几类混合单调算子方程解存在的唯一性定理
- 格式:pdf
- 大小:179.94 KB
- 文档页数:3
存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程(,),dyf x y dx=在区间0x x h -≤上存在唯一解00(),()y x x y ϕϕ==,其中(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭逐步迫近法 微分方程(,)dyf x y dx=等价于积分方程00(,)xxy y f x y dx =+⎰取00()x y ϕ=,定义001()(,()),1,2,xn n x x y f x x dx n ϕϕ-=+=⎰ 可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命题1 先证积分方程与微分方程等价:设()y x ϕ=是微分方程(,)dyf x y dx =定义于区间00x x x h ≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之亦然。
证 因()y x ϕ=是微分方程(,)dyf x y dx=的解,有 ()(,())d x f x x dxϕϕ= 两边从0x 到0x h +取定积分0000()()(,()),xx x x f x x dx x x x h ϕϕϕ-=≤≤+⎰代入初值条件00()x y ϕ=得0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰即()y x ϕ=是积分方程0000(,),xx y y f x y dx x x x h =+≤≤+⎰定义于区间00x x x h ≤≤+上的连续解。
反之,则有0000()(,()),xx x y f x x dx x x x h ϕϕ=+≤≤+⎰微分之()(,())d x f x x dxϕϕ= 且当0x x =时有00()x y ϕ=。
唯一性定理唯一性定理是数学中的重要定理之一,它指出了在某些条件下,特定类型的方程或问题只有唯一解。
唯一性定理最经典的形式是微分方程的唯一性定理,它在微积分和微分方程的研究中占据重要的地位。
微分方程是描述自然现象和物理规律的重要工具,通过对微分方程的求解,可以得到问题的解析解,从而更好地理解和预测现象。
然而,并不是所有的微分方程都能够得到解析解,有些方程可能只能通过数值方法进行求解。
因此,唯一性定理提供了一种重要的判据,用于确定方程是否有唯一解。
在微分方程的唯一性定理中,通常需要满足连续性和局部利普希茨条件。
连续性要求方程中的函数在某个区域内是连续的,这是非常基本的要求,因为连续性是数学分析中的重要概念。
局部利普希茨条件则要求方程中的函数在一定范围内具有有界的导数,这个条件保证了方程的解在某个区间内是唯一的。
微分方程的唯一性定理可以通过三个步骤来证明。
首先,需要利用泰勒级数展开将微分方程转化为一个无穷级数。
其次,需要证明无穷级数的解存在且唯一。
最后,通过局部利普希茨条件和连续性条件,得到解的存在范围。
除了微分方程的唯一性定理,数学中还有一些其他类型问题的唯一性定理。
例如,线性代数中的矩阵方程的唯一性定理,数论中的素因数分解的唯一性定理等等。
这些定理都有一个共同点,即在满足一定条件下,问题的解是唯一的。
唯一性定理在数学研究和应用中有着广泛的应用。
通过这些定理,我们可以确定问题是否存在唯一解,从而帮助我们深入研究和理解问题。
唯一性定理也经常被用于证明其他定理,深化了我们对数学的认识和理解。
总之,唯一性定理是数学中的一类重要定理,它指出了在满足特定条件下,方程或问题具有唯一解的情况。
微分方程的唯一性定理是其中最经典和重要的定理之一,它在微积分和微分方程的研究中扮演着重要的角色。
唯一性定理的应用广泛,帮助我们理解和解决各种数学问题,并进一步推动数学的发展。
唯一性定理除了在微分方程中应用广泛,还在其他数学领域中有重要的应用。
一阶微分方程解的存在性定理的其它证明方法姜旭东摘要 本文在文[1]对一阶微分方程初值问题解得存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.关键词 一阶微分方程 不动点定理 解的存在性 唯一性 1、引言微分方程来源于生活实际,研究微分方程的目的在于掌握它所反映的客观规律。
在文[1]第二章里,介绍了能用初等解法求解的一阶方程的若干类型,但同时指出,大量的一阶方程一般是不能用初等解法求解它的通解,而实际问题需要的往往是要求满足某种初始条件的解. 本文在文[1]对一阶微分方程初值问题解的存在唯一性定理证明的基础上,应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解的存在唯一性定理的其它几种证法.考虑一阶微分方程 (,)dyf x y dx= (1.1)这里(,)f x y 是在矩形区域00:||,||R x x a y y b -≤-≤ (1.2)上的连续函数.函数(,)f x y 在R 上满足Lipschitz 条件,即存在常数L >0,使得不等式1212|(,)(,)|||f x y f x y L y y -≤- (1.3)对所有12(,),(,)x y x y R ∈都成立, L 称为Lipschitz 常数。
