人教版九年级数学上册知识点总结
- 格式:doc
- 大小:156.50 KB
- 文档页数:10
人教版九年级上册数学知识点总结九年级上册知识点:二次根式考点1:无理数无限不循环的小数被称为无理数,其中常见的无理数包括π以及π的有理数倍数等。
考点2:二次根式的概念形如√a的式子被称为二次根式,其中a是一个非负数,且二次根式也是一个非负数。
若有限个二次根式的和等于0,则每个二次根式的被开方数必须是0.考点3:移因式于根号内、外的方法移因式于根号外的方法包括:当根号外的数是一个负数时,把负号留在根号外,然后把这个数平方后移到根号内;当根号内的数是一个正数时,直接把这个数平方后移到根号内。
移因式于根号内的方法包括:当根号内的数是正数时直接开方移到根号外,当根号内的数是负数时开方移到根号外后要添上负号。
考点4:最简二次根式最简二次根式满足被开方数的因数是整数,因式是整式,并且被开方数中不含能开得尽方的因数或因式。
最简二次根式中一定不含有分母,且对于数或代数式,它们不能写成a×m的形式。
考点5:二次根式的化简与计算二次根式的化简实际上就是把二次根式化成最简二次根式,然后通过合并同类二次根式的方法进行二次根式的加减运算。
二次根式的加减运算可以表示为√a±√b=√(a±b),乘法运算可以表示为√a×√b=√(ab),除法运算可以表示为√a÷√b=√(a/b),乘方运算可以表示为(√a)^2=a,开方运算可以表示为√(a^2)=|a|。
考点6:方根与二次根式的异同点XXX表示一个正数a的算术平方根,而二次根式表示一个实数a的平方的算术平方根。
它们表示的意义是不同的。
当被开方数都是非负数时,方根和二次根式相等;当被开方数为负数时,方根无意义,而二次根式为虚数。
一元二次方程考点一:一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程被称为一元二次方程。
一元二次方程的一般形式为ax^2+bx+c=0,其中a是二次项系数,b是一次项系数,c是常数项。
考点二:一元二次方程的解法一元二次方程的解法包括直接开平方法和配方法。
人教版九年级上册数学课本知识点归纳总结全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN九年级上册数学课本知识点归纳第21章一元二次方程一、学习目标1、理解一元二次方程的概念2、学会一元二次方程的解法3、了解方程的根与系数的关系4、掌握一元二次方程的实际应用 二、重点一、一元二次方程 1、一元二次方程含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的过程(不管用什么方法解一元二次方程,都是要一元二次方程降次)2、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如x 2=b 或b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
3、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判断2个根是不是实数根。
4、公式法:公式法是用求根公式,解一元二次方程的解的方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a acb b x当ac b 42->0时,方程有两个实数根。
当ac b 42-=0时,方程有两个相等实数根。
一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。
人教版九年级数学上册知识点总结
1.代数
(1)多项式的概念、加减乘除、因式分解、配方法、公式法。
(2)一元二次方程及其解法、判别式、因式分解法、公式法、图像。
(3)一元二次不等式及其解法、图像、应用。
2.几何
(1)角的概念、角的度量、角平分线、垂线、平行线、角的和差倍角公式。
(2)三角形的概念、分类、性质、面积公式、勾股定理、正弦、余弦、正切等基本概念和公式。
(3)相似三角形的概念、判定、性质、应用。
(4)圆的概念、性质、圆周角、弧、切线、割线、圆的面积和周长公式。
(5)立体几何的概念、长方体、正方体、棱锥、棱台、圆锥、圆台的表面积和体积公式。
3.数据与概率
(1)数据的收集、整理、统计和分析。
(2)概率的基本概念、频率和概率的关系、事件的概率、互斥事件、独立事件。
4.函数
(1)函数的概念、函数的表示、函数的性质、函数的图像、函
数的基本变换、函数的复合。
(2)一次函数、二次函数、反比例函数、指数函数、对数函数。
以上是九年级数学上的主要知识点,需要注意的是,这些知识点是相互联系和影响的,需要理解和掌握它们的内在关系,才能真正运用自如。
九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
九年级上册数学人教版知识点
以下是九年级上册数学人教版的一些主要知识点:
1. 实数与数轴:介绍了实数的概念和性质,以及如何在数轴上表示实数。
2. 整式与分式:讲解了整式和分式的定义、运算法则,以及它们之间的转化关系。
3. 一元一次方程与不等式:学习了一元一次方程和不等式的解法,包括整数解、有理数解和图像法。
4. 相交线与平行线:研究了平面内两条直线相交的条件和性质,以及平行线的判定方法。
5. 平面图形的认识:探索了平面图形的基本概念,如三角形、四边形、多边形等,并学习了它们的性质和分类。
6. 平面图形的计算:介绍了计算平面图形的周长和面积的方法,包括三角形、四边形、圆等的计算公式。
7. 数据的处理:学习了数据的收集、整理、展示和分析方法,包括频数表、频率表、折线图、柱状图等。
