结构设计七大比值
- 格式:pdf
- 大小:95.24 KB
- 文档页数:4
结构设计中的七个比值一、周期与周期比(控制第一振型不扭转):规范中没有严格的规定,只在《建筑结构荷载规范》2012年版的附录E中给出经验公式。
周期太长结构过于柔,周期太短,结构过于刚,所以,在一般情况下,高层结构结构周期T=(0.007-0.013)n式中n为建筑层数。
周期比即为结构扭转为主的第一自震(也称第一扭震周期)与平动为主的第一自振周期(也称第一侧震周期)的比值,周期比主要控制结构扭转效应,减小结构扭转对结构产生的不利影响,使结构抗扭刚度不会太弱,因为两者相近时,由于振动藕连现象,结构扭转效应会明显加大。
二、位移比(控制扭转):高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,需要对其最大位移和层间位移加以控制,以保证主体结构始终处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度,保证填充墙,幕墙等非结构构件的影响,避免产生明显的破坏。
控制平面的规则性,以免扭转对结构产生不利影响。
计算结果的判别和调整特点:pkpm中的satwe程序对于每一层计算并输出最大位移,最大层间位移角,平均水平位移,平均层间位移角及相应比值,详见输出文件wdisp,但对于计算结果的判读,应注意以下几点:(1)若位移比(层间位移比)超过1.2,则要在总信息参数设置中考虑双向地震作用。
(2)验证位移比要考虑偶然偏心作用,验证位移角不需要考虑偶然偏心。
(3)验算位移比应当选择强制刚性楼板假定,但当凹凸或者局部楼板不连续时,应当采用复合楼板,平面内实际刚度变化的计算模型,当平面不连续时尚应考虑扭转影响。
(4)最大层间位移位移比是在刚性楼板假定下的控制参数。
构件设计与设计信息不是在同一个条件下的结果(即构件可以采用弹性楼板计算,而位移计算必须在刚性楼板假定下获得)固可以在刚性楼板假定下算出位移,而采用弹性楼板进行构件分析。
(5)因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元边角部位。
史上最精华的结构设计中的七个比值(根据2010新高规,抗规)该帖被浏览了14884次 | 回复了500次史上最精华的结构设计中的七个比值(根据2010新高规,抗规)。
注意咯,这个是作者搜集整理在加工的!看懂了这个,去调那些参数应该没有任何问题了,不信你去试试!!觉得好的话,一定要顶!!!那些天做的时候也比较匆忙,出现了部分错误也在所难免,现在把部分错误勘正出来,还请大家一起来批评指正。
本人一定尽力,将本文做到最全最好!!过段时间出一个完整的勘误版本!!现在希望大家持续批评指正,作者已经阅读了346贴了!现将部分网友的部分指正列举如下1,轴压比中的最后一段话对应错了~~应是“一级抗震(9度)时的墙轴压比大于0.1,一级(8度)大于0.2,二级大于0.3时,应设置约束边缘构件"--感谢128楼和255楼网友指正!2,楼主,你整理的关于层刚度比的计算方法,说是有三种,新的pkpm2010已经不允许设计人员自主选择计算层刚度的方式了。
直接是默认第三种,你这是是pkpm08版本的计算方法。
pkpm2010的计算方式是:“层刚度计算中,satwe提供三种计算方法,分别是"剪切刚度","剪弯刚度"和"地震剪力与地震层间位移比值(抗震规范法)"。
剪切刚度是按《建筑抗震设计规范GB50011-2010》6.1.14条文说明中给出的方法计算的,剪弯刚度是按照有限元方法,通过加单位力来计算的;地震剪力与相应位移的比值方法是《建筑抗震设计规范》3.4.3条文说明给出的。
由于计算理论不同,三种方法可能给出差别比较大的刚度比结果,根据 2010 版规范, SATWE 对层刚度比计算的三种方法进行了调整,取消用户选项功能,在计算地震作用下,始终采用第三种方法进行薄弱层判断,并始终给出剪切刚度的计算结果,当结构中存在转换层时,根据转换层所在层号,当 2 层以下转换时采用剪切刚度计算转换层上下的等效刚度比,对于 3 层以上高位转换则自动进行剪弯刚度计算,并采用剪弯刚度计算等效刚度比。
1、轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。
轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。
轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
02周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。