定理1.1、如果(,)f x y 在R 上连续且关于y 满足Lipschitz 条件,则方程(1.1)存在唯一的解()y x ϕ=,定义于区间0||x x h -≤上,连续且满足初始条件00()x y ϕ=这里min(,)bh a M=,(,)max |(,)|x y R M f x y ∈=.文[1]中采用皮卡逐步逼近法来证明这个定理.为了简单起见,只就区间00x x x h≤≤+来讨论,对于00x h x x -≤≤的讨论完全一样.分五个命题来证明这个定理:命题1、设()y x ϕ=是方程(1.1)定义于区间00x x x h ≤≤+上满足初始条件00()x y ϕ=的解,则()y x ϕ=是积分方程0(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+ (1.4)的定义于00x x x h ≤≤+上的连续解.反之亦然. 现在取00()x y ϕ=,构造皮卡逐步逼近函数序列如下:0000100()()(,())x nn x x y x y f d x x x hϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰ (1.5)(n=1,2,…)命题2 、对于所有的n ,(1.5)中()n x ϕ在00x x x h ≤≤+上有定义、且满足不等式0|()|n x y b ϕ-≤命题3 、函数序列{}()n x ϕ在00x x x h ≤≤+上是一致收敛的. 命题4 、()x ϕ是积分方程(1.4)的定义于00x x x h ≤≤+上的连续解.命题5 、()x ψ是积分方程(1.4)的定义于00x x x h ≤≤+上的一个连续解,则()()x x ϕψ=,00x x x h ≤≤+.综合命题1—5,即得到存在唯一性定理.本文在方程(1.1)在满足定理1.1条件下,应用应用压缩映像原理,Schauder 不动点定理,以及Euler 折线法,给出了一阶微分方程解得存在唯一性定理的其它几种证法.2、预备知识定义 2.1、 定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果存在数M >0,使得对任一f F ∈,都有()f t M ≤,当t αβ≤≤时,则称函数族F 在t αβ≤≤上是一致有界的.定义2.2 、定义在t αβ≤≤上的实值(m 维)向量函数族{}()F f t =,如果对于任给的ε﹥0,总存在δ﹥0,使得对任一f F ∈和任意的12,[,]t t αβ∈,只要12|,|t t -<δ就有12()()f t f t -<ε则称函数族F 在 t αβ≤≤上是同等连续.定义2.3、设X 是度量空间,M 是X 中子集,若M 是X 中紧集,则称M 是X 中相对紧集。
混合单调算子方程解的存在与唯一性定理
1 混合单调算子方程
混合单调算子方程是一种普通微分方程,被应用于研究各种自然现象,体现了它的重要意义。
大多数混合单调算子方程都是常微分方程,两个变量均具有一个决定解的重要性。
关于混合单调算子方程解的存在与唯一性,目前学术界已普遍接受四个基本定理:测试定理、正略定理、总体正略定理和曲线正略定理。
2 测试定理
测试定理指出,如果一个混合单调算子方程的系数满足一定的有界性,那么这个方程就有唯一的解。
测试定理是混合单调算子方程的首要定理,有着重要的学术价值。
3 正略定理
正略定理是混合单调算子方程的次要定理,它宣称混合单调算子方程的解可以分解成低阶的单调算子子方程的解。
这个定理能够显著简化解决这类方程的难度,也为此类方程的应用提供了有力支持。
4 总体正略定理
总体正略定理指出,对于混合单调算子方程,满足测试定理的解都以总体形式存在,而且这类解是唯一的。
5 曲线正略定理
曲线正略定理指出,如果满足测试定理,则混合单调算子方程可以分解成一系列以曲线形式存在的子方程,而且这些子方程的解又是唯一的。
综上所述,混合单调算子方程解的存在性和唯一性有四个基本定理来证实,它们是测试定理、正略定理、总体正略定理和曲线正略定理。
它们揭示了混合单调算子方程解的存在性及其独特性,为此类方程的应用发展和研究奠定了基础。
1解的存在唯一性
解的存在唯一性定理是指方程的解在一定条件下的存在性和唯一性,它是常微分方程理论中最基本的定理,有其重大的理论意义,另一方面由于能求得精确解的微分方程并不多,常微分方程的近似解法具有十分重要的意义,而解的存在唯一性又是近似解的前提,试想,如果解都不存在,花费精力去求其近似解有什么意义呢?如果解存在但不唯一,但不知道要确定的是哪一个解,又要去近似的求其解,又是没有意义的。
