高级高三文科数学中档题训练3
- 格式:doc
- 大小:544.52 KB
- 文档页数:27
中档大题规范练——立体几何1.如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.(1)求证:DM∥平面APC;(2)求证:平面ABC⊥平面APC;(3)若BC=4,AB=20,求三棱锥D-BCM的体积.(1)证明由已知,得MD是△ABP的中位线,所以MD∥AP.又MD⊄平面APC,AP⊂平面APC,故MD∥平面APC.(2)证明因为△PMB为正三角形,D为PB的中点,所以MD⊥PB.所以AP⊥PB.又AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.因为BC⊂平面PBC,所以AP⊥BC.又BC⊥AC,AC∩AP=A,所以BC⊥平面APC.因为BC⊂平面ABC,所以平面ABC⊥平面APC.(3)解由(2)知,可知MD⊥平面PBC,所以MD是三棱锥D-BCM的一条高,又AB=20,BC=4,△PMB为正三角形,M,D分别为AB,PB的中点,经计算可得MD=53,DC=5,S△BCD=12×BC×BD×sin∠CBD=12×5×4×215=221.所以V D-BCM=V M-DBC=13×S△BCD×MD=13×221×53=107. 2.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与P 重合),使得∠PEB =30°.(1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB ,∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE .又BE ∩PE =E ,∴EF ⊥平面PBE ,又PB ⊂平面PBE ,∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4.∴S △PEB =12BE ·PE ·sin ∠PEB=14xy ≤14⎝ ⎛⎭⎪⎫x +y 22=1.当且仅当x =y =2时,S △PEB 的面积最大.此时,BE =PE =2.由(1)知EF ⊥平面PBE ,∴平面PBE ⊥平面EFCB ,在平面PBE 中,作PO ⊥BE 于O ,则PO ⊥平面EFCB .即PO 为四棱锥P —EFCB 的高.又PO =PE ·sin 30°=2×12=1.S 梯形EFCB =12×(2+4)×2=6.∴V P —BCFE =13×6×1=2.3.如图,在矩形ABCD 中,AB =2BC ,P 、Q 分别是线段AB 、CD 的中点,EP ⊥平面ABCD .(1)求证:DP ⊥平面EPC ;(2)问在EP 上是否存在点F ,使平面AFD ⊥平面BFC ?若存在,求出FP AP的值;若不存在,说明理由.(1)证明 ∵EP ⊥平面ABCD ,∴EP ⊥DP .又ABCD 为矩形,AB =2BC ,P 、Q 分别为AB 、CD 的中点,连接PQ ,则PQ ⊥DC 且PQ =12DC .∴DP ⊥PC .∵EP ∩PC =P ,∴DP ⊥平面EPC .(2)解 假设存在F 使平面AFD ⊥平面BFC ,∵AD ∥BC ,BC ⊂平面BFC ,AD ⊄平面BFC ,∴AD ∥平面BFC .∴AD 平行于平面AFD 与平面BFC 的交线l .∵EP ⊥平面ABCD ,∴EP ⊥AD ,而AD ⊥AB ,AB ∩EP =P ,∴AD ⊥平面EAB ,∴l ⊥平面F AB .∴∠AFB 为平面AFD 与平面BFC 所成二面角的平面角.∵P 是AB 的中点,且FP ⊥AB ,∴当∠AFB =90°时,FP =AP .∴当FP =AP ,即FP AP =1时,平面AFD ⊥平面BFC .4.(2013·课标全国Ⅱ)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)解 因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .又因为AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22,得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D .所以1C A DE V -=13×S △A 1ED ×CD =13×12×6×3×2=1.5.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面P AC ;(2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC . 证明 (1)由AB 是圆O 的直径,得AC ⊥BC ,由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC .又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC ,所以BC ⊥平面P AC .(2)连接OG 并延长交AC 于M ,连接QM ,QO ,由G 为△AOC 的重心,得M 为AC 中点.由Q 为P A 中点,得QM ∥PC ,又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO ,MO ⊂平面QMO ,BC ∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC .所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC .6.(2014·四川)在如图所示的多面体中,四边形ABB 1A 1和ACC 1A 1都为矩形.(1)若AC ⊥BC ,证明:直线BC ⊥平面ACC 1A 1;(2)设D ,E 分别是线段BC ,CC 1的中点,在线段AB 上是否存在一点M ,使直线DE ∥平面A 1MC ?请证明你的结论.(1)证明 因为四边形ABB 1A 1和ACC 1A 1都是矩形,所以AA 1⊥AB ,AA 1⊥AC .因为AB ∩AC =A ,AB ⊂平面ABC ,AC ⊂平面ABC , 所以AA 1⊥平面ABC .因为直线BC ⊂平面ABC ,所以AA 1⊥BC .又由已知,AC ⊥BC ,AA 1∩AC =A ,AA 1⊂平面ACC 1A 1,AC ⊂平面ACC 1A 1, 所以BC ⊥平面ACC 1A 1.(2)解 取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点. 由题意知,O 为AC 1的中点.连接MD ,OE ,OM ,则MD ,OE 分别为△ABC ,△ACC 1的中位线,所以MD 綊12AC ,OE 綊12AC , 因此MD 綊OE .从而四边形MDEO 为平行四边形,则DE ∥MO .因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC ,所以直线DE ∥平面A 1MC .即线段AB 上存在一点M (线段AB 的中点),使直线DE ∥平面A 1MC .。
高三数学中档题+详细答案(全) 班级 姓名1.如图所示,在直三棱柱111C B A ABC -中,⊥=11,AC BB AB 平面D BD A ,1为AC 的中点.(1)求证://1C B 平面BD A 1;(2)求证:⊥11C B 平面11A ABB ;(3)在1CC 上是否存在一点E ,使得∠1BA E =45°,若存在,试确定E 的位置,并判断平面1A BD 与平面BDE 是否垂直?若不存在,请说明理由.2. 设1F 、2F 分别是椭圆1422=+y x 的左、右焦点,)1,0(-B .(Ⅰ)若P 是该椭圆上的一个动点,求12PF PF ⋅u u u r u u u u r 的最大值和最小值; (Ⅱ)若C 为椭圆上异于B 一点,且11CF BFλ=,求λ的值; (Ⅲ)设P 是该椭圆上的一个动点,求1PBF ∆的周长的最大值.3. 已知定义在R 上的奇函数()3224f x ax bx cx d =-++ (a b c d R ∈、、、),当1x = 时,()f x 取极小值.23-(1)求a b c d 、、、的值;(2)当[,]11x ∈-时,图象上是否存在两点,使得过此两点处的切线互相垂直?试证明你的结论.(3)求证:对]2,2[,21-∈∀x x ,都有34)()(21≤-x f x f4.设数列{}n a 的前n 项和为n S ,d 为常数,已知对*∈∀N m n ,,当m n >时,总有d m n m S S S m n m n )(-+=--.⑴ 求证:数列{n a }是等差数列;⑵ 若正整数n , m , k 成等差数列,比较k n S S +与mS 2的大小,并说明理由!高三数学中档题训练27班级 姓名1. 在平面直角坐标系xoy 中,已知圆心在直线4y x =+上,半径为的圆C 经过坐标原点O ,椭圆()222109x y a a +=>与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)若F 为椭圆的右焦点,点P 在圆C 上,且满足4PF =,求点P 的坐标.18. 某厂为适应市场需求,提高效益,特投入98万元引进先进设备,并马上投入生产,第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元.请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出,哪种方案较为合算?请说明理由′3.设二次函数2()f x ax bx c=++在区间[]2,2-上的最大值、最小值分别是M、m,集合{}|()A x f x x==.(1)若{1,2}A=,且(0)2f=,求M和m的值;(2)若{2}A=,且1a≥,记()g a M m=+,求()g a的最小值.4.设数列{}{},n na b满足1122336,4,3a b a b a b======,若{}1n na a+-是等差数列,{}1n nb b+-是等比数列.(1)分别求出数列{}{},n na b的通项公式;(2)求数列{}n a 中最小项及最小项的值;(3)是否存在*k N ∈,使10,2k k a b ⎛⎫-∈ ⎪⎝⎭,若存在,求满足条件的所有k 值;若不存在,请说明理由.高三数学中档题训练28班级 姓名1、已知E F 、分别是正三棱柱111ABC A B C -的侧面11AA B B 和侧面11AA C C 的对角线的交点,D 是棱BC 的中点. 求证:(1)//EF 平面ABC ;(2)平面AEF ⊥平面1A AD .2.在平面区域2100,260,270x y x y x y -+⎧⎪+-⎨⎪--⎩≥≥≤内有一个圆,向该区域内随机投点,当点落在圆内的概率最大时的圆记为⊙M .(1)试求出⊙M 的方程;(2)过点P (0,3)作⊙M 的两条切线,切点分别记为A ,B ;又过P 作⊙N :x 2+y 2-4x +λy +4=0的两条切线,切点分别记为C ,D .试确定λ的值,使AB ⊥CD .3. 已知函数22()ln ()f x x a x ax a R =-+∈.(1)当a=1时,证明函数()f x 只有一个零点;(2)若函数()f x 在区间(1,+∞)上是减函数,求实数a 的取值范围.4. 已知函数2()1f x x x =+-,αβ,是方程()0f x =的两个根()αβ>,()f x '是()f x 的导数.设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,.(1)求αβ,的值;(2)已知对任意的正整数n 有n a α>,记ln(12)n n n a b n a βα-==-L ,,.求数列{}n b 的前n 项和n S .高三数学中档题训练29班级 姓名1.已知函数2π()2sin 24f x x x ⎛⎫=+ ⎪⎝⎭,ππ,42x ⎡⎤∈⎢⎥⎣⎦. (1)求()f x 的最大值和最小值;(2)若不等式()2f x m -<在ππ,42x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围2、已知椭圆C :12222=+b y a x )0(>>b a 的两个焦点为1F ,2F ,点P 在椭圆C 上,且211F F PF ⊥,341=PF ,3142=PF .(1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.3.已知集合是满足下列性质的函数)(x f 的全体:在定义域D 内存在0x ,使得)1(0+x f )1()(0f x f +=成立.(1)函数xx f 1)(=是否属于集合M ?说明理由; (2)若函数b kx x f +=)(属于集合M ,试求实数k 和b 的取值范围;(3)设函数1lg)(2+=x a x f 属于集合M ,求实数a 的取值范围.4.设常数0a ≥,函数2()ln 2ln 1f x x x a x =-+-((0,))x ∈+∞. (1)令()()g x xf x '=(0)x >,求()g x 的最小值,并比较()g x 的最小值与零的大小;(2)求证:()f x 在(0,)+∞上是增函数;(3)求证:当1x >时,恒有2ln 2ln 1x x a x >-+.高三数学中档题训练30班级 姓名1.