一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。
刚度越大,周期越小。
抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。
结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
当第一振型为扭转时:说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。
当第二振型为扭转时:说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
周期比不满足时的调整方法:通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。
03、位移比/位移角位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。
位移比高规 3.4.5:为减少扭转对结构布置的影响,在考虑偶然偏心影响的规定水平地震力作用下,竖向构件的水平位移和层间位移,A级高度不宜大于该楼层平均值的1.2倍,不应大于该楼层的1.5倍;结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度建筑不应大于0.9。
说明:过大的扭转效应会导致结构的严重破坏,对结构的扭转效应主要从以下两个方面加以限制:1、限制结构平面布置的不规则,避免产生过大的偏心而导致结构产生较大的扭转效应。
扭转位移比计算时,楼层位移可取“规定水平地震力”计算,“规定水平地震力”一般可采用振型组合后的楼层地震剪力换算的水平作用力,并考虑偶然偏心。
水平作用力的换算原则为每一楼面处的水平作用力取该楼面上、下两个楼层的地震剪力差的绝对值。
2、限制结构的抗扭刚度不能太弱。
当扭转方向因子大于0.5时,则该振型可认为是扭转为主的振型。
(周期比计算时,可直接计算结构的固有自振特性,不必附加偶然偏心)周期比位移比调整方法:1、程序调整:SATWE程序不能实现。
2、结构调整:只能通过调整改变结构平面布置,减小结构刚心与质心的偏心距;调整方法如下:1)由于位移比是在刚性楼板假定下计算的,结构最大水平位移与层间位移往往出现在结构的边角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度,减小结构刚心与质心的偏心距。
同时在设计中,应在构造措施上对楼板的刚度予以保证。
2)对于位移比不满足规范要求的楼层,也可利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中,快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度。
节点号在“SA TWE位移输出文件”中查找。
也可找出位移最小的节点削弱其刚度,直到位移比满足要求。
周期比比调整方法:一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。
设计中结构设计需要控制的11个比值1、轴压比:定义:轴压比指柱组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值;可不进行地震作用计算的结构,取无地震作用组合的轴力设计值【抗规第6.3.6】;轴压比指柱考虑地震组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计值乘积之比值【高规第6.4.2条】墙肢轴压比指墙的轴压力设计值与墙的全截面面积和混凝土轴心抗压强度设计值乘积之比值【抗规第6.4.2条】。
不计入地震作用组合(条文说明)目的:主要为控制结构的延性。
注意:应按规范要求对结构地震作用进行调整:特殊结构地震作用下内力调整、0.2Q0调整、墙柱弱梁、强剪弱弯调整等等(程序可自动完成),短柱的调整。
2、剪重比定义:结构任一楼层的水平地震剪力与该层及其以上各层总重力荷载代表值的比值;抗规:5.2.5 抗震验算时,结构任一楼层的水平地震剪力应符合下式要求:高规:4.3.12条多遇地震水平地震作用计算时,结构各楼层对应于地震作用标准值的剪力应符合下式要求:内涵:是反应地震作用大小的重要指标,主要为控制各楼层最小地震剪力,确保结构安全性,在某种程度上反映了结构的刚柔程度,剪重比应在一个比较合理的范围内。
剪重比太小,说明结构刚度偏柔;剪重比太大,说明整体结构偏刚,会引起很大的地震力,不经济。
