(1)多面体: 若干个平面多边形围成的几何体 面----围成多面体的各个多边形
棱
棱----相邻两个面的公共边
顶点-----棱与棱的公共点
(2)旋转体: 由一条平面曲线(包括直线)绕它 轴
所在的平面内的一条定直线旋转所形成的曲面叫做
旋转面,封闭的旋转面围成的几何体叫做旋转体,
这条定直线叫做旋转体的轴。
答:不一定是
问题3:长方体按如图截去一角后所得的两部分还是棱柱吗?
D'
C'
A' B'
D C
A
B
它们都符合棱柱的定义,是棱柱
探究三、 棱锥及其结构 思考5:观察下列多面体,有什么相同点?
(1)
(3)
(5)
(8)
(1)主要结构特征:
①有一个面是多边形;
②其余各面都是有一个公共顶点的三角形;
(3)棱锥的分类 ①按棱锥底面边数分类: 三棱锥,四棱锥,五棱锥......;
顶点 S
底面:多边形面; 侧面:有公共顶点 的各三角形面;
侧棱:相邻侧面的公共边; 顶点:各侧面 的公共顶点.
D 侧棱
A
表示:棱椎用表示顶点和底面各顶点的字母表示.
侧面
C 底面
B
棱锥的表示:棱锥S—ABCD
【练习2】判断正误 (1).棱锥的侧面均为三角形( √ ) (2).有一个面是多边形,其余各面都是三角形的几何体叫棱锥(× ) 【练习3】下面几何体是棱锥吗?
四棱柱:底面是四边形的棱柱. 直四棱柱:侧棱与底面垂直的四棱柱. 长方体:底面是矩形的直四棱柱. 正四棱柱:底面是正方形的长方体.
正方体:所有棱长都相等的正四棱柱.
全集U={四棱柱}