若函数)0(cos sin sin )(2>-=a ax ax ax x f 的图象与直线y=m 相切,并且切点的横坐标依次成公差为2π的等差数列.(Ⅰ)求m 的值;(Ⅱ)若点)(),(00x f y y x A =是图象的对称中心,且]2,0[0π∈x ,求点A 的坐标.2.已知中心在原点,焦点在坐标轴上的椭圆过M (1,324), N ( -223,2)两点.(Ⅰ)求椭圆的方程;(Ⅱ)在椭圆上是否存在点P(x,y),使P 到定点A(a,0)(其中0<a <3)的距离的最小值为1?若存在,求出a 的值及P 点的坐标;若不存在,请给予证明.3.设A (x 1 , y 1),B(x 2 , y 2)是函数f(x )=21+log 2x x -1图象上任意两点,且OM =21(+),点M 的横坐标为21.⑴求M 点的纵坐标;⑵若S n =)(11∑-=n i n i f =f (1n )+f (2n )+…+f (1n n -),n ∈N *,且n ≥2,求S n ; ⑶已知a n =1231(1)(1)n n S S +⎧⎪⎪⎨⎪++⎪⎩(1)(2)n n =≥n ∈N *,T n 为数列{a n}的前n 项和,若T n <λ(S n+1+1) 对一切n >1且n ∈N *都成立,求λ的取值范围.4.已知函数f(x)= n +lnx 的图像在点P(m,f(m))处的切线方程为y=x ,设()2ln ng x mx xx =--.(1)求证:当()1,0x g x ≥≥恒成立;(2)试讨论关于x 的方程:()322nmx g x x ex txx --=-+ 根的个数.高三数学中档题训练261.证明:(1)连接1AB 与B A 1相交于M ,则M 为B A 1的中点.连结MD ,又D 为AC 的中点,MD C B //1∴,又⊄C B 1平面BD A 1,MD ⊂平面BD A 1//1C B ∴平面BD A 1 . …………………………………………4′(2)B B AB 1=Θ,∴平行四边形11A ABB 为菱形,11AB B A ⊥∴, 又⊥1AC Θ面BD A 1B A AC 11⊥∴,⊥∴B A 1面11C AB …………………………7′ 111C B B A ⊥∴.又在直棱柱111C B A ABC -中,111C B BB ⊥, ⊥∴11C B 平面A ABB 1. ……………………………………9′(3)当点E 为C C 1的中点时,∠1BA E=45°,且平面⊥BD A 1平面BDE .设AB=a ,CE=x,∴111A B AC =,1C E a x =-,∴1A E ==BE ∴在1A BEV 中,由余弦定理得22211112cos 45BE A B A E A B A E =+-⋅⋅︒即222222322a x a x a ax +=++--⋅2a x =-,∴x =12a ,即E 是C C 1的中点. ………………………………………13′D Θ、E 分别为AC 、C C 1的中点,1//AC DE ∴.1AC Θ平面BD A 1,⊥∴DE 平面BD A 1.又⊂DE 平面BDE ,∴平面⊥BD A 1平面BDE . …………………………15′ 2.解:(Ⅰ)易知2,1,a b c ===所以())12,F F ,设(),P x y ,则())2212,,,3PF PF x y x y x y ⋅=--=+-u u u r u u u u r()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅u u u r u u u u r有最小值2- 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅u u u r u u u u r有最大值1(Ⅱ)设C (0x 0,y ),)1,0(-B ()1F由11CF BFλ=得001x y λ==-,又 220014x y += 所以有2670λλ+-=解得舍去)01(7>=-=λλ.(Ⅲ) 因为|P 1F |+|PB |=4-|PF 2|+|PB |≤4+|BF 2|,∴1PBF ∆的周长≤4+|BF 2|+|B 1F |≤8.所以当P 点位于直线BF 2与椭圆的交点处时,1PBF ∆周长最大,最大值为8.3.解(1)∵函数()f x 图象关于原点对称,∴对任意实数()()x f x f x -=-有,∴32322424ax bx cx d ax bx cx d ---+=-+--,即220bx d -=恒成立 ∴0,0b d == …………4分∴,3)(',)(23c ax x f cx ax x f +=+=, ∵1x =时,()f x 取极小值23-,∴2303a c a c +=+=-且, 解得1,31-==c a ………8分(2)当[1,1]x ∈-时,图象上不存在这样的两点使结论成立. …………10分假设图象上存在两点),(),,(2211y x B y x A ,使得过此两点处的切线互相垂直,则由,1)('2-=x x f 知两点处的切线斜率分别为,1211-=x k ,1222-=x k 且2212(1)(1)1x x -⋅-=-…………(*) …………13分1x Q 、2[1,1]x ∈-,2222121210,10,(1)(1)0x x x x ∴-≤-≤∴-⋅-≥此与(*)相矛盾,故假设不成立. ………………16分 4(本小题满分18分)⑴证明:∵当m n >时,总有dm n m S S S m n m n )(-+=--∴ 当2≥n 时,dn S S S n n )1(11-+=--即,)1(1d n a a n -+= 2分且1=n 也成立 ………3分∴ 当2≥n 时,dd n a d n a a a n n =----+=--)2()1(111∴数列{na }是等差数列 …………5分⑵解: ∵正整数n , m , k 成等差数列,∴,2m k n =+∴)2)1((22)1(2)1(2111d m m ma d k k ka d n n na S S S m k n -+--++-+=-+))2(2(2)2(2222222k n k n d m k n d +-+=-+=2)(4k n d-=……9分∴ ① 当0>d 时,k n S S +mS 2> ② 当0<d 时,k n S S +mS 2<③ 当0=d 时,k n S S +mS 2= ……10分 高三数学中档题训练271. 解:(1)由已知可设圆心坐标为(),4t t +, …………………………2'∴()2248t t ++=得2t =-,∴圆心坐标为()2,2-, …………………………4'所以圆的方程为()()22228x x ++-= ……………………………6'(2)由题意,椭圆中210a =,即5a =Q 29b =,∴216c =,∴()4,0F …………………………8'设(),P m n ,则()()224016m n -+-=,()()22228m n ++-= ……………………………11'解之得:4050125m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或即()4120,0,55P P ⎛⎫⎪⎝⎭或 …………………………………………14' 2. 解:(1)设引进设备几年后开始盈利,利润为y 万元则y =50n -[12n +n(n -1)2×4]-98=-2n 2+40n -98由y >0可得10n <10 ∵n ∈N *,∴3 ≤n ≤17,即第3年开始盈利 …………………… 5′(2)方案一:年平均盈利y 98=-2n -+40≤40=12n 2当且仅当982n =n 即n =7时取“=”共盈利12×7+26=110万元 …………………………………………9′ 方案二:盈利总额y =-2n 2+40n -98=-2(n -10)2+102 当n =10时,y max =102共盈利102+8=110万元………………………………………13′方案一与方案二盈利客相同,但方案二时间长,∴方案一合算…………153. (1)由(0)22f c ==可知, ……………………1′ 又{}2A 1212(1)0.ax b x c =+-+=,,故,是方程的两实根1-b 1+2=a ,c 2=a ⎧⎪⎪∴⎨⎪⎪⎩ ……………………………………………3′1,2a b ==-解得 ………………………………………4′ []22()22(1)1,2,2f x x x x x ∴=-+=-+∈-min 1()(1)1,1x f x f m ====当时,即 ………………………5′ max 2()(2)10,10.x f x f M =-=-==当时,即 ……………………6′(2)2(1)0ax b x c +-+=由题意知,方程有两相等实根x=2,,4ca ⎧⎪⎧⎪∴⎨⎨⎩⎪=⎪⎩1-b 2+2=b=1-4a a 即c=4a ………………………8′ []2()(14)4,2,2f x ax a x a x ∴=+-+∈-4112,22a a a -==-其对称轴方程为x131,2,222a a ⎡⎫≥-∈⎪⎢⎣⎭又故 ……………………………10′(2)162,M f a ∴=-=- ………………………11′4181,24a a m f a a --⎛⎫==⎪⎝⎭ ………………………12′1()164g a M m a a ∴=+=-…………………………13′[)min 63()1,1().4g a a g a +∞∴==又在区间上为单调递增的,当时, ……15′4.解:(1)21322,1a a a a -=--=-由{}1n n a a +-成等差数列知其公差为1,故()12113n n a a n n +-=-+-⋅=- ……………………3'21322,1,b b b b -=--=-由{}1n n b b +-等比数列知,其公比为12,故11122n n n b b -+⎛⎫-=-⋅ ⎪⎝⎭ …………6'11223211()()()()n n n n n n n a a a a a a a a a a -----=-+-+-+⋅⋅⋅+-+=()()()12(1)212n n n ---⋅-+⋅+6=232282n n n -+-+=27182n n -+ ………8'11223211()()()()n n n n n n n b b b b b b b b b b -----=-+-+-+⋅⋅⋅+-+=2121()2112n -⎛⎫-- ⎪⎝⎭-+6=2+42n- …………………………………………………10'(2)由(1)题知,n a =27182n n -+ ,所以当3n =或4n =时,n a 取最小项,其值为3…12' (3)假设k 存在,使k k a b -=27182n n -+-2-42n -=27142n n -+-42n -10,2⎛⎫∈ ⎪⎝⎭ 则0<27142n n -+-42n-12< 即2527132714n n n n n --+<<-+ …………15' ∵22713714n n n n -+-+与是相邻整数 ∴52nZ -∉,这与52n Z -∈矛盾,所以满足条件的k 不存在 ………………17'高三数学中档题训练282、证明:(1)连结11A B A C和,因为E F 、分别是侧面11AA B B和侧面11AA C C的对角线的交点,所以E F 、分别是11A B A C 和的中点…………………………………………4分所以//EF BC ,且BC 在平面ABC 中,而EF 不在平面ABC 中,故//EF 平面ABC (7)分(2)因为三棱柱111ABC A B C -为正三棱柱,所以1A A ⊥平面ABC ,∴1BC A A⊥,故由//EF BC 得1EF A A⊥……9分又因为D 是棱BC 的中点,且ABC ∆为正三角形,∴BC AD ⊥,故由//EF BC 得EF AD ⊥,……11分 而1A A AD A=I ,1,A A AD ⊂平面1A AD,所以EF ⊥平面1A AD,又EF ⊂平面AEF ,故平面AEF ⊥平面1A AD .……………………………………14分2. (1)设⊙M 的方程为(x -a )2+(y -b )2=r 2(r >0),则点(a ,b )在所给区域的内部.2分于是有,,.r r r ==⎪= ………………………………………………8分(未能去掉绝对值,每个方程给1分)解得 a =3,b =4,r(x -3)2+(y -4)2=5. …………………10分(2)当且仅当PM ⊥PN 时,AB ⊥CD . ………………………………14分因13PM k =,故λ3232PNk --==-,解得λ=6. …………………………18分当λ=6时,P 点在圆N 外,故λ=6即为所求的满足条件的解.(本验证不写不扣分)3. 解:(1)当a=1时,2()ln f x x x x =-+,其定义域是(0,)+∞,2121()21x x f x x x x --'∴=-+=-令()0f x '=,即2210x x x ---=,解得12x =-或1x =.0x >Q ,12x ∴=-舍去.当01x <<时,()0f x '>;当1x >时,()0f x '<.∴函数()f x 在区间(0,1)上单调递增,在区间(1,+∞)上单调递减∴当x=1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <. ∴函数()f x 只有一个零点.