抗规表5.2.5给出了楼层最小地震剪力的要求,当不满足时,应优化设计方案、改进结构布置或调整结构总剪力和各楼层的水平地震剪力,使之满足要求。
地下室由于受回填土的约束作用,可以不考虑剪重比调整。
3、刚度比定义:结构楼层与其相邻上层的侧向刚度的比值。
目的:主要为控制结构竖向的规则性,以免竖向刚度突变,形成薄弱层,分类:PKPM系列软件提供了三种刚度比的计算方式:分别是剪切刚度,剪弯刚度和地震作用与相应的层间位移比。
剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;剪弯刚度主要用于底部大空间为多层的转换结构;地震作用与层间位移比,通常绝大多数工程都可以用此法计算刚度比,也是软件的缺省方式。
多高层结构设计计算的几个值
一.周期比
二、(弹性)层间位移角
(刚性)位移比
(弹塑性)层间位移角
三、剪重比
《高规》5.2.5条与《抗规》4.3.12条相同
四、刚重比
《高规》5.4.1-5.4.4条
总结:
刚重比>=1.4时,满足整体稳定要求;>=2.7时,不用考虑重力二阶效应。
五、刚度比
《高规》3.5.2、3.5.8、5.3.7、10.2.3条
《高规》177页
六、层间剪力比《高规》
《抗规》
七、其它系数的调整
1、X/Y向的有效质量系数
要求应不小于90%。
若不满足,可调整“计算振型数”,但振兴数达到上限时,仍不满足的话,就要需考虑结构布置的合理性。
2、计算振型个数
注意:振兴个数最大不宜超过结构的总自由度数,例如,刚性假定的单塔结构的振型数不得超过层数的3倍。
3、地震作用最大方向
当不小于15度时,需将数值回填到“水平力与整体坐标夹角”。
4、高宽比
《高规》3.3.1条
5.结构基本周期
是计算风荷载的重要指标
可先保留软件的缺省值,待计算后再从计算书中读取数值,回填入“结构基本周期”选项。
6.整体抗倾覆验算
看WMASS总信息里的倾覆力矩是否大于抗倾覆力矩。
1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7,计算结果见图形文件输出之三。
轴压比不符合要求时可通过加大柱截面修改,当轴压比较小时表明截面太大,应减小截面。
轴压比超限时的调整:现有面积×现有轴压比/轴压比限值=调整后的面积。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,计算结果见WZQ.OUT。
剪重比不满足时的调整方法:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE 自动按抗规5.2.5调整;如果还需人工干预,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数以增大地震作用。
如果是在高烈度区,说明结构侧向刚度不足,宜调整结构布置或抗侧力构件,而不宜直接放大地震力。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,计算结果见WMASS.OUT。
该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%;除顶层外,局部收进的水平向尺寸大于相邻下一层的25%,均归入不规则。
4、位移比:主要为控制结构平面规则性,以免形成扭转,对结构产生不利影响。
见抗规3.4.2,计算结果见WDISP.OUT。
楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍,归入不规则。
5、周期比:主要为控制结构扭转效应,减小扭转对结构产生的不利影响,要求见高规4.3.5,计算结果见WZQ.OUT。
周期比,即结构扭转为主的第一周期Tt与平动为主的第一周期T1之比,须手算。
周期比计算方法:1)扭转周期与平动周期的判断:从计算书中找出所有扭转系数大于0.5的扭转周期,按周期值从大到小排列。
同理,将所有平动系数大于0。
5的平动周期按其值从大到小排列;2)第一周期的判断:从队列中选出数值最大的扭转(平动)周期,查看软件的“结构整体空间振动简图”,看该周期值所对应振型的空间振动是否为整体振动,如果其仅仅引起局部振动,则不能作为第一扭转(平动)周期,要从队列中取出下一个周期进行考察,依此类推,直到选出不仅周期值较大而且其对应的振型为结构整体振动的值,即为第一扭转(平动)周期;3)周期比计算:将第一扭转周期值除以第一平动局期值即可。
(完整版)结构设计中的七个比值位移比高规3.4.5:为减少扭转对结构布置的影响,在考虑偶然偏心影响的规定水平地震力作用下,竖向构件的水平位移和层间位移,A级高度不宜大于该楼层平均值的1.2倍,不应大于该楼层的1.5倍;结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度建筑不应大于0.9。
