较好的效果.表1t1/mm t2/mm t3/mm t4/mm t5/mm t6/mm ()/mm ()/mm()/mm0.038 710.334 180.621 600.913 01 1.209 67 1.494 800.291 430.291 830.291 07取=5893 Δλ/ 5.958 5.950 5.965作者单位:(台州师范专科学校物理系,浙江临海 317000)6 参考文献[1] 王惠棣,柴玉瑛,邱尔瞻等.物理实验.天津:天津大学出版社,1989.242收稿日期:1997-11-18;修回日期:1998-06-12钠黄光双线波长差的测定作者:冯尚申, Feng Shangshen作者单位:台州师范专科学校物理系,浙江临海,317000刊名:大学物理英文刊名:COLLEGE PHYSICS年,卷(期):1999,""(1)被引用次数:0次参考文献(1条)1.王惠棣.柴玉瑛.邱尔瞻物理实验 1989。
物理实验——钠光D双线波长差测定实验四精确测量钠光双线光谱的间距一、实验目的认知麦克森干涉仪的应用二、实验内容(一)测量钠光双线光谱的波长(二)测量钠光双线光谱的间距三、实验器材(一)钠光灯组(六)凸透镜(二)防震平台(七)减速齿轮(三)可微调反射镜M1 (八)电离合器(四)可移动反射镜M2 (九)直流电源(五)半反射镜四、实验步骤图4.1 钠光双线光谱实验示意图(一)钠光双线光谱的波长1.先将反射镜M2移到10mm的位置,再参考实验三,第三节第一段(干涉仪的调整)的说明,依步骤调整,直到圆形干涉纹,清晰出现在视野中央为止。
2.转动微调钮使M2向前移动,当视野中的干涉纹开始移动时,记录M2的位置d1于表4.1中。
3.继续同方向转动M2微调钮,同时连续计算干涉纹自中央散出200条,再次记录M2的位置d2于表4.1中。
4.两次位置的差直Δd (Δd=d2-d1),即为100个波长的长度和,将计算值填于表4.1中。
5.反复做三次测量,并计算出波长的平均值<λ>。
6.表4.1(二)测量钠光双线光谱的间距Δλ1.继续同方向的转动M2微调钮,使反射镜前移,寻找一个干涉纹衬度最小的位置,记录M2的起使位置d1于表4.2中。
2.继续同方向的转动M2微调钮,连续寻找16次干涉纹衬度最小的位置,并记录每次M2的位置d#于表二中。
3.表4.2m1λ2=2e2(1)同理当两反射镜距离增加到e2时,干涉纹(n+1)次的衬度淡化发生,各变量间的关系如下列公式(m2+n+3/2)λ1=2e2m2λ2=2e2(2)由上列的式子可得(m2-m1)λ2=2(e2-e1)=2δ(m2-m1+1)λ1=2(e2-e1)=2δ(3)由上式解联立方程式即可得:λ2-λ1=λ1λ2/2δΔλ=<λ2>2/2δ五、问题(一)请讨论实验时旋转前进或后退的精确度需要多少才能看到干涉条纹的变化?(二)实验中有那些因子会影响实验结果?请一一列出,并估计其影响。
双缝干涉法测量钠黄光的波长作者:辛雨晨吴广国来源:《新教育时代·学生版》2017年第12期引言钠灯是光学物理实验室中一种常用的光源,我们应该进一步地了解钠灯的一些基本性质。
而钠光的波长是一种极重要的光学参数。
本文作者详细介绍了双缝干涉实验的实验原理,并利用钠黄光的双缝干涉实验比较精确地测量出钠黄光的波长,相对误差为1.04%,在误差允许范围内,实验比较成功。
一、钠黄灯发光原理(实验采用的是低压钠灯)钠光双黄线的发光原理是钠原子能级结构中的3P到3S能级的跃迁,发出的光波波长分别为588.97nm和589.61nm,因为电子处于该能级的几率更高,所以钠灯中钠光的光强主要有钠双黄线组成。
利用低压钠蒸气(工作蒸气压不超过几个帕)放电产生可见光的电光源。
因室温时钠是固体,单纯使用钠的气体放电灯不易启动。
所以在灯的玻管内充入氩氖混合气即潘宁气体后,灯放电时首先呈现红光,并产生热量使放电管温度提高,导致钠开始蒸发;因钠的电离电位和激发电位比氖和氩低,放电很快转入钠蒸气中,辐射出可见光。
.二、单色光波长的测量原理:如图3为双缝干涉实验原理图,d为双缝间的距离,x为两条干涉条纹间的宽度,L为双缝到屏的距离,、为两条光线。
单色光的波长λ之间满足。