(2)法一:因为22()ln f x x a x ax =-+其定义域为(0,)+∞, 所以222121(21)(1)()2a x ax ax ax f x a x a x x x -++-+-'=-+==①当a=0时,1()0,()f x f x x '=>∴在区间(0,)+∞上为增函数,不合题意②当a>0时,()0(0)f x x '<>等价于(21)(1)0(0)ax ax x +->>,即1x a >.此时()f x 的单调递减区间为1(,)a +∞.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.③当a<0时,()0(0)f x x '<>等价于(21)(1)(0)ax ax x +->>,即12x a >-·此时()f x 的单调递减区间为1(,)2a -+∞,11,0.a a ⎧-≤⎪∴⎨⎪<⎩得12a ≤- 综上,实数a 的取值范围是1(,][1,)2-∞-+∞U法二:22()ln ,(0,)f x x a x ax x =-+∈+∞Q 2221()a x ax f x x -++'∴=由()f x 在区间(1,)+∞上是减函数,可得22210a x ax -++≤在区间(1,)+∞上恒成立.① 当0a =时,10≤不合题意② 当0a ≠时,可得11,4(1)0a f ⎧<⎪⎨⎪≤⎩即210,4210a a a a ⎧><⎪⎨⎪-++≤⎩或10,4112a a a a ⎧><⎪⎪∴⎨⎪≥≤-⎪⎩或或 1(,][1,)2a ∴∈-∞-+∞U4. (1) 由 210x x +-=得x =α∴=β=(2) ()21f x x '=+221112121n n n n n n n a a a a a a a ++-+=-=++(221122112n n n n n n n nn n a a a a a a a a βαβα+++++++-==-⎛⎫ ⎪⎛⎫-== ⎪-⎝⎭⎝⎭∴12n nb b += 又111lna b a βα-===- ∴数列{}n b 是一个首项为14ln2+,公比为2的等比数列;∴)()12242112n n n S -==--高三数学中档题训练291.解:(1)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦∵π12sin 23x ⎛⎫=+-⎪⎝⎭. 又ππ,42x ⎡⎤∈⎢⎥⎣⎦∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤, max min ()3,()2f x f x ==∴.(2)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ,42x ⎡⎤∈⎢⎥⎣⎦, max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(1,4).2.(1)14922=+y x …………7分 (2)02598=+-y x …………7分3.(本小题满分16分)解:(1)),0()0,(+∞-∞=Y D ,若M xx f ∈=1)(,则存在非零实数0x ,使得111100+=+x x ,……(2分)即0102=++x x ,……(3分) 因为此方程无实数解,所以函数M xx f ∉=1)(.……(4分) (2)R D =,由M b kx x f ∈+=)(,存在实数0x ,使得 b k b kx b x k +++=++00)1(,……(6分) 解得0=b ,……(7分)所以,实数k 和b 的取得范围是R k ∈,0=b .……(8分) (3)由题意,0>a ,R D =.由M x ax f ∈+=1lg)(2,存在实数0x ,使得 2lg 1lg 1)1(lg2020ax a x a =+=++,……(10分) 所以,)1(21)1(20220+=++x a x a , 化简得0222)2(202202=-++-a a x a x a a ,……(12分)当2=a 时,210-=x ,符合题意.……(13分) 当0>a 且2≠a 时,由△0≥得0))(2(84224≥---a a a a a ,化简得0462≤+-a a ,解得]53,2()2,53[+-∈Y a .……(15分)综上,实数a 的取值范围是]53,53[+-.……(16分)4.解(Ⅰ)∵()(ln )(ln )2ln 1f x x x x a x =-+-,(0,)x ∈+∞∴112()1[ln (ln )]a f x x x x x x '=-⨯+⨯+2ln 21x ax x =-+,∴()()2ln 2g x xf x x x a '==-+,(0,)x ∈+∞∴22()1x g x x x -'=-=,令()0g x '=,得2x=,列表如下:∴()g x 在x 处取得极小值, 即()g x 的最小值为(2)22ln 22g a =-+.(2)2(1ln 2)2g a =-+,∵ln 21<,∴1ln 20->,又0a ≥,∴(2)0g >. (Ⅱ)证明由(Ⅰ)知,()g x 的最小值是正数,∴对一切(0,)x ∈+∞,恒有()()0g x xf x '=>从而当0x >时,恒有()0f x '>,故()f x 在(0)+,∞上是增函数. (Ⅲ)证明由(Ⅱ)知:()f x 在(0)+,∞上是增函数, ∴当1x >时,()(1)f x f >, 又2(1)1ln 12ln110f a =-+-=, ∴()0f x >,即21ln 2ln 0x x a x --+>,∴2ln 2ln 1x x a x >-+故当1x >时,恒有2ln 2ln 1x x a x >-+.高三数学中档题训练301.解析:解:(1))42sin(23212sin 2122cos 1)(π+-=--=ax ax ax x f 3分由于y=m 与)(x f y =的图象相切,则221221-=+=m m 或; 5分(2)因为切点的横坐标依次成公差为2π等差数列,所以42,2=∴=a T π).21,167()21,163(,21),(21640),(164)(44,0)44sin(.21)44sin(22)(000πππππππππππ或点或得由则令A k k Z k k Z k k x Z k k x x x x f ∴==∈≤-≤∈-=∴∈=+=+++-=2.解:(Ⅰ)设椭圆方程为mx 2+ny 2=1(m >0,n,>0且m≠n) ……………2分∵椭圆过M,N 两点,∴m+,1932=n 1229=+n m …………………4分∴m=41,91=n ………………………………………………6分 ∴椭圆方程为 14922=+y x …………………………………………7分(Ⅱ)设存在点P(x,y)满足题设条件,∴|AP|=(x-a)2+y 2,又14922=+y x ,∴y 2=4(1 -92x ),∴|AP|=(x-a)2+ 4(1 -92x )=95(x-59a)2+4-54a 2(|x|≤3),…………………10分 若时,即350,359≤≤<a a |AP|的最小值为4-54a 2,依题意,4-54a 2=1 ,∴a=215±⎥⎦⎤ ⎝⎛∉35,0;………………………………………12分 若,359〉a 即335<a<时,当x=3时,|AP|2的最小值为(3-a )2,(3-a )2=1,∴a=2,此时点P 的坐标是(3,0) .…………………………………………15分 故当a=2时,存在这样的点P 满足条件,P 点的坐标是(3,0).…………16分3.解:(1) ∵x 1+x 2=1,∴y M =2)()(21x f x f +=21log 1log 1222112x xx x -+-+=21; 4分(2) ∵对任意x ∈(0,1)都有f(x)+f(1-x)=1∴f(i n )+f(1-i n )=1,即f(i n )+f(n in -)=1而S n =)(11∑-=n i n i f =f (1n )+f(2n )+…+f(1n n -),又S n =)(11∑-=n i n i f =f(1n n -)+f(2n n -)+…+f(1n )两式相加得2S n =n-1,∴S n =21-n . 10分(3) n≥2时,a n =)2)(1(4++n n =4(2111+-+n n ),T n =22+n n <λ22+n ,λ>n n 444++,而n n 444++≤4424+⋅n n =21,等号成立当且仅当n=2,∴λ>21. 16分4.(本小题满分16分)(1)由k=11=m 得m=1∴f(m)=1=n+0,n=1 ∴()12ln 2ln n g x mx x x xx x =--=--. ———2′∴()()222221122110x x x g x x x x x --+'=+-==≥,∴()g x 在[)1,+∞是单调增函数,∴()g x ()1112ln10g ≥=--=对于[)1,x ∈+∞恒成立.———6′(2)方程()322nmx g x x ex tx x --=-+,∴322ln 2x x ex tx =-+.∵ 0x >,∴ 方程为22ln 2xx ex tx =-+. 令22ln (),()2xL x H x x ex t x ==-+,21ln ()2xL x x -'=Q ,当()()(0,),0,(0,]x e L x L x e ''∈≥∴时在上为增函数;()()[,),0,[0,)x e L x L x e ''∈+∞≤∴时在上为减函数,当e x =时,max 2()().L x L e e == ———11′ ()()2222H x x ex t x e t e =-+=-+-,∴()x 函数L 、()H x 在同一坐标系的大致图象如图所示,∴①当2222,t e e e e ->>+即t 时,方程无解. ②当2222,t e e e e -==+即t 时,方程有一个根. ③当2222,t e e e e -<<+即t 时,方程有两个根.—16′15、。
中档大题保分练(1) (推荐时间:50分钟)1.已知函数f(x)=32sin 2x-12(cos2x-sin2x)-1,x∈R,将函数f(x)向左平移π6个单位后得到函数g(x),设△ABC三个内角A,B,C的对边分别为a,b,c.(1)若c=7,f(C)=0,sin B=3sin A,求a和b的值;(2)若g(B)=0且m=(cos A,cos B),n=(1,sin A-cos A tan B),求m·n的取值范围.2.某园林局对1 000株树木的生长情况进行调查,其中杉树600株,槐树400株.现用分层抽样方法从这1 000株树木中随机抽取100株,杉树与槐树的树干周长(单位:cm)的抽查结果如下表:(1)求x(2)如果杉树的树干周长超过60 cm就可以砍伐,请估计该片园林可以砍伐的杉树有多少株?(3)树干周长在30 cm到40 cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.3.如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=3,SE⊥AD.(1)证明:平面SBE⊥平面SEC;(2)若SE=1,求三棱锥E-SBC的高.4.已知n∈N*,数列{d n}满足d n=3+(-1)n2,数列{a n}满足a n=d1+d2+d3+…+d2n;又知数列{b n}中,b1=2,且对任意正整数m,n,b m n=b n m.(1)求数列{a n}和数列{b n}的通项公式;(2)将数列{b n}中的第a1项,第a2项,第a3项,……,第a n项,……删去后,剩余的项按从小到大的顺序排成新数列{c n},求数列{c n}的前2 013项和.1.解 (1)f (x )=32sin 2x -12cos 2x -1=sin ⎝⎛⎭⎫2x -π6-1 g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6-1=sin ⎝⎛⎭⎫2x +π6-1 由f (C )=0,∴sin ⎝⎛⎫2C -π6=1. ∵0<C <π,∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3.由sin B =3sin A ,∴b =3a .由余弦定理得(7)2=a 2+b 2-2ab cos π3.∴7=a 2+9a 2-3a 2,∴a =1,b =3. (2)由g (B )=0得sin ⎝⎛⎭⎫2B +π6=1, ∵0<B <π,∴π6<2B +π6<136π,∴2B +π6=π2,∴B =π6.∴m ·n =cos A +cos B (sin A -cos A tan B ) =cos A +sin A cos B -cos A sin B =32sin A +12cos A =sin ⎝⎛⎭⎫A +π6. ∵A +C =5π6,∴0<A <5π6,∴π6<A +π6<π,∴0<sin ⎝⎛⎭⎫A +π6≤1. ∴m ·n 的取值范围是(0,1].2. 解 (1)按分层抽样方法随机抽取100株,可得槐树为40株,杉树为60株, ∴x =60-6-19-21=14,y =40-4-20-6=10. 估计槐树树干周长的众数为45 cm. (2)1460×600=140, 估计该片园林可以砍伐的杉树有140株.(3)设4株树为B 1,B 2,B 3,D ,设D 为有虫害的那株,基本事件为(D ),(B 1,D ),(B 2,D ),(B 3,D ),(B 1,B 2,D ),(B 1,B 3,D ),(B 2,B 1,D ),(B 2,B 3,D ),(B 3,B 1,D ),(B 3,B 2,D ),(B 1,B 2,B 3),(B 1,B 3,B 2),(B 2,B 1,B 3),(B 2,B 3,B 1),(B 3,B 1,B 2),(B 3,B 2,B 1)共16种,设事件A :排查的树木恰好为2株,事件A 包含(B 1,D ),(B 2,D ),(B 3,D )3种, ∴P (A )=316.3.