说明:过大的扭转效应会导致结构的严重破坏,对结构的扭转效应主要从以下两个方面加以限制:1、限制结构平面布置的不规则,避免产生过大的偏心而导致结构产生较大的扭转效应。
扭转位移比计算时,楼层位移可取“规定水平地震力”计算,“规定水平地震力”一般可采用振型组合后的楼层地震剪力换算的水平作用力,并考虑偶然偏心。
水平作用力的换算原则为每一楼面处的水平作用力取该楼面上、下两个楼层的地震剪力差的绝对值。
2、限制结构的抗扭刚度不能太弱。
当扭转方向因子大于0.5时,则该振型可认为是扭转为主的振型。
(周期比计算时,可直接计算结构的固有自振特性,不必附加偶然偏心)周期比位移比调整方法:1、程序调整:SATWE程序不能实现。
2、结构调整:只能通过调整改变结构平面布置,减小结构刚心与质心的偏心距;调整方法如下:1)由于位移比是在刚性楼板假定下计算的,结构最大水平位移与层间位移往往出现在结构的边角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度,减小结构刚心与质心的偏心距。
同时在设计中,应在构造措施上对楼板的刚度予以保证。
2)对于位移比不满足规范要求的楼层,也可利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中,快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度。
节点号在“SA TWE位移输出文件”中查找。
也可找出位移最小的节点削弱其刚度,直到位移比满足要求。
周期比比调整方法:一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。
高层结构设计,七个比值必须控制好!高层设计的难点在于竖向承重构件(柱、剪力墙等)的合理布置,设计过程中控制的目标参数主要有如下七个:1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规 6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的“调整信息”中勾选“按抗震规范5.2.5调整各楼层地震内力”后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的“调整信息”中的“全楼地震作用放大系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
结构设计必须要控制的11个比值1、轴压比:定义:轴压比指柱组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计系数乘积之比值;可不进行地震作用计算的结构,双人取无地震抑制作用组合的轴力设计值【抗规第6.3.6】;轴压比指柱考虑地震组合的轴压力设计值与柱的全截面面积和混凝土轴心抗压强度设计系数乘积之比值【高规第6.4.2条】墙肢轴压比指墙的轴压力设计值与墙的全截面面积和混凝土轴心抗压强度设计系数乘积之比值【抗规第6.4.2条】。
不计入地震巨大作用组合(条文说明)目的:主要为控制结构的延性。
注意:应按规范要求对应当结构地震作用需要进行调整:特殊结构地震作用下内力调整、0.2Q0调整、墙柱弱梁、强剪弱弯角调整等等(程序可自动完成),短柱的调整。
2、剪重比定义:结构任一楼层的水平地震剪力与该层及其以上各层总重力荷载代表值的比值;抗规:5.2.5抗震验算时,结构任一楼层的水平地震剪力应符合下式要求:高规:4.3.12条多遇地震水平地震作用调节作用计算时,剪力结构各楼层对应于地震作用标准值的剪力应符合下式要求:内涵:是反应地震分项作用大小的重要指标,主要为压强控制各楼层最小地震剪力,确保结构安全性,在某种程度上反映了结构的刚柔频度程度,剪重不合理比应在一个不够合理的范围内。
剪重比太小,说明构型刚度偏柔;剪重比太大,说明整体结构偏刚,会已引起很大的地震力,不经济。
抗规表5.2.5给出了楼层灾害最小地震剪力的要求,当不满足时,应优化设计方案、改进结构布置或调整结构总剪力和各楼层的水平地震剪力,使之满足要求。
促进作用地下室由于不受回填土的约束作用,可以不考虑剪重比调整。
3、刚度比定义:结构楼层与其相邻上层的侧向刚度的比值。
目的:主要为控制结构竖向的规则性,以免竖向刚度基因型,形成薄弱层,分类:PKPM系列软件提供了三种刚度比的计算方式:分别是剪切刚度,剪弯刚度和地震作用与相应的层间位移比。
