信号与系统2009试题1答案(点击下载)
- 格式:pdf
- 大小:272.12 KB
- 文档页数:9
科目代码: 827 科目名称: 信号与系统 (共 13 页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效Ⅰ、填空题(共11题,每空格3分,共33分)1.对冲激偶信号)(t δ',='⎰∞∞-dt t )(δ ,=-'⎰∞∞-dt t f t t )()(0δ 。
2.时间函数)()(t u e t f t -=的傅里叶变换=)(ωF 。
3.已知()()x n nu n =,()()h n u n =,则卷积和序列)()()(n h n x n y *=在2n =点的取值为(2)y = 。
4.象函数2()221(0)F z z z z -=-++<<∞,则原序列=)(n f 。
5.序列()()x n u n =-的z 变换及其收敛域为 。
6.s 平面的实轴映射到z 平面是 。
7.题图7所示因果周期信号的拉氏变换()F s = 。
8.无失真传输网络的频域系统函数()H j ω= 。
9.某因果LTI (线性时不变)离散时间系统的系统函数3()31z H z z =-,则系统对余弦激励序列()cos()()x n n n π=-∞<<∞的响应()y n = 。
10.写出题图10所示流图描述的连续时间系统的微分方程 。
题图7t题图10科目代码: 827 科目名称: 信号与系统 (共 13 页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效t题图1322Ⅱ、计算题(共8题,117分)(11分)11.描述某线性时不变因果离散时间系统的差分方程为)1()()1(5.0)(--=-+n x n x n y n y已知当)()(n u n x =时,全响应的1)1(=y ,求零输入响应)(n y zi 。
(12分)12.某因果LTI 连续时间系统,其输入、输出用下列微分—积分方程描述()5()()()()d r t r t e f t d e t dtτττ∞-∞+=--⎰其中()()3()t f t e u t t δ-=+,求该系统的单位冲激响应()h t 。
第一套第1题,下列信号的分类方法不正确的是(A)A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号:D、因果信号与反因果信号第2题,以下信号属于连续信号的是(B)A、e-nTB、e-at sin(ωt)C、cos(nπ)D、sin(nω0)第3题,下列说法正确的是(D)A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B、两个周期信号x(t),y(t)的周期分别为2和2开根号,其和信号x(t)+y(t)是周期信号。
C、两个周期信号x(t),y(t)的周期分别为2和Pi,其和信号x(t)+y(t)是周期信号。
D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。
第4题,将信号f(t)变换为( A ) 称为对信号f(t)的平移或移位。
A、f(t-t0)B、f( k -k0)C、f(at)D、f(-t)第五题,下列基本单元属于数乘器的是(A )A、B、C、D、第六题、下列傅里叶变换错误的是(D)А.1<-->2πδ(ω)B.ejω0t<-- > 2πδ(ω-ω0 )С.соѕ(ω0t) < -- > π[δ(ω-ω0 ) +δ (ω+ω0 )]D. ѕіn(ω0t)<-> jπ[δ(ω+ω0)+ δ(ω- ω0)]第7题、奇谐函数只含有基波和奇次谐波的正弦和余弦项,不会包含偶次谐波项。
(对)第8题、在奇函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(错)第9题、满足均匀性和____条件的系统称为线性系统。
(叠加性)第10题.根据激励信号和内部状态的不同,系统响应可分为零输入响应和__响应(零状态)第二套1、当周期信号的周期增大时,频谱图中谱线的间隔( C)A:增大B:无法回答C:减小D:不变2、δ(t)的傅立叶变换为( A)。
A:1B: u(t)C: 0D:不存在3、已知f(t),为求f(3-2t)则下列运算正确的是(B)A:f(-2t)左移3/2B:f(-2t)右移3/2C:f(2t)左移3D:f(2t)右移3 ,4、下列说法不正确的是(D)。
信号与系统一、单项选择题(本大题共46分,共 10 小题,每小题 4.599999 分)1. 若一因果系统的系统函数为则有如下结论——————————() A. 若,则系统稳定 B. 若H(s)的所有极点均在左半s平面,则系统稳定 C. 若H(s)的所有极点均在s平面的单位圆内,则系统稳定。
2. 连续信号,该信号的拉普拉斯变换收敛域为()。