(1)证明 ∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD , SE ⊥AD , ∴SE ⊥平面ABCD .∵BE ⊂平面ABCD ,∴SE ⊥BE .∵AB ⊥AD ,AB ∥CD ,CD =3AB =3,AE =ED =3, ∴∠AEB =30°,∠CED =60°. ∴∠BEC =90°,即BE ⊥CE . 结合SE ∩CE =E ,得BE ⊥平面SEC . ∵BE ⊂平面SBE ,∴平面SBE ⊥平面SEC . (2)解 如图,作EF ⊥BC 于F ,连接SF . 由BC ⊥SE ,SE 和EF 相交, 得BC ⊥平面SEF . 由BC 在平面SBC 内, 得平面SEF ⊥平面SBC . 过E 作EG ⊥SF 于点G , 则EG ⊥平面SBC ,即线段EG 的长即为三棱锥E -SBC 的高. 由SE =1,BE =2,CE =23得BC =4,EF =3, 所以SF =2.在Rt △SEF 中,EG =SE ·EF SF =32,所以三棱锥E -SBC 的高为32. 4.解 方法一 (1)∵d n =3+(-1)n2,∴a n =d 1+d 2+d 3+…+d2n .=3×2n2=3n . 又由题知:令m =1,则b 2=b 21=22,b 3=b 31=23,…,b n =b n 1=2n. 若b n =2n ,则b m n =2nm ,b n m =2mn , ∴b m n =b n m 恒成立.若b n ≠2n ,当m =1,b m n =b n m 不成立,∴b n =2n .(2)由题知将数列{b n }中的第3项、第6项、第9项……删去后构成的新数列{c n }中的奇数列与偶数列仍成等比数列,首项分别是b 1=1,b 2=4,公比均是8, T 2 013=(c 1+c 3+c 5+…+c 2 013)+(c 2+c 4+c 6+…+c 2 012) =2×(1-81 007)1-8+4×(1-81 006)1-8=20×81 006-67.方法二 (1)a n =d 1+d 2+…+d 2n =32×2n =3n .由b m n =b nm 及b 1=2>0知b n >0,对b m n =b n m 两边取对数得,m lg b n =n lg b m ,令m =1,得lg b n =n lg b 1=n lg 2=lg 2n , ∴b n =2n .(2)T 2 013=c 1+c 2+…+c 2 013=b 1+b 2+b 4+b 5+b 7+b 8+…+b 3 018+b 3 019 =(b 1+b 2+…+b 3 019)-(b 3+b 6+…+b 3 018) =2(1-23 019)1-2-8(1-81 006)1-23=20×81 006-67.中档大题保分练(2)(推荐时间:50分钟)1. 已知向量m =(sin x,1),n =⎝⎛⎭⎫3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.2. 已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈[-1,2],y ∈[-1,1],求向量a ,b 的夹角是钝角的概率.3. 如图1,在等腰△ABC 中,D ,E ,F 分别是AB ,AC ,BC 边的中点,现将△ACD 沿CD 翻折,使得平面ACD ⊥平面BCD .(如图2)(1)求证:AB ∥平面DEF ; (2)求证:BD ⊥AC ;(3)设三棱锥A -BCD 的体积为V 1,多面体ABFED 的体积为V 2,求V 1∶V 2的值.4. 已知数列{a n }是一个公差大于零的等差数列,且a 3a 6=55,a 2+a 7=16,数列{b n }的前n 项和为S n ,且S n =2b n -2.(1)求数列{a n },{b n }的通项公式; (2)设c n =a nb n ,T n =c 1+c 2+…+c n ,求T n .1.解 (1)f (x )=m ·n =3A sin x cos x +A 2cos 2x =A ⎝⎛⎭⎫32sin 2x +12cos 2x =A sin ⎝⎛⎭⎫2x +π6. 因为A >0,由题意知A =6. (2)由(1)得f (x )=6sin ⎝⎛⎫2x +π6. 将函数y =f (x )的图象向左平移π12个单位后得到y =6sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π6=6sin ⎝⎛⎭⎫2x +π3的图象; 再将得到的图象上各点横坐标缩短为原来的12,纵坐标不变,得到y =6sin ⎝⎛⎭⎫4x +π3的图象. 因此g (x )=6sin ⎝⎛⎭⎫4x +π3. 因为x ∈⎣⎡⎦⎤0,5π24, 所以4x +π3∈⎣⎡⎦⎤π3,7π6, 故g (x )在⎣⎡⎦⎤0,5π24上的值域为[-3,6]. 2.解 (1)共包含12个基本事件.Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},设“a ∥b ”为事件A ,由a ∥b ,得x =2y , 则A ={(0,0),(2,1)},含2个基本事件, 则P (A )=212=16.(2)设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角, 可得a ·b <0,即2x +y <0,且x ≠2y .Ω=⎩⎨⎧(x ,y )⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤2,-1≤y ≤1,,B =⎩⎨⎧(x ,y )⎪⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1≤x ≤2,-1≤y ≤1,2x +y <0,x ≠2y ,则P (B )=S B S Ω=12×⎝⎛⎭⎫12+32×23×2=13.3.(1)证明 在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF ∥AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF . (2)证明 ∵平面ACD ⊥平面BCD , 平面ACD ∩平面BCD =CD , AD ⊥CD ,且AD ⊂平面ACD ,∴AD ⊥平面BCD .又BD ⊂平面BCD , ∴AD ⊥BD .又∵CD ⊥BD ,且AD ∩CD =D , ∴BD ⊥平面ACD .又AC ⊂平面ACD ,∴BD ⊥AC . (3)解 由(2)可知AD ⊥平面BCD , ∴AD 是三棱锥A -BCD 的高, ∴V 1=13·AD ·S △BCD ,又∵E ,F 分别是AC ,BC 边的中点,∴三棱锥E -CDF 的高是三棱锥A -BCD 高的一半, 三棱锥E -CDF 的底面积是三棱锥A -BCD 底面积的一半, ∴三棱锥E -CDF 的体积V E -CDF =14V 1,∴V 2=V 1-V E -CDF =V 1-14V 1=34V 1,∴V 1∶V 2=4∶3.4.解 (1)依题意,设等差数列{a n }的公差为d (d >0),则有⎩⎪⎨⎪⎧(a 1+2d )(a 1+5d )=55 ①2a 1+7d =16 ②将②代入①得(16-3d )(16+3d )=220, 即d 2=4,∵d >0,∴d =2,a 1=1,∴a n =2n -1, 当n =1时,S 1=2b 1-2,b 1=2, 当n ≥2时,b n =S n -S n -1=(2b n -2)-(2b n -1-2)=2b n -2b n -1, ∴b n =2b n -1.∴{b n }是以2为首项,2为公比的等比数列.即b n =2n . (2)c n =a n b n =2n -12n , T n =12+322+…+2n -12n12T n =122+323+…+2n -32n +2n -12n +1 ∴③-④得,12T n =12+222+223+…+22n -2n -12n +1=12+12+122+…+12n -1-2n -12n +1 =12+12⎝⎛⎭⎫1-12n -11-12-2n -12n +1=32-2n +32n +1 ∴T n =3-2n+32n .中档大题保分练(3)(推荐时间:50分钟)1. 已知向量m =(sin x ,-1),n =(cos x,3).(1)当m ∥n 时,求sin x +cos x3sin x -2cos x的值;(2)已知在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,3c =2a sin(A +B ),函数f (x )=(m +n )·m ,求f ⎝⎛⎭⎫B +π8的取值范围.2. 已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0(n ∈N *),且b 1+b 2+b 3=15,又a 1+b 1、a 2+b 2、a 3+b 3成等比数列. (1)求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .3. 某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y ≥96,z ≥96,求第三批次中女教职工比男教职工多的概率.4. 如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E ,F分别为AD ,BP 的中点,AD =3,AP =5,PC =27. (1)求证:EF ∥平面PDC ;(2)若∠CDP =90°,求证:BE ⊥DP ; (3)若∠CDP =120°,求该多面体的体积.1.解 (1)由m ∥n ,可得3sin x =-cos x ,于是tan x =-13,∴sin x +cos x 3sin x -2cos x =tan x +13tan x -2=-13+13×⎝⎛⎭⎫-13-2=-29.(2)在△ABC 中,A +B =π-C ,于是sin(A +B )=sin C , 由正弦定理知:3sin C =2sin A sin C , ∵sin C ≠0,∴sin A =32. 又△ABC 为锐角三角形,∴A =π3,于是π6<B <π2.∵f (x )=(m +n )·m =(sin x +cos x,2)·(sin x ,-1)=sin 2x +sin x cos x -2 =1-cos 2x 2+12sin 2x -2 =22sin ⎝⎛⎭⎫2x -π4-32, ∴f ⎝⎛⎭⎫B +π8=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫B +π8-π4-32 =22sin 2B -32. 由π6<B <π2得π3<2B <π, ∴0<sin 2B ≤1,-32<22sin 2B -32≤22-32, 即f ⎝⎛⎭⎫B +π8∈⎝⎛⎦⎤-32,22-32. 2. 解 (1)∵a n =3n -1(n ∈N *),∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中,∵b 1+b 2+b 3=15,∴b 2=5. 又∵a 1+b 1、a 2+b 2、a 3+b 3成等比数列, 设等差数列{b n }的公差为d ,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2, ∵b n >0(n ∈N *),∴舍去d =-10,取d =2,∴b 1=3, ∴b n =2n +1(n ∈N *).(2)由(1)知,T n =3×1+5×3+7×32+…+(2n -1)3n -2+(2n +1)3n -1, ① 3T n =3×3+5×32+7×33+…+(2n -1)3n -1+(2n +1)·3n ,②①-②得-2T n =3×1+2×3+2×32+2×33+…+2×3n -1-(2n +1)3n=3+2(3+32+33+…+3n -1)-(2n +1)3n=3+2×3-3n 1-3-(2n +1)3n =3n -(2n +1)3n =-2n ·3n , ∴T n =n ·3n .3.解 (1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12,所以应在第三批次中抽取12名.(3)设第三批次中女教职工比男教职工多的事件为A ,第三批次女教职工和男教职工数记为数对(y ,z ).由(2)知y +z =200(y ,z ∈N *,y ≥96,z ≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个;而事件A 包含的基本事件有(101,99),(102,98),(103,97),(104,96)共4个. 所以,所求概率为P (A )=49.4.(1)证明 取PC 的中点为O ,连接FO ,DO . 因为F ,O 分别为BP ,PC 的中点, 所以FO ∥BC ,且FO =12BC .又四边形ABCD 为平行四边形,E 为AD 的中点, 所以ED ∥BC ,且ED =12BC ,所以FO ∥ED ,且FO =ED ,所以四边形EFOD 是平行四边形,所以EF ∥DO . 又EF ⊄平面PDC ,DO ⊂平面PDC , 所以EF ∥平面PDC .(2)解 若∠CDP =90°,则PD ⊥DC , 又AD ⊥平面PDC ,所以AD ⊥DP , 又∵DC ∩AD =D ,所以DP ⊥平面ABCD 因为BE ⊂平面ABCD ,所以BE ⊥DP .(3)解 连接AC ,由ABCD 为平行四边形可知△ABC 与△ADC 面积相等, 所以三棱锥P -ADC 与三棱锥P -ABC 体积相等, 即五面体的体积为三棱锥P -ADC 体积的2倍. 因为AD ⊥平面PDC ,所以AD ⊥DP , 由AD =3,AP =5,可得DP =4.又∠CDP =120°,PC =27,由余弦定理得DC =2, 所以三棱锥P -ADC 的体积V P -ADC =V A -CDP =13×12×2×4×sin 120°×3=23,所以该五面体的体积为4 3.。