剪切刚度主要用于大空间为一层的转换结构及对地下室嵌固条件的判定;剪弯刚度用于底部大空间为多层的转换结构;地震作用与层间位移比,通常绝大多数工程都可以用此法计算刚度比,也是软件的缺省途径。
七个比值问题1.有那七个比值2.控制的是什么东西3.所对应的要求有那些4.当不满足时如何调整5.计算时要满足那些东西6.PKPM的结果在那查询7.专业名词的理解一.刚重比《GG》 5.41.控制原因:重力荷载的水平用位移效应上引起的二阶效应比较严重,对砼结构随刚度的降低效应不利影响成非线性关系2.控制方法:框架>20不满足稳定性要求>10考虑P—Δ效应剪力墙>2.7不满足稳定性要求>1.4考虑P—Δ效应3.调整方法:不满足稳定性要求加刚或减重大于10或1.4要考虑P—Δ效应4.PKPM结构查看:总信息最下面5.结构在地震作用下的重力附加弯矩大于初始弯矩的10%要考虑P—Δ效应。
大20%时认为稳定性不满足要求二.剪重比《KG》5.2.5《GG》 4.3.121.控制原因:长周期结构地震加速度小,但此时地面运动的速度,位移对结构的破坏更大,通过放大地震地的方式提高结构的承载能力,增大安全储备2.控制方法:扭转效应明显周期小于3.5秒6度7度8度9度0.8% 1.6% 3.2% 6.4%基本周期大于5.0秒的结构0.6% 1.2% 2.4% 4.8%1.8% 3.6%3.调整方法:在6度区经常会发生A:根据建筑抗震设计规范统一培训教材54页当不满足以下结果时不可以用系数调整在方式1)有15%以上的楼层不满足最小剪力系数椒2)底部楼层剪力不满足最小剪力系数要求85%以上时3)调整系数大于1.15时即不满足87%时B:不能用系数调整时的方法1)T折减多折一些2)提高振型个数3)通过加墙和梁来提高结构风度减小T增加地震作用4)跨高比小于5的梁按洞口输入来提高结构刚度5)也可通过减少质量的方法梁改折板板不要过厚墙去掉对结构贡献较少的为的是结构变得刚一些注;周期不纯也会造成减重比不足的问题4.系数有效满足的要求;有效质量系数要在90%以上5.PKPM结果查看:文本结果振型周期地震力最下面三。
抗剪承载力的比1.控制原因:对楼层的竖向规则性加以控制,楼层抗侧能力突变将导致结构在地震作用下破坏2.控制方法:A极高度不宜<相邻上一层的80%不应<相邻上一层的65%B级高度不应<相邻上一层的75%3.调整方法:调整信息中指定薄弱层个数,薄弱层层号,地震力放大系数,也可增大该楼层的抗侧力构件的截面4.PKPM结构查看:文本文件总信息中5.层间受剪乘载力指在所考虑的水平地震作用方向上,该楼层全部住剪力墙斜撑的受剪乘载力之和四.层刚度比内容较多,被分为侧移刚度和剪切刚度,应用的范围也不同一.侧移刚度1.控制原因:出于竖向规则性的考虑高层建筑上部楼层的侧向刚度宜大于下部楼层的侧向刚度,否则变形会集中在刚度小的下部楼层形成结构软弱层,所以应对下层与相邻上层的侧向刚度比值进行限制2.控制方法:框架结构本层与相邻上一层的比值不小于0.7与相邻上三层平均值的比值不小于0.8剪力墙等复杂结构(考虑层高的修正)本层与相邻上一层比值不小于0.9,当本层层高大于相邻上层层高的1.5倍时该比值不宜小于1.1对于结构底部的嵌固层该比值部小于1.53.调整方法:高贵3.5.8乘以1.25的放大系数是人工指定还是PK自动乘?4.PKPM结果查看:文本文件总信息中二.剪切刚度(按照高贵附录E所计算的刚度)情况1地下室顶板作为嵌固端时地下一层与首层的侧向刚度比不小于2调整方法:只与G和A有关只能调整面积来提高地下一层的刚度结果查看:同上情况2结构为转换结构转换层数小于两层非抗震时下层与上层的比不应小于0.4抗震设计下层与上层的比不应小于0.5转换层在两层以上是等效剪切刚度不小于0.6并且侧移刚度非抗震不小于0.5抗震不小于0.8调整方法,结构查看同上五.周期比控制原因:结构要具备一定的抗扭刚度控制方法:以扭转为主的第一周期与平动为主的第一周期的比不大于0。
高层结构设计需要控制的七个比值及调整方法理布置,设计过程中控制的目标参数主要有如下七个:1、轴压比:主要为控制结构的延性,规范对墙肢和柱均有相应限值要求,见抗规6.3.7和6.4.6,高规6.4.2和7.2.14。
轴压比不满足时的调整方法:1)程序调整:SATWE程序不能实现。
2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
2、剪重比:主要为控制各楼层最小地震剪力,确保结构安全性,见抗规5.2.5,高规3.3.13。
这个要求如同最小配筋率的要求,算出来的地震剪力如果达不到规范的最低要求,就要人为提高,并按这个最低要求完成后续的计算。