2解的存在唯一性定理一
定理1
如果函数f(x,y)在矩形域R上连续且关于y满足利普希茨条件,则方程
dx/dy=f(x,y);存在唯一的解y=φ(x),定义于区间|x-x0|<=h上,连续且满足初值条件φ(x0)=y0,这里h=min(a,b/M) , M=max|f(x,y)|。
命题1
设y=φ(x)是方程的定义于区间x0<=x<=x0+h上,满足初值条件φ(x0)=y0的解,则y=φ(x)是积分方程y=y0+∫f(x,y)dx,x0<=x<=x0+h的定义于x0<=x<=x0+h上的连续解,反之亦然。
命题2
对于所有的n,皮卡逐步逼近函数φn(x)在 x0<=x<=x0+h上有定义,连续且满足不等式|φn(x)-y0|<=b。
命题3
函数序列{φn(x)} 在x0<=x<=x0+h上已收敛的。
命题4
φn(x)是积分方程的定义于x0<=x<=x0+h上的连续解
命题5
设ψ(x)是积分方程的定义于 x0<=x<=x0+h的另一个解,则
ψ(x)=φ(x)(x0<=x<=x0+。
解的存在唯一性定理利用逐次逼近法,来证明微分方程(,),dyf x y dx =的初值问题00(,)()dy f x y dx y y x ==⎧⎨⎩的解存在与唯一性定理。
一、【存在、唯一性定理叙述】 如果方程(,),dyf x y dx=的右端函数(,)f x y 在闭矩形区域0000:,R x a x x a y b y y b -≤≤+-≤≤+上满足如下条件:(1)、在R 上连续;(2)、在R 上关于变量y 满足利普希茨条件,即存在常数N ,使对于R 上任何一点(),x y 和(),x y 有以下不等式:()|(,),|||f x y f x y N y y -≤-。
则初值问题00(,)()dyf x y dx y y x ==⎧⎨⎩在区间0000x h x x h -≤≤+上存在唯一解00(),()y x x y ϕϕ==, 其中0(,)min ,,max (,)xy R bh a M f x y M∈⎛⎫== ⎪⎝⎭二、【证明】 逐步迫近法:微分方程(,)dyf x y dx=等价于积分方程00(,)x x y y f x y dx =+⎰。
取00()x y ϕ=,定义001()(,()),1,2,3, (x)n n x x y f x x dx n ϕϕ-=+=⎰可证明lim ()()n n x x ϕϕ→∞=的()y x ϕ=满足积分方程。
通过逐步迫近法可证明解的存在唯一性。
命 题 1:先证积分方程与微分方程等价: 设()y x ϕ=是微分方程(,)dyf x y dx=定义于区间0000x h x x h -≤≤+上满足初值条件00()x y ϕ=的解,则()y x ϕ=是积分方程00(,),x x y y f x y dx =+⎰定义于区间0000x h x x h -≤≤+上的连续解。
反之亦然。
证: 因()y x ϕ=是微分方程(,)dy f x y dx =的解,有'()()(,())d x x f x x dxϕϕϕ== 两边从0x 到x 取定积分,得:000000()()(,()),xx x x f x x dx x h x x h ϕϕϕ-=-≤≤+⎰代入初值条件00()x y ϕ=得:000000()(,()),xx x y f x x dx x h x x h ϕϕ=+-≤≤+⎰即()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义于区间0000x h x x h -≤≤+上的连续解。
常微分方程组解的存在唯一性定理及其应用
近代微分动力学和数学物理学中一个重要且基础性的研究课题是非常重要的。
它不仅涉及到普通微分方程(ODE)的解析或近似解,而且解决微分方程组解的存
在唯一性和存在性也是非常关键的,这也是定义研究这个问题的理论基础。
关于微分方程组解的存在唯一性定理,基本可以归纳为三个部分:定义,定理
以及应用。
从定义来说,微分方程组解的存在唯一性定理指出,一组非线性微分方程的解必须满足它们的一般积分函数的某一唯一的定义拓展,其中,积分函数是原微分方程本身的某种泛函解。
定理上,这个定理被称为Lipschitz不变定理,即:给定一组带有参数的非线
性微分方程组,当该参数在一定范围内发生变化时,其解仍然是唯一的,这一变化度由所谓的Lipschitz条件来度量,即参数改变后该系统的近似的解仍然保持近似关系。
应用上,它主要是用于研究微分动力学系统,而这类系统中出现了新的重要运
动学理论,比如黎曼系统。
使用Lipschitz定理可以搭建一层非常重要的理论框架,帮助我们构建出若干关于微分动力学系统解的重要性质。
此外,该定理也被广泛用于数学物理学中,比如热力学,电磁学,量子力学等。
因此可见,微分方程组解的存在唯一性定理是近代微分动力学和数学物理学中
的一个重要的定理,它的实质和应用也受到广泛的关注,值得引申到包括互联网在内的其它领域深入研究,以期赋予其新的意义及功能。