高考数学中档题精选(1)1. 已知函数f(x)=cos x 2+cos 3x 2+cos 5x 2csc x 2 +cos 23x2 .(1) 求函数f(x)的最小正周期和值域; (2) 求函数f(x)的单调递增区间.解:(1) y=sin x 2(cos x 2+cos 3x 2+cos 5x 2)+1+cos3x2=12sinx+12(sin2x-sinx)+12(sin3x-sin2x)+12cos3x+12=12sin3x+12cos3x+12 =22sin(3x+π4)+12∴T=2π3 ,值域y ∈[1-22,1+22]. (2)由2k π-π2 ≤3x+π4 ≤2k π+π2 ,k ∈Z.得:2k π3-π4 ≤x ≤2k π3+π12(k ∈Z). 2. 设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n(n-1)(n ∈N)(1)求证数列{a n }为等差数列,并写出其通项公式;(2)是否存在非零常数p 、q 使数列{S npn+q }是等差数列?若存在,试求出p 、q应满足的关系式,若不存在,请说明理由. 解:(1)当n ≥2时,a n =S n -S n-1=na n -(n-1)a n-1-4(n-1),即a n -a n-1=4(n ≥2) ∴{a n }为等差数列.∵a 1=1,公差d=4,∴a n =4n-3. (2)若{S n pn+q }是等差数列,则对一切n ∈N ,都有S npn+q=An+B, 即S n =(An+B)(pn+q),又S n =12(a 1+a n )n =2n 2-n,∴2n 2-n=Apn 2+(Aq+Bp)n+Bq要使上式恒成立,当且仅当⎪⎩⎪⎨⎧=-=+=012Bq Bp Aq Ap ,∵q ≠0,∴B =0,∴p q=-2,即:p+2q=0.3. 已知正三棱锥A-BCD 的边长为a ,E 、F 分别为AB 、BC 的中点,且AC ⊥DE. (Ⅰ)求此正三棱锥的体积; (Ⅱ)求二面角E-FD-B 的正弦值. 解:(Ⅰ)作AO ⊥平面BCD 于O,由正三棱锥的性质可知O 为底面中心,连CO,则CO ⊥BD,由三垂线定理 知AC ⊥BD ,又AC ⊥ED,∴AC ⊥平面ABD,∴AC ⊥AD, AB ⊥AC,AB ⊥AD.在Rt △ACD 中,由AC 2+AD 2=2AC 2=a 2 可得:AC=AD=AB=22a .∴V=V B-ACD =13·12·AC ·AD ·AB=224a 3.(Ⅱ)过E 作EG ⊥平面BCD 于G ,过G 作GH ⊥FD 于H ,连EH ,由三垂线定理知EH ⊥FD,即∠EHG 为二面角E-FD-B 的平面角. ∵EG =12 AO 而AO =V B-ACD 13·S △BCD =66a ,∴EG=612a .又∵ED =AE 2+AD 2=(24a)2+(22a)2=104a ∵EF ∥AC ,∴EF ⊥DE.∴在Rt △FED 中,EH =EF ·ED DF =1512a ∴在Rt △EGH 中,sin ∠EHG =EG EH =105*选做题:定义在区间(-1,1)上的函数f(x)满足:①对任意x 、y ∈(-1,1)都有f(x)+f(y)=f(x+y1+xy );②当x ∈(-1,0)时,f(x)>0.(Ⅰ)求证:f(x)为奇函数;(Ⅱ)试解不等式f(x)+f(x-1)>f(12).A BCDE FOG H解:(Ⅰ)令x=y=0,则f(0)+f(0)=f(0),∴f(0)=0. 又令x ∈(-1,1),则-x ∈(-1,1),而f(x)+f(-x)=f(x-x1-x 2)=f(0)=0 ∴f(-x)=-f(x),即f(x)在(-1,1)上是奇函数. (Ⅱ)令-1<x 1<x 2<1,则x 1-x 2<0,1-x 1x 2>0,于是f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(x 1-x 21-x 1x 2)>0,即f(x 1)>f(x 2),所以f(x)在定义域上为减函数.从而f(x)+f(x-1)>f(12)等价与不等式⎪⎪⎩⎪⎪⎨⎧>-+-<-<-<<-)21()112(111112f x x x f x x.213503*********111210222-<<⇔⎩⎨⎧+-<<⇔⎩⎨⎧+-<-<<⇔⎪⎩⎪⎨⎧<-+-<<⇔x x x x x x x x x x x x 高考数学中档题精选(2)1. 已知z 是复数,且arg(z-i)=π4,|z|= 5 .求复数z. 解法1.设复数z-i 的模为r(r>0),则z-i=r(cosπ4 +isin π4), ∴i r z )122(22++=,042,5)122()22(,5||222=-+=++∴=r r r r z 即解得r= 2 ,z=1+2i.解法2.设z=x+yi,则5)1()0(15)01(145222222=++⇒⎩⎨⎧>+==+⇒⎪⎩⎪⎨⎧>--==+x x x x y y x y x y tg y x π解得x=1或-2(舍去),所以z=1+2i.解法3.设)sin (cos 5θθi z +=则1sin 5cos 51cos 51sin 54-=⇒=-=θθθθπtg解得:,10103)4cos(,0cos ,1010)4sin(=-∴>=-πθθπθ.21)55255(5554sin )4sin(4cos )4cos(]4)4cos[(cos ,5524sin )4cos(4cos )4sin(]4)4sin[(sin i i z +=+=∴=---=+-==-+-=+-=∴ππθππθππθθππθππθππθθ 2. 已知f(x)=sin 2x-2(a-1)sinxcosx+5cos 2x+2-a,若对于任意的实数x 恒有|f(x)|≤6成立,求a 的取值范围.解:f(x)=(1-a)sin2x+2cos2x+5-a=5-2a+a 2 sin(2x+ψ)+5-a.(ψ为一定角,大小与a 有关).∵x ∈R,∴[f(x)]max =5-a+5-2a+a 2 ,[f(x)]min =5-a-5-2a+a 2 .由|f(x)|≤6,得⎪⎩⎪⎨⎧-≤+-+≤+-⇔⎪⎩⎪⎨⎧-≥+---≤+-+-aa a aa a a a a a a a 1125125625562552222 .52915291111)11(25)1(251112222≤≤∴⎪⎪⎩⎪⎪⎨⎧≤≥≤≤-⇔⎪⎩⎪⎨⎧-≤+-+≤+-≤≤-a a a a a a a a a a a 3.斜三棱柱ABC-A 1B 1C 1的底面是边长为2的正三角形,顶点A 1在底面的射影O 是△ABC 的中心,异面直线AB 与CC 1所成的角为45°. (1)求证:AA 1⊥平面A 1BC ;(2)求二面角A 1-BC-A 的平面角的正弦值; (3)求这个斜三棱柱的体积.(1)由已知可得A 1-ABC 为正三棱锥,∠A 1AB=45° ∴∠AA 1B=∠AA 1C=90°即AA 1⊥A 1B,AA 1⊥A 1C∴AA 1⊥平面A 1BC(2)连AO 并延长交BC 于D,则AD ⊥BC ,连A 1D,则∠ADA 1为所求的角。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考模拟复习试卷试题模拟卷【考情解读】1.了解集合的含义、元素与集合的属于关系;2.理解集合之间包含与相等的含义,能识别给定集合的子集;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合的关系及运算.【重点知识梳理】1.元素与集合(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集A中任意一个元素均为B中的元素A⊆B 真子集A中任意一个元素均为B中的元素,且B中至少有一个元素不是A中的元素A B 空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅;∁U(∁UA)=A.【高频考点突破】考点一 集合的含义【例1】 (1)若集合A ={x ∈R|ax2+ax +1=0}中只有一个元素,则a =( ) A .4 B .2 C .0 D .0或4(2)已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a2,a +b ,0},则a2 016+b2 016=________.【答案】(1)A (2)1【规律方法】(1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合.(2)集合中元素的三个特性中的互异性对解题的影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【变式探究】 (1)已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .1 B .3 C .5 D .9(2)已知集合A ={m +2,2m2+m},若3∈A ,则m 的值为________.【答案】(1)C (2)-32 考点二 集合间的基本关系【例2】 (1)已知集合A ={x|-2≤x≤7},B ={x|m +1<x<2m -1},若B ⊆A ,则实数m 的取值范围为__________.(2)设U =R ,集合A ={x|x2+3x +2=0},B ={x|x2+(m +1)x +m =0},若(∁UA)∩B =∅,则m =__________.【答案】(1)(-∞,4](2)1或2【规律方法】(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn图来直观解决这类问题.【变式探究】 (1)已知集合A={x|y=ln(x+3)},B={x|x≥2},则下列结论正确的是()A.A=B B.A∩B=∅ C.A⊆B D.B⊆A(2)已知集合A={x|log2x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是__________.【答案】(1)D(2)(4,+∞)考点三集合的基本运算【例3】 (1)(·四川卷)已知集合A={x|x2-x-2≤0},集合B为整数集,则A∩B=()A.{-1,0,1,2} B.{-2,-1,0,1}C.{0,1} D.{-1,0}(2)设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}【答案】(1)A(2)B【规律方法】(1)一般来讲,集合中的元素若是离散的,则用Venn图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.【变式探究】 (1)(·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅ B.{2}C .{5}D .{2,5}(2)设集合M ={x|-1≤x <2},N ={y|y <a},若M∩N≠∅,则实数a 的取值范围一定是( ) A .[-1,2) B .(-∞,2] C .[-1,+∞) D .(-1,+∞)【答案】(1)B (2)D考点四 集合背景下的新定义问题以集合为背景的新定义问题,集合只是一种表述形式,实质上考查的是考生接受新信息、理解新情境、解决新问题的数学能力.解决此类问题,要从以下两点入手:(1)正确理解创新定义.分析新定义的表述意义,把新定义所表达的数学本质弄清楚,进而转化成熟知的数学情境,并能够应用到具体的解题之中,这是解决问题的基础.(2)合理利用集合性质.运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,但关键之处还是合理利用集合的运算与性质.【例4】设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪m≤x≤m +34,N =⎩⎨⎧⎭⎬⎫x ⎪⎪n -13≤x≤n ,且M ,N 都是集合{0|0≤x≤1}的子集,如果把b -a 叫作集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是( )A.13B.23C.112D.512【答案】C 【真题感悟】1.【高考新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )22.【高考重庆,文1】已知集合{1,2,3},B {1,3}A ,则A B =() (A) {2} (B) {1,2} (C) {1,3} (D) {1,2,3} 【答案】C3.【高考浙江,文1】已知集合{}223x x x P =-≥,{}Q 24x x =<<,则Q P =()A .