剪重比不满足时的调整方法:1)程序调整:在SATWE的调整信息中勾选按抗震规范5.2.5调整各楼层地震内力后,SATWE按抗规5.2.5自动将楼层最小地震剪力系数直接乘以该层及以上重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。
2)人工调整:如果还需人工干预,可按下列三种情况进行调整:a)当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度;b)当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度以取得合适的经济技术指标;c)当地震剪力偏小而层间侧移角又恰当时,可在SATWE的调整信息中的全楼地震作用放大系数中输入大于1的系数增大地震作用,以满足剪重比要求。
3、刚度比:主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层,见抗规3.4.2,高规4.4.2;对于形成的薄弱层则按高规5.1.14予以加强。
刚度比不满足时的调整方法:1)程序调整:如果某楼层刚度比的计算结果不满足要求,SATWE自动将该楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。
2)人工调整:如果还需人工干预,可适当降低本层层高和加强本层墙、柱或梁的刚度,适当提高上部相关楼层的层高和削弱上部相关楼层墙、柱或梁的刚度。
七个比值问题
1.有那七个比值
2.控制的是什么东西
3.所对应的要求有那些
4.当不满足时如何调整
5.计算时要满足那些东西
6.PKPM的结果在那查询
7.专业名词的理解
一.刚重比《GG》 5.4
1.控制原因:重力荷载的水平用位移效应上引起的二阶效应比较严重,对砼结构随刚度的降低效应不利影响成非线性关系
2.控制方法:框架>20不满足稳定性要求
>10考虑P—Δ效应
剪力墙>2.7不满足稳定性要求
>1.4考虑P—Δ效应
3.调整方法:不满足稳定性要求加刚或减重
大于10或1.4要考虑P—Δ效应
4.PKPM结构查看:总信息最下面
5.结构在地震作用下的重力附加弯矩大于初始弯矩的10%要考虑P—Δ效应。
大20%
时认为稳定性不满足要求
二.剪重比《KG》5.2.5《GG》 4.3.12
1.控制原因:长周期结构地震加速度小,但此时地面运动的速度,位移对结构的破坏更大,通过放大地震地的方式提高结构的承载能力,增大安全储备
2.控制方法:扭转效应明显周期小于3.5秒6度7度8度9度
0.8% 1.6% 3.2% 6.4%
基本周期大于5.0秒的结构0.6% 1.2% 2.4% 4.8%
1.8% 3.6%
3.调整方法:在6度区经常会发生
A:根据建筑抗震设计规范统一培训教材54页当不满足以下结果时不可以用系数调整在方式
1)有15%以上的楼层不满足最小剪力系数椒
2)底部楼层剪力不满足最小剪力系数要求85%以上时
3)调整系数大于1.15时即不满足87%时
B:不能用系数调整时的方法
1)T折减多折一些
2)提高振型个数
3)通过加墙和梁来提高结构风度减小T增加地震作用
4)跨高比小于5的梁按洞口输入来提高结构刚度
5)也可通过减少质量的方法梁改折板板不要过厚墙去掉对结构贡献较少的
为的是结构变得刚一些
注;周期不纯也会造成减重比不足的问题
4.系数有效满足的要求;有效质量系数要在90%以上
5.PKPM结果查看:文本结果振型周期地震力最下面
三。
抗剪承载力的比
1.控制原因:对楼层的竖向规则性加以控制,楼层抗侧能力突变将导致结构在地震作用下破坏
2.控制方法:A极高度不宜<相邻上一层的80%
不应<相邻上一层的65%
B级高度不应<相邻上一层的75%
3.调整方法:调整信息中指定薄弱层个数,薄弱层层号,地震力放大系数,也可增大该楼层的抗侧力构件的截面
4.PKPM结构查看:文本文件总信息中
5.层间受剪乘载力指在所考虑的水平地震作用方向上,该楼层全部住剪力墙斜撑的受剪乘载力之和
四.层刚度比
内容较多,被分为侧移刚度和剪切刚度,应用的范围也不同
一.侧移刚度
1.控制原因:出于竖向规则性的考虑高层建筑上部楼层的侧向刚度宜大于下部楼层的侧向刚度,否则变形会集中在刚度小的下部楼层形成结构软弱层,所以应对下层与相邻上层的侧向刚度比值进行限制
2.控制方法:框架结构本层与相邻上一层的比值不小于0.7与相邻上三层平均值的比值不小于0.8
剪力墙等复杂结构(考虑层高的修正)本层与相邻上一层比值不小于0.9,当本层层高大于相邻上层层高的1.5倍时该比值不宜小于1.1对于结构底部的嵌固层该比值部小于1.5
3.调整方法:高贵3.5.8乘以1.25的放大系数是人工指定还是PK自动乘?