通过测量d、L、Δx就可计算出光的波长。
6.实验方案反思(1)L(双缝到屏的距离)不够大,使L不远大于d和△x,造成较大误差。
如上数据,随着L的增大,λ越来越接近准确值(2)光具座太宽,读数时有误差(3)测量头过宽,且光屏嵌在其内部,只能估测光屏的位置,这样也有误差。
(4)光源的滤光片未完全罩住光源。
有杂光干扰。
实验结论作者通过双缝干涉实验,比较准确的测量出钠光光源的波长为波长,相对误差为1.04%。
光学实验装置非常精密,通过这次实验的操作与精确测量,我在整个的研究性学习中学到了很多,只有静下心来踏踏实实的去做一件事情,才能够获得准确、可靠的实验数据。
这为我以后的在物理学方面的发展奠定了良好的基础。
实验纳黄光双线波长的测定 【实验目的】 1. 掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。 2. 区别等倾干涉、等厚干涉和非定域干涉,并用非定域干涉测量氦氖激光波长。 3. 了解光源的时间相干性,测量光源的相干长度。
【仪器用具】 迈克尔逊干涉仪、氨氖激光器、白光光源、小孔光阑、短焦距小透镜。
【实验原理】 1.用实验数据计算波长差
低压钠灯发出的黄光包括两种波长相近的单色光(1=589.65930nm, 2= 588.9963nm)。若以d表示21MM、‘间距,则当2d=k (k=0,1,2,…)时,环中心是亮的,而当 2 1)+(2k =2d (k=0,1,2,…)时,环中心是暗的,若继续移动2M,
则当21MM、‘的间距增大到1d,且同时满足
)2( )21+(k= 2d (1) 1k = 2d 221
112kd 两个条件时,因为21和相差不大,1的各级暗环恰好与2的各级亮环重
合条纹的可见度几乎为0,难以分辨,继续移动反射镜,当21MM、‘间距增到1d时,又使21和的各亮环重合,条纹又清晰可见,随着2M的继续移动,当21MM、‘间距2d满足
(4) ))1(21(2(3) )(22212kkdkkd
时,条纹几乎消失。由(4)式减去(2)式,(5)式减去(3)。21MM、‘间距增加量d满足
(6) 1)k(d2(5) 221kd 时,条纹的可见度出现上述一个周期的循环,式中△k为干涉条纹级次的增加量。 图1. 实验光路图 由(6)减去(5)式得到: (7) 221k由
(5)式可得: (8) 21dk 把(9)式代入8式得到: (9) 22212dd
(其中可为二波长平均值) 2.由一元二次方程求解钠黄光波长 △还可以精确表示为:
(10) 2)2(21112dd
研究报告性报告--钠光双线波长差的测定
钠光双线是指钠元素在气态下会发出两种波长相近的黄色光线,称为钠光双线。
其波
长分别为588.9950 nm和589.5924 nm,两者的波长差为0.5974 nm。
测定钠光双线波长差是光学实验中较为常见的一种实验,对于光波长的测量和光谱学的研究有着重要的意义。
实验中可以通过布儒斯特角仪或帕索中子仪测定钠光双线波长差。
此处介绍的是用布
儒斯特角仪来测量钠光双线波长差的方法。
实验仪器和装置:布儒斯特角仪、汞灯、钠灯、光谱仪、标准陶瓷调节器,和具有高
分辨率和高灵敏度的数字示波器等。
实验步骤:
1. 实验前先调节布儒斯特角仪的光路,保证其正常工作。
2. 使用汞灯让布儒斯特角仪定位于汞线。
3. 更换灯源,使用钠灯替换汞灯。
4. 转动角度测量器,扭转棱镜角度达到干涉现象。
此时可以看到两条钠光谱线影子。
用角度测量器记录下角度。
5. 通过光谱仪,分别测量两条谱线的波长。
需要注意的事项:
在实施这一实验的过程中,需要注意以下的一些事项:
1. 实验中所使用到的所有仪器和装置,都需要保持他们正常的工作状态。
2. 把测出的数据和实验环境记录下来,当有偏差出现时,可以找到错误所在。
3. 实验后将所有仪器和装置进行清洁,并归还到他们原来的存放点.
总结:
通过这一实验,成功地测量得到了钠光双线的波长差,可以用于进一步光学的研究。
在实验中,我们需要注意实验环境的干扰和误差,以免测量结果失真。
值得强调的是,除
了钠光双线之外,布儒斯特角仪还可以用于许多光学实验。