[)3,4B .(]2,3C .()1,2-D .(]1,3- 【答案】A4.【高考天津,文1】已知全集{1,2,3,4,5,6}U,集合{2,3,5}A ,集合{1,3,4,6}B ,则集合A UB ()()(A) {3} (B) {2,5} (C) {1,4,6} (D){2,3,5} 【答案】B5.【高考四川,文1】设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =( ) (A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 【答案】A6.【高考山东,文1】已知集合{}|{|24130}A x x B x x x =<<=--<,()(),则A B ⋂= ( )(A )1,3()(B )1,4()(C )(2,3()(D )2,4())【答案】C7.【高考陕西,文1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =( )A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞8.【高考安徽,文2】设全集{}123456U =,,,,,,{}12A =,,{}234B =,,,则()U A C B =( )(A ){}1256,,, (B ){}1 (C ){}2 (D ){}1234,,, 【答案】B9.【高考广东,文1】若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1- 【答案】C1.(·北京卷) 若集合A ={0,1,2,4},B ={1,2,3},则A∩B =( ) A .{0,1,2,3,4} B .{0,4} C .{1,2} D .{3} 【答案】C2.(·福建卷) 若集合P ={x|2≤x<4},Q ={x|x≥3},则P∩Q 等于( ) A .{x|3≤x<4} B .{x|3<x<4} C .{x|2≤x<3} D .{x|2≤x≤3} 【答案】A3.(·福建卷) 已知集合{a ,b ,c}={0,1,2},且下列三个关系:①a≠2;②b =2;③c≠0有且只有一个正确,则100a +10b +c 等于________.【答案】2014.(·广东卷) 已知集合M={2,3,4},N={0,2,3,5},则M∩N=()A.{0,2} B.{2,3}C.{3,4} D.{3,5}【答案】B5.(·湖北卷) 已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁UA=() A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}【答案】C6.(·湖南卷) 已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2} B.{x|x>1}C.{x|2<x<3} D.{x|1<x<3}【答案】C7.(·重庆卷) 已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=________.【答案】{3,5,13}8.(·江苏卷) 已知集合A={-2,-1,3,4},B={-1,2,3},则A∩B=________.【答案】{-1,3}9.(·江西卷) 设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁RB)=() A.(-3,0) B.(-3,-1)C.(-3,-1] D.(-3,3)【答案】C10.(·辽宁卷) 已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}【答案】D11.(·全国卷) 设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为() A.2 B.3C.5 D.7【答案】B12.(·新课标全国卷Ⅱ)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=() A.∅ B.{2}C.{0} D.{-2}【答案】B13.(·全国新课标卷Ⅰ)已知集合M={x|-1<x<3},N={-2<x<1},则M∩N=()A.(-2,1) B.(-1,1)C.(1,3) D.(-2,3)【答案】B14.(·山东卷) 设集合A={x|x2-2x<0},B={x|1≤x≤4},则A∩B=()A.(0,2] B.(1,2)C.[1,2) D.(1,4)【答案】C15.(·陕西卷) 设集合M={x|x≥0,x∈R},N={x|x2<1,x∈R},则M∩N=()A.[0,1] B.(0,1) C.(0,1] D.[0,1)【答案】D16.(·四川卷) 已知集合A={x|(x+1)(x-2)≤0},集合B为整数集,则A∩B=()A.{-1,0} B.{0,1}C.{-2,-1,0,1} D.{-1,0,1,2}【答案】D17.(·天津卷) 已知q和n均为给定的大于1的自然数,设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.18.(·浙江卷) 设集合S={x|x≥2},T={x|x≤5},则S∩T=()A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5]【答案】D19.(·福建卷) 若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()A.2B.3C.4 D.16【答案】C20.(·北京卷) 已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=()A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}【答案】B21.(·安徽卷) 已知A={x|x+1>0},B={-2,-1,0,1},则(∁RA)∩B=()A.{-2,-1} B.{-2}C.{-1,0,1} D.{0,1}【答案】A22.(·天津卷) 已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2] B.[1,2]C.[-2,2] D.[-2,1]【答案】D23.(·陕西卷) 设全集为R,函数f(x)=1-x的定义域为M,则∁RM为()A.(-∞,1) B.(1,+∞)C.(-∞,1] D.[1,+∞)【答案】B24.(·新课标全国卷Ⅱ] 已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=() A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1}【答案】C25.(·辽宁卷) 已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=()A.{0} B.{0,1}C.{0,2} D.{0,1,2}【答案】B26.(·江苏卷) 集合{-1,0,1}共有________个子集.【答案】827.(·湖南卷) 已知集合U={2,3,6,8},A={2,3},B={2,6,8},则(∁UA)∩B=________.【答案】{6,8}28.(·湖北卷) 已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩(∁UA)=() A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B29.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A30.(·广东卷) 设集合S ={x|x2+2x =0,x ∈R},T ={x|x2-2x =0,x ∈R},则S∩T =( ) A .{0} B .{0,2}C .{-2,0}D .{-2,0,2} 【答案】A31.(·新课标全国卷Ⅰ) 已知集合A ={1,2,3,4},B ={x|x =n2,n ∈A},则A∩B =( ) A .{1,4} B .{2,3} C .{9,16} D .{1,2} 【答案】A32.(·浙江卷) 设集合S ={x|x>-2},T ={x|-4≤x≤1},则S∩T =( ) A .[-4,+∞) B .(-2,+∞) C .[-4,1] D .(-2,1] 【答案】D33.(·重庆卷) 已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U(A ∪B)=( ) A .{1,3,4} B .{3,4} C .{3} D .{4} 【答案】D【押题专练】1.已知集合A =⎩⎨⎧⎭⎬⎫x|x ∈Z ,且32-x ∈Z ,则集合A 中的元素个数为( )A .2B .3C .4D .5【答案】C2.设函数f(x)=lg(1-x2),集合A={x|y=f(x)},B={y|y=f(x)},则图中阴影部分表示的集合为()A.[-1,0] B.(-1,0)C.(-∞,-1)∪[0,1) D.(-∞,-1]∪(0,1)【答案】D3.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是() A.0 B.1C.2 D.3【答案】C4.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1 B.2C.3 D.4【答案】C5.已知A ={0,m,2},B ={x|x3-4x =0},若A =B ,则m =________.【答案】-26.若集合A ={x|x2-9x <0,x ∈N*},B =⎩⎨⎧⎭⎬⎫y ⎪⎪4y ∈N*,y ∈N*,则A∩B 中元素的个数为________.【答案】37.已知集合A ={x|4≤2x≤16},B =[a ,b],若A ⊆B ,则实数a -b 的取值范围是________.【答案】(-∞,-2]8.已知集合A ={-4,2a -1,a2},B ={a -5,1-a,9},分别求适合下列条件的a 的值. (1)9∈(A∩B); (2){9}=A∩B.9.已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.高考模拟复习试卷试题模拟卷高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
中档大题规范练中档大题规范练——三角函数1.已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解 (1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -2cos 2x=sin 2x -(1+cos 2x ) =2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ). 2.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3 =3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4. 由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34. 3.已知函数f (x )=3sin 2x +2cos 2x +a .(1)求函数f (x )的最小正周期以及单调递增区间;(2)当x ∈[0,π4]时,函数f (x )有最大值4,求实数a 的值. 解 f (x )=3sin 2x +2cos 2x +a=cos 2x +3sin 2x +1+a=2sin(2x +π6)+a +1. (1)函数f (x )的最小正周期为2π2=π, 由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 解得k π-π3≤x ≤k π+π6,k ∈Z .故函数f (x )的单调递增区间为[k π-π3,k π+π6](k ∈Z ). (2)∵x ∈[0,π4],∴2x +π6∈[π6,2π3], 从而sin(2x +π6)∈[12,1]. ∴f (x )=2sin(2x +π6)+a +1∈[a +2,a +3], ∵f (x )有最大值4,∴a +3=4,故a =1.4.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈[0,π2]. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值.解 (1)由|a |2=(3sin x )2+(sin x )2=4sin 2x ,|b |2=(cos x )2+(sin x )2=1,由|a |=|b |,得4sin 2x =1.又x ∈[0,π2],从而sin x =12, 所以x =π6. (2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin(2x -π6)+12. 当x =π3∈[0,π2]时,sin(2x -π6)取最大值1, 所以f (x )的最大值为32. 5.已知函数f (x )=4cos ωx ·sin(ωx -π6)+1(ω>0)的最小正周期是π. (1)求f (x )的单调递增区间;(2)求f (x )在[π8,3π8]上的最大值和最小值. 