A.B.C.D.3. 连续信号与的乘积,即*=( )A.B.C.D.4. 已知f(t),为求f(t0−at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A. f(-at)左移t0 B. f(-at) 右移tC. f(at) 左移D. f(at)右移5. 已知 f(t),为求f(t0-at) 应按下列哪种运算求得正确结果?(式中t,a都为正值) A.B. f(at) 右移t0 C. f(at) 左移t/a D. f(-at) 右移t/a6. 系统函数H(s)与激励信号X(s)之间——() A. 是反比关系; B. 无关系; C. 线性关系; D. 不确定。
7. 下列论断正确的为()。
A. 两个周期信号之和必为周期信号; B. 非周期信号一定是能量信号; C. 能量信号一定是非周期信号; D. 两个功率信号之和仍为功率信号。
8. 的拉氏反变换为()A.B.C.D.9. 系统结构框图如下,该系统单位冲激响应h(t)的表达式为()A.B.C.D.10. 已知,可以求得—————()A.B.C.D.二、多项选择题(本大题共18分,共 3 小题,每小题 6 分)1. 线性系统响应满足以下规律————————————() A. 若起始状态为零,则零输入响应为零。
B. 若起始状态为零,则零状态响应为零。
C. 若系统的零状态响应为零,则强迫响应也为零。
D. 若激励信号为零,零输入响应就是自由响应。
2. 1.之间满足如下关系———————()A.B.C.D.3. 一线性时不变因果系统的系统函数为H(s),系统稳定的条件是——()A. H(s)的极点在s平面的单位圆内B. H(s)的极点的模值小于1C. H (s)的极点全部在s平面的左半平面D. H(s)为有理多项式。
成都理工大学2009—2010学年 第二学期《信号与系统》考试试卷一、填空题(每空1分,共20分)1.1/3 ,1/3 。
2. ()()⎰+∞∞--dt t t t f 0'δ= ,()()⎰+∞∞--dt t t t f 0δ= 。
3. sin(t)、sin(2t)、…、sin(nt)(n 为整数)在区间(-π,π)中是否是正交函数集? 。
4. 已知,则y(n=3)= 。
5. 若有()()()t f t f t y 21*=,则()()y t t f t t f =-*-2211( )。
6. r(t)为系统响应,x(t)为系统激励信号u(t),设初始条件r(0-)=1,则r(0+)= 。
7. 已知单边指数信号()()t u e tf t α-=,则其振幅谱为 ,相位谱为 。
8. 单位阶跃函数u(t)的傅里叶变换结果为,该函数拉斯变换的结果为。
9. 信号的幅度谱与信号在时间轴上出现的位置有无关系?;信号的相位谱与信号在时间轴上出现的位置有无关系? 。
10. 双边Z 变换的定义为X(z)= 。
11. 函数()()()13---=n u n u n x n 双边Z 变换的收敛域为 。
12. 已知差分方程为,则其特征方程为: 。
13. ()2-t tu 的拉斯变换象函数为 。
14. 象函数()ses X --=11的拉斯反变换原函数为 。
15. ()()0ωωδω-=F 的傅里叶逆变换f(t)= 。
二、选择题(每题3分,共30分)1.t 1为常数,若t<t 1时f(t)=0,t>t 1时f(t)≠0,则该信号一定是( ) (A)有限信号 (B) 因果信号 (C)有始信号 (D) 非因果信号2.在时刻t=t 0的输出信号值仅仅依赖于时刻t<=t 0的输入信号值的系统为( )。
(A)稳定系统 (B) 因果系统 (C)非稳定系统 (D) 非因果系统 3.已知f(t)的波形如图1所示,试确定()()t f dtdt f =1的傅里叶变换结果( )图1(A )2ωSa(B )ωωj e Sa 32--(C )ωωωj j e Sae322--- (D )()32--ωδωSa4.对频域上的“周期连续谱”进行傅立叶反变换以后得到的时域信号为( )(A)周期离散信号 (B)周期连续信号 (C)非周期离散信号 (D)非周期连续信号 5.函数()()t u e t f t 2-=的收敛域为( )图26.已知()t f 2由()t f 1变换所得,如图3所示,已知()[]()ω11F t f FT =,则()t f 2的傅里叶变换()ω2F 为( )。
信号与系统试题1第一部分 选择题(共32分)一、单项选择题(本大题共16小题,每小题2分,共32分。
在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内)1.积分e d t --∞⎰2τδττ()等于( )A .δ()tB .ε()tC .2ε()tD .δε()()t t +2.已知系统微分方程为dy t dt y t f t ()()()+=2,若y f t t t (),()sin ()012+==ε,解得全响应为y t e t t ()sin()=+-︒-54242452,t ≥0。