4.PKPM结果查看:文本文件总信息中
二.剪切刚度(按照高贵附录E所计算的刚度)
情况1
地下室顶板作为嵌固端时地下一层与首层的侧向刚度比不小于2
调整方法:只与G和A有关只能调整面积来提高地下一层的刚度
结果查看:同上
情况2
结构为转换结构转换层数小于两层非抗震时下层与上层的比不应小于0.4
抗震设计下层与上层的比不应小于0.5
转换层在两层以上是等效剪切刚度不小于0.6并且侧移刚度非抗震不小于0.5抗震不小于0.8调整方法,结构查看同上
五.周期比
控制原因:结构要具备一定的抗扭刚度
控制方法:以扭转为主的第一周期与平动为主的第一周期的比不大于0。
9
广州高贵规定两个主轴方向上的第一平动周期相差不大于20%(刚度相差不大于40%)
调整方法:周期比时结构抗扭刚度与抗侧刚度的相对关系所以就有两种调整方式1.当位移角有富余时刻以减少结构距质心比较近的墙
2.在结构的角部加强
PKPM结构查看:文本文件周期位移地震力需要自己计算
六.位移比
控制原因:结构是否规则,对称,平面中刚度是否分布均匀是结构本身的性能,可以用结构的刚心与之心的对称位置表式,二者相距较远则地震作用下的结构扭转角可能较大
控制方法:考虑偶然偏心影响的规定水平力下楼层竖向构件的最大的水平位移和层间位移A 级高度不宜大于该楼层的1.2被,不应大于该楼层的1.5倍,B级高度建筑、超过A级高度的建筑不宜大于该楼层的1.2倍不应大于该楼层的1.4被
调整方法:加大质量中心一侧楼层边端部部位的抗侧力构件的刚度
在PKPM文本文件周期位移地震力中查看,找到相应的节点
剪力墙结构墙支截面长度或厚度
框架结构增大柱截面或增加梁高
也可以减小刚心一侧的刚度在周期比和位移角满足有富余要求的前提下
计算前提:考虑刚性楼板假定,考虑偶然偏心,单向地震在规定水平力作用下
七.位移角
控制原因:结构抗侧刚度的指标
控制方法:不大于150M的结构楼层层间最大位移与层高的比值不宜大于
框架1/550剪力墙1/1000除框架外的转换结构1/1000
框架剪力墙、框架核心筒、板柱剪力墙1/800
层高不小于250M的结构不宜大于1/500
150M至250M之间线性插入法
计算假定:取风荷载或地震作用标准值计算(不同时计算)不靠路偶然偏心不考虑双向地震1。
单项地震作用标准值下的位移角
2.风荷载标准值作用下的位移角
3.单项地震+偶然偏心不控制
4.双向地震不控制
八、稳定性问题,要看文本文件第8项
总结
这七大指标的核心就是结构的刚度—也可以说是结构的几何尺寸
框架结构那就是因为抗侧刚度不足才发展为剪力墙结构,框剪结构在承担竖向荷载是没有问题的
所以说剪力墙的设计就可以说就是一个寻找刚度的过程
材料的刚度E
构件截面EI
构件EI/L
整体刚度K
而对于结构的整体刚度K是没有办法直接用一个定量的表式方法,因为结构的内部是十分复杂的
对于结构整体的刚度只能通过其他指标来表示
一、EI
我想提高刚度,由EI可知我有三种选择。
E B H
对剪力墙结构来说E为混凝土强度,对于提高结构整体刚度是有一定贡献的,单是砼提高一个标号于E提高不算太高,但也在考虑范围内,同时也说明截面和E不能同时收,否则对刚度影响较大
B和H,怎家B剪力墙配筋面积增加,而当我增加H时剪力墙的刚度是成指数倍增长的,所以在需要刚度是我们首选的拉长剪力强
二、EI/L
这个可以解释整体性,一个好的结构这体型要好,如果把它从上到下,从左到有能贯通着连接,那他提供的刚度就非常大了
对于有连成一线趋势的剪力墙,增加梁(连梁)的高度,或者减小它的长度,就是增加了就结构的整体性,计使梁的刚度比墙的刚度增加,此时这一整片剪力墙的刚度提高非常明显所以说增加梁高减小梁跨是提高刚度的好办法
而对于那种用一条两把好几片墙在面外拉结起来比断开提供的刚度大但是在加高梁效果就不明显了
三、K
1.结构整体的刚度
位移角周期刚重比减重比
2.平面刚度情况
周期比位移比
周期比是用来判断抗扭刚度
位移比是判断平面规则,也可以说是结构刚度的分布是否均匀
3.竖向刚度比
层刚度比墙梁整体的
受剪承载力的比只有墙的截面GA。