解 (1)f (x )=4cos ωx ·sin(ωx -π6)+1 =23sin ωx cos ωx -2cos 2ωx +1=3sin 2ωx -cos 2ωx =2sin(2ωx -π6). 最小正周期是2π2ω=π,所以,ω=1,从而f (x )=2sin(2x -π6). 令-π2+2k π≤2x -π6≤π2+2k π,k ∈Z . 解得-π6+k π≤x ≤π3+k π,k ∈Z . 所以函数f (x )的单调递增区间为[-π6+k π,π3+k π](k ∈Z ). (2)当x ∈[π8,3π8]时,2x -π6∈[π12,7π12], f (x )=2sin(2x -π6)∈[6-22,2], 所以f (x )在[π8,3π8]上的最大值和最小值分别为2,6-22. 6.在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端对于山坡的斜度为15°,如图所示,向山顶前进100 m 后,又从B 点测得斜度为45°,设建筑物的高为50 m .求此山对于地平面的斜度θ的余弦值.解 在△ABC 中,∠BAC =15°,∠CBA =180°-45°=135°,AB =100 m , 所以∠ACB =30°. 由正弦定理,得100sin 30°=BC sin 15°,即BC =100sin 15°sin 30°. 在△BCD 中,因为CD =50,BC =100sin 15°sin 30°,∠CBD =45°,∠CDB =90°+θ, 由正弦定理,得50sin 45°=100sin 15°sin 30°sin (90°+θ), 解得cos θ=3-1.因此,山对地面的斜度的余弦值为3-1.。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯() A .1盏 B .3盏 C .5盏 D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则() A .乙可以知道四人的成绩 B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32B .155C .105D .3312. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。
高三数学中档练习题一、选择题1. 已知集合A={1, 2, 3},B={3, 4, 5},则A∪B的结果是:A) {1, 2, 3, 4, 5}B) {1, 2, 3}C) {3, 4, 5}D) {1, 2}选择:_____2. 若函数f(x) = x^2 + 2x + 1,则f(-1)的值为:A) 1B) -1C) 0D) 2选择:_____3. 若log2(8x) = 4,则x的值为:A) 2B) 4C) 8D) 16选择:_____4. 已知三角形ABC,∠ACB = 90°,AB = 5 cm,BC = 12 cm,则AC的长度为:A) 7 cmB) 13 cmC) 17 cmD) 25 cm选择:_____5. 若p(x) = x^3 - 2x^2 + kx + 6,其中k为常数,若p(2) = 4,则k的值为:A) -8B) -6C) -4D) -2选择:_____二、填空题1. 解方程组:2x + 3y = 7x + 2y = 4x = _____, y = _____2. 已知函数f(x) = x^2 + bx + c,若f(1) = 0,f(-1) = 0,则b = _____,c = _____3. 从1、2、3、4、5、6、7、8、9中任选3个数字,不放回地抽取,若抽取的三个数字的和为12,则这三个数字可能是_____、_____、_____三、解答题1. 三角形ABC中,∠ACB = 90°,AB = 8 cm,BC = 15 cm。
求三角形ABC的面积。
解答:2. 已知函数f(x) = 2x^3 + 3x^2 - 4x + 1,求f'(x)。
解答:3. 解方程组:3x - 2y = 72x + 3y = 1解答:四、证明题证明:在任意三角形ABC中,角平分线和边所构成的角的两边比例相等。
证明:五、应用题一块长方形的地皮,长为20米,宽为15米,现需要在长方形的四周围上一圈环形花坛,假设花坛的宽度为1米,求花坛的面积。
中档大题标准练三建议用时:60分钟一、解答题1△ABC的内角A,B,C的对边分别为a,b,c,假设b=2,且2b co B=a co C +c co A1求B的大小;2求△ABC面积的最大值.2.等差数列{a n}中,公差d≠0,S7=35,且a2,a5,a11成等比数列.1求数列{a n}的通项公式;2假设T n为数列错误!的前n项和,且存在n∈N*,使得T n-λa n+1≥0成立,求实数λ的取值范围.3在边长为6 cm的正方形ABCD中,E,F分别为BC,CD的中点,M,N分别为AB,CF的中点,现沿AE,AF,EF折叠,使B,C,D三点重合于B,构成一个三棱锥如下图.1在三棱锥上标注出M、N点,并判别MN与平面AEF的位置关系,并给出证明;2G是线段AB上一点,且错误!错误!的体积.4.某互联网公司为了确定下一季度的前期广告投入方案,收集了近期前期广告投入量单位:万元和收益单位:万元的数据.对这些数据作了初步处理,得到了如图的散点图共21个数据点及一些统计量的值.为了进一步了解广告投入量对收益的影响,公司三位员工①②③对历史数据进行分析,查阅大量资料,分别提出了三个回归方程模型:表中u i=n i,v i=错误!,参考数据:错误!≈,错误!≈1根据散点图判断,哪一位员工提出的模型不适合用来描述与之间的关系?简要说明理由;2根据1的判断结果及表中数据,在余下两个模型中分别建立收益关于投入量的关系,并从数据相关性的角度考虑,在余下两位员工提出的回归模型中,哪一个是最优模型即更适宜作为收益关于投入量的回归方程?说明理由;附:对于一组数据1,1,2,2,…,n,n,其回归直线错误!错误!错误!错误!为棱CE 的中点.图641求证:直线DM⊥平面CBE;2当四面体D-ABE的体积最大时,求四棱锥E-ABCD的体积.6.[选修4-4:坐标系与参数方程]在直角坐标系O中,设直线:错误!t为参数,曲线C1:错误!θ为参数,在以O为极点、正半轴为极轴的极坐标系中:1求C1和的极坐标方程;2设曲线C2:ρ=4in θ曲线θ=α错误!,分别与C1、C2交于A、B两点,假设AB 的中点在直线上,求|AB|7[选修4-5:不等式选讲]设函数f=|-3|-|+1|,∈R1解不等式f<-1;2设函数g=|+a|-4,且g≤f在∈[-2,2]上恒成立,求实数a的取值范围.习题答案1答案:见解析解析:1由正弦定理错误!=错误!=错误!可得,2in B co B=in A co C+in C co A=in B,∵in B>0,故co B=错误!,∵0<B<π,∴B=错误!2由b=2,B=错误!,由余弦定理可得ac=a2+c2-4,由根本不等式可得ac=a2+c2-4≥2ac-4,ac≤4,当且仅当a=c=2时,S△ABC=错误!ac in B取得最大值错误!×4×错误!=错误!,故△ABC面积的最大值为错误!2答案:见解析解析:1由题意可得错误!即错误!又∵d≠0,∴a1=2,d=1,∴a n=n+12∵错误!=错误!=错误!-错误!,∴T n=错误!-错误!+错误!-错误!+…+错误!-错误!=错误!-错误!=错误!,∵∃n∈N*,使得T n-λa n+1≥0成立,∴∃n∈N*,使得错误!-λn+2≥0成立,即∃n∈N*,使得λ≤错误!成立,又错误!=错误!≤错误!=错误!当且仅当n=2时取等号,∴λ≤错误!,即实数λ的取值范围是错误!3答案:见解析解析:1因翻折后B,C,D重合,所以MN应是△ABF的一条中位线,如下图.那么MN∥平面AEF证明如下:错误!⇒MN∥平面AEF2存在点G使得AB⊥平面EGF,此时λ=1,因为错误!⇒AB⊥平面EBF又G是线段AB上一点,且错误!错误!错误!错误!=错误!=错误!,∴V E-AFNM=错误!4答案:见解析解析:1由散点图可以判断员工①提出的模型不适合.因为散点图中与之间不是线性关系.2令v=错误!,先建立关于v的线性回归方程.由于所以关于v的线性回归方程为错误!错误!错误!错误!错误!错误!N图略所以AN⊥EB,又BC⊥平面AEB,AN⊂平面AEB,所以BC⊥AN,又BC∩BE=B,所以AN⊥平面BCE,易知MN綊DA,四边形MNAD为平行四边形,所以DM∥AN,所以DM⊥平面BCE2因为AD∥BC,BC⊥底面ABE,所以AD⊥平面ABE设∠EAB=θ,因为AD=AB=AE=1,那么四面体D-ABE的体积V=错误!×错误!×AE·AB·in θ·AD=错误!in θ,当θ=90°,即AE⊥AB时体积最大,又BC⊥平面AEB,AE⊂平面AEB,所以AE⊥BC,因为BC∩AB=B,所以AE⊥平面ABC,V E-ABCD=错误!×错误!×1+2×1×1=错误!6答案:见解析解析:1消去θ可得C1:-22+2=4,即2+2-4=0,化为极坐标:ρ=4co θ,消去t可得:2+-4=0,化为极坐标:2ρco θ+ρin θ-4=02AB中点的极径为错误!=2in α+co α,将2in α+2co α,α代入2ρco θ+ρin θ-4=0中,化简得:3in αco α-in2α=0,故tan α=3,故in α=错误!,co α=错误!,|AB|=|ρA-ρB|=4|in α-co α|=错误!7答案:见解析解析:1函数f=|-3|-|+1|=错误!故由不等式f<-1可得,>3或错误!解得>错误!2函数g≤f在∈[-2,2]上恒成立,即|+a|-4≤|-3|-|+1|在∈[-2,2]上恒成立,在同一个坐标系中画出函数f和g的图象,如下图.故当∈[-2,2]时,假设0≤-a≤4,那么函数g的图象在函数f的图象的下方,g≤f在∈[-2,2]上恒成立,求得-4≤a≤0,故所求的实数a的取值范围为[-4,0].。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆;(2)若D 是边AC 的中点,且27=BD ,求边BC 的长. 18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F .(Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii ni i x y nx yb x nx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =.(1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值;(2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x ) 1 2 3 4 5 6 7 8 9 10 人数(y )3581113 14 17 22 30 31高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
高级高三文科数学中档题训练(3)17、在ABC ∆中,c b a ,,分别是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)若BC=4,求ABC ∆的面积ABC S ∆; (2)若D 是边AC 的中点,且27=BD ,求边BC 的长.18、如图,四棱锥P ABCD -中, PA ,ABCD E BD ⊥平面为的中点,G 为PD 的中点,,DAB DCB ∆≅∆,312EA EB AB PA ====,,连接CE 并延长交AD 于F . (Ⅰ)求证:AD CFG ⊥平面;(Ⅱ)求三棱锥P ACG V -的体积.19、某校的教育教学水平不断提高,该校记录了到十年间每年考入清华大学、北京大学的人数和。
为方便计算,编号为1,编号为2,…,编号为10.数据如下:(Ⅰ)从这10年中的后6年随机抽取两年,求考入清华大学、北京大学的人数和至少有一年多于20人的概率;(Ⅱ)根据前5年的数据,利用最小二乘法求出y 关于x 的回归方程y bx a =+,并计算的估计值和实际值之间的差的绝对值。