全响应中24245sin()t -︒为( ) A .零输入响应分量 B .零状态响应分量C .自由响应分量D .稳态响应分量3.系统结构框图如图示,该系统的单位冲激响应h(t)满足的方程式为( )A .dy t dt y t x t ()()()+= B .h t x t y t ()()()=- C .dh t dt h t t ()()()+=δ D .h t t y t ()()()=-δ4.信号f t f t 12(),()波形如图所示,设f t f t f t ()()*()=12,则f()0为( )A .1B .2C .3D .45.已知信号f t ()的傅里叶变换F j ()()ωδωω=-0,则f t ()为( )A .120πωe j t B .120πωe j t - C .120πεωe t j t () D .120πεωe t j t -()6.已知信号f t ()如图所示,则其傅里叶变换为( )A .τωττωτ2422Sa Sa ()()+B .τωττωτSa Sa ()()422+ C .τωττωτ242Sa Sa ()()+ D .τωττωτSa Sa ()()42+7.信号f t 1()和f t 2()分别如图(a )和图(b)所示,已知 [()]()f t F j 11=ω,则f t 2()的 傅里叶变换为( )A .F j e j t 10()--ωωB .F j e j t 10()ωω-C .F j e j t 10()-ωωD .F j e j t 10()ωω8.有一因果线性时不变系统,其频率响应H j j ()ωω=+12,对于某一输入x(t)所得输出信号的傅里叶变换为Y j j j ()()()ωωω=++123,则该输入x(t)为( ) A .--e t t 3ε()B .e t t -3ε()C .-e t t 3ε()D .e t t 3ε()9.f t e t t ()()=2ε的拉氏变换及收敛域为( )A .122s s +>-,Re{} B .122s s +<-,Re{} C .122s s ->,Re{} D .122s s -<,Re{} 10.f t t t ()()()=--εε1的拉氏变换为( ) A .11s e s ()--B .11s e s ()-C .s e s ()1--D .s e s ()1-11.F s s s s s ()Re{}=+++>-25622的拉氏反变换为( )A .[]()e e t t t --+322εB .[]()e e t t t ---322εC .δε()()t e t t +-3D .e t t -3ε()12.图(a )中ab 段电路是某复杂电路的一部分,其中电感L 和电容C 都含有初始状态,请在图(b )中选出该电路的复频域模型。
试卷及答案信号与系统试卷(1)(满分:100分,所有答案一律写在答题纸上)考试班级学号姓名成绩考试日期:年月日,阅卷教师:考试时间120分钟,试卷题共2页一一线性非时变离散系统,具有一初始状态x(0),当激励为时f(k),响应为y(k)=((1/2)k+1)u(k);若初始状态不变,当激励为-f(k)时,响应y(k)=((-1/2)k-1)u(k)为;试求当初始状态2x(0)为,激励为4f(k)时,系统的响应?(10分)二绘出下列函数的图形(1).已知一连续时间信号x(t)如图所示,试概略画出信号y(t)=x(2-t/3)的波形图。
(8分)t-1 0 1 2 3(2). 试概略画出信号y(t)=u(t 2-4) 的波形图。
(8分)三 计算下列函数(1). y(t)=⎰-44(t 2+3t+2)(δ(t)+2δ(t-2))dt (4分) (2). f(t)=e -2t u(t), h(t)= e -2t u(t), y(t)=f(t)*h (t) (8分)(3). f(k)=1, k=0,1,2,3, h(k)=1, k=0,1,2,3, y(k)=f(k)*h (k) (8分) (4) 已知f(t)=e -2t u(t), 求y(t)=[t f(2t)] 的富立叶变换 (8分) (5)y’(t)+2y(t)=δ(t)+u(t), y(0)=0, 试求y(t)=? (8分) (6). y(k)-y(k-1)-2y(k-2)=u(k)+2u(k-2), y(-1)= 2,y(-2)= -1/2, 试求零输入响应y x (k)=? 零状态响应y f (k)=? (8分)四 一线性非时变因果系统,当激励为u(t)时,响应为)]2()([cos )(cos )(ππ---+=-t u t u t t tu e t g t ,求当激励f(t)=δ(t)时的响应)(t h 。
(10分)五 某一子系统,当输入f(t)=e -t u(t)时,零状态响应y f (t) = (1/2 e -t - e -2t +1/2e -3t )u(t), 试求将两个这样的子系统串联时,总系统的冲激响应。