1221ni ii nii x y nx yb xnx==-=-∑∑, a y bx =-.21、已知函数1()()ln (,)f x a x b x a b R x=--∈,2()g x x =. (1)若1a =,曲线()y f x =在点(1,(1))f 处的切线与y 轴垂直,求b 的值; (2)在(1)的条件下,求证:()()2ln 2;g x f x >-年份(x )12 3 4 5 6 7 8 9 10 人数(y )35 8 11 13 14 17 22 30 31高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>97.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||29.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(12)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.2.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁UA.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.故选:C.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3B.3<c≤6C.6<c≤9D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,即6<c≤9,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=xa(x>0),g(x)=logax的图象可能是()A. B. C. D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=xa(x≥0),g(x)=logax的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:此时答案D满足要求,当a>1时,函数f(x)=xa(x≥0),g(x)=logax的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||}B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等式右边=||2+||2=2,故C不成立,D选项正确.故选:D.【点评】本题在处理时要结合着向量加减法的几何意义,将,,,放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)【分析】首先,这两次先后从甲盒和乙盒中拿球是相互独立的,然后分两种情况:即当ξ=1时,有可能从乙盒中拿出一个红球放入甲盒,也可能是拿到一个蓝球放入甲盒;ξ=2时,则从乙盒中拿出放入甲盒的球可能是两蓝球、一红一蓝、或者两红;最后利用概率公式及分布列知识求出P1,P2和E(ξ1),E(ξ2)进行比较即可.【解答】解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)﹣E(ξ2)=.故选:A.【点评】正确理解ξi(i=1,2)的含义是解决本题的关键.此题也可以采用特殊值法,不妨令m=n=3,也可以很快求解.10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1【分析】根据记Ik=|fk(a1)﹣fk(a0)|+|fk(a2)﹣fk(a1)丨+…+|fk(a99)﹣fk (a98)|,分别求出I1,I2,I3与1的关系,继而得到答案【解答】解:由,故==1,由,故×=×<1,+=,故I2<I1<I3,故选:B.【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 6 .【分析】根据框图的流程模拟运行程序,直到满足条件S>50,跳出循环体,确定输出的i 的值.【解答】解:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.故答案为:6.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.【分析】结合方差的计算公式可知,应先求出P(ξ=1),P(ξ=2),根据已知条件结合分布列的性质和期望的计算公式不难求得.【解答】解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.故答案为:【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是[].【分析】由约束条件作出可行域,再由1≤ax+y≤4恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.【解答】解:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x﹣y﹣1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.解法二:令z=ax+y,当a>0时,y=﹣ax+z,在B点取得最大值,A点取得最小值,可得,即1≤a≤;当a<0时,y=﹣ax+z,在C点取得最大值,①a<﹣1时,在B点取得最小值,可得,解得0≤a≤(不符合条件,舍去)②﹣1<a<0时,在A点取得最小值,可得,解得1≤a≤(不符合条件,舍去)综上所述即:1≤a≤;故答案为:.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 60 种(用数字作答).【分析】分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.【解答】解:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.故答案为:60.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是(﹣∞,].【分析】画出函数f(x)的图象,由 f(f(a))≤2,可得 f(a)≥﹣2,数形结合求得实数a的取值范围.【解答】解:∵函数f(x)=,它的图象如图所示:由 f(f(a))≤2,可得 f(a)≥﹣2.当a<0时,f(a)=a2+a=(a+)2﹣≥﹣2恒成立;当a≥0时,f(a)=﹣a2≥﹣2,即a2≤2,解得0≤a≤,则实数a的取值范围是a≤,故答案为:(﹣∞,].【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P (m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)【分析】过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,求出PP′,AP′,利用函数的性质,分类讨论,即可得出结论.【解答】解:∵AB=15m,AC=25m,∠ABC=90°,∴BC=20m,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20﹣x,由∠BCM=30°,得PP′=CP′tan30°=(20﹣x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.若P′在CB的延长线上,PP′=CP′tan30°=(20+x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则y′=0可得x=时,函数取得最大值,故答案为:.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A ﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.【分析】(1)利用倍角公式、两角和差的正弦公式可得,由a≠b得,A≠B,又A+B∈(0,π),可得,即可得出.(2)利用正弦定理可得a,利用两角和差的正弦公式可得sinB,再利用三角形的面积计算公式即可得出.【解答】解:(1)由题意得,,∴,化为,由a≠b得,A≠B,又A+B∈(0,π),得,即,∴;(2)由,利用正弦定理可得,得,由a<c,得A<C,从而,故,∴.【点评】本题考查了正弦定理、倍角公式、两角和差的正弦公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.19.(14分)已知数列{an}和{bn}满足a1a2a3…an=(n∈N*).若{an}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求an和bn;(Ⅱ)设cn=(n∈N*).记数列{cn}的前n项和为Sn.(i)求Sn;(ii)求正整数k,使得对任意n∈N*均有Sk≥Sn.【分析】(Ⅰ)先利用前n项积与前(n﹣1)项积的关系,得到等比数列{an}的第三项的值,结合首项的值,求出通项an,然后现利用条件求出通项bn;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.【解答】解:(Ⅰ)∵a1a2a3…an=(n∈N*)①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{an}为等比数列,且a1=2,∴{an}的公比为q,则=4,由题意知an>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…an=(n∈N*)得:,,∴bn=n(n+1)(n∈N*).(Ⅱ)(i)∵cn===.∴Sn=c1+c2+c3+…+cn====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,cn<0,综上,对任意n∈N*恒有S4≥Sn,故k=4.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.【分析】(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.【解答】证明:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AE交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B﹣AD﹣E的平面角,在直角梯形BCDE中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BG=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B﹣AD﹣E的大小为.【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.【分析】(Ⅰ)利用分段函数,结合[﹣1,1],分类讨论,即可求M(a)﹣m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[﹣1,1]恒成立,转化为﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,分类讨论,即可求3a+b的取值范围.【解答】解:(Ⅰ)∵f(x)=x3+3|x﹣a|=,∴f′(x)=,①a≤﹣1时,∵﹣1≤x≤1,∴x≥a,f(x)在(﹣1,1)上是增函数,∴M(a)=f(1)=4﹣3a,m(a)=f(﹣1)=﹣4﹣3a,∴M(a)﹣m(a)=8;②﹣1<a<1时,x∈(a,1),f(x)=x3+3x﹣3a,在(a,1)上是增函数;x∈(﹣1,a),f(x)=x3﹣3x+3a,在(﹣1,a)上是减函数,∴M(a)=max{f(1),f(﹣1)},m(a)=f(a)=a3,∵f(1)﹣f(﹣1)=﹣6a+2,∴﹣1<a≤时,M(a)﹣m(a)=﹣a3﹣3a+4;<a<1时,M(a)﹣m(a)=﹣a3+3a+2;③a≥1时,有x≤a,f(x)在(﹣1,1)上是减函数,∴M(a)=f(﹣1)=2+3a,m(a)=f(1)=﹣2+3a,∴M(a)﹣m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[﹣1,1]恒成立,∴﹣2≤h(x)≤2对x∈[﹣1,1]恒成立,由(Ⅰ)知,①a≤﹣1时,h(x)在(﹣1,1)上是增函数,最大值h(1)=4﹣3a+b,最小值h(﹣1)=﹣4﹣3a+b,则﹣4﹣3a+b≥﹣2且4﹣3a+b≤2矛盾;②﹣1<a≤时,最小值h(a)=a3+b,最大值h(1)=4﹣3a+b,∴a3+b≥﹣2且4﹣3a+b≤2,令t(a)=﹣2﹣a3+3a,则t′(a)=3﹣3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=﹣2,∴﹣2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(﹣1)=3a+b+2,则a3+b≥﹣2且3a+b+2≤2,∴﹣<3a+b≤0;④a≥1时,最大值h(﹣1)=3a+b+2,最小值h(1)=3a+b﹣2,则3a+b﹣2≥﹣2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是﹣2≤3a+b≤0.【点评】本题考查导数的综合运用,考查函数的最值,考查分类讨论、化归与转化的数学思想,难度大.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a﹣b.【分析】(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a﹣b..【解答】解:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2﹣m2+a2k2=0,此时点P的横坐标为﹣,代入y=kx+m得点P的纵坐标为﹣k•+m=,∴点P的坐标为(﹣,),又点P在第一象限,故m>0,故m=,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a﹣b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a﹣b.【点评】本题主要考查椭圆的几何性质、点到直线间的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.。