8. 几何变换:研究了平面内的平移、旋转、对称和放缩等基本几何变换的定义、性质和应用。
以上只是九年级上册数学人教版的一些主要知识点,具体内容可能会根据不同版本的教材有所差异。
如果需要更详细的信息,请参考相关教材或与您的数学老师进行沟通。
1。
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
人教版九年级数学上册知识点九年级数学上册知识点人教版九年级数学上册是中学九年级学生的数学教材,该教材涵盖了许多重要的数学知识点。
本文将介绍九年级数学上册中的一些重要知识点,以帮助同学们更好地学习和掌握数学。
第一章:有理数有理数是指整数和分数的集合,包括正数、负数和零。
在这一章中,同学们将学习有理数的加减乘除法运算规则,以及有理数的大小比较。
此外,还会介绍有理数的分数表示和小数表示。
第二章:整式与分式整式是由常数、变量和运算符号组成的代数表达式,分式是指两个整式相除的形式。
同学们将学习整式的加减乘除法,以及分式的加减乘除法。
此外,还会学习如何将分式化简和扩展。
第三章:一元一次方程与不等式一元一次方程是指一个变量的一次方程,不等式是指两个数或表达式的大小关系。
在这一章中,同学们将学习解一元一次方程和不等式的方法,包括等式的加减乘除法、解方程的步骤,以及不等式的图像表示。
第四章:图形的性质图形的性质是指各种几何图形的特点和关系。
同学们将学习直线、角、三角形、四边形等几何图形的性质,包括各种角的定义和性质,以及各种图形的分类和特点。
第五章:平面直角坐标系平面直角坐标系是由两条相互垂直的数轴组成的坐标系,用于描述平面上的点的位置。
同学们将学习如何利用平面直角坐标系表示和计算点的坐标,以及如何利用坐标计算线段的长度和中点的坐标。
第六章:函数与图像函数是一种特殊的关系,将一个集合中的每个元素对应到另一个集合中的唯一元素。
同学们将学习函数的概念、函数的表示和函数图像的绘制。
此外,还会学习一次函数和反比例函数的性质和图像特点。
第七章:平面几何体的视图平面几何体的视图是指从不同方向观察平面几何体时所看到的形状。
同学们将学习如何根据平面几何体的标准视图绘制其真实形状,以及如何根据平面几何体的真实形状绘制其标准视图。
第八章:统计图与折线图统计图是用来展示数据分布和变化趋势的图表,包括直方图、折线图等。
同学们将学习如何根据给定的数据绘制统计图和折线图,以及如何根据统计图和折线图分析数据的特点和趋势。
人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。
最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。
2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
解一元二次方程的方法有直接开平方法、配方法和公式法。
直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。
配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。
关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。
即点P(x,y)关于y 轴的对称点为P’(-x,y)。
第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。
二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。
2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。
3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
人教版九年级上册数学知识点归纳总结一、整数1. 整数的概念整数包括正整数、负整数和0,用来表示有向数量。
2. 整数的加减法同号两个整数相加、相减,取相同符号的绝对值之和或之差,符号不变。
3. 整数的乘法异号两个整数相乘,积的符号为负;同号两个整数相乘,积的符号为正。
4. 整数的除法两个非零整数相除,商的符号与被除数、除数的符号相同,绝对值之商。
5. 整数的应用整数在实际生活中的应用,如海拔、温度等。
二、有理数1. 有理数的概念有理数包括整数和分数,可以用来表示各种实际问题中的量。
2. 有理数的加减法有理数的加减法规则和整数基本一致,注意分子分母的通分。
3. 有理数的乘除法有理数的乘法和除法同样需要进行通分操作,然后按照整数的乘除法规则进行计算。
4. 有理数的混合运算有理数的混合运算就是包括加减乘除四则运算。
5. 有理数的应用有理数在实际生活中的应用,如商业运算、比赛计分等。
三、代数式1. 代数式的概念用字母和数字表示的数学式子,其中字母表示数,称为未知量。
2. 代数式的基本概念包括代数式的项、系数、次数和幂等基本概念。
3. 代数式的合并与因式分解将同类项合并,或者根据公式原理进行因式分解。
4. 代数式的加减法同类项之间可以进行加减运算,非同类项需要进行合并。
5. 代数式的应用代数式在解决实际问题中的应用,如代数方程、代数不等式等。
总结回顾在人教版九年级上册数学中,整数和有理数是重点内容,涉及到加减乘除运算、混合运算以及实际应用。
在学习整数和有理数的基础上,代数式是进一步学习的基础,包括代数式的基本概念、合并与因式分解、加减法以及应用。
通过系统的学习和练习,可以更好地掌握数学知识,提高解决实际问题的能力。
个人观点数学是一门理性和逻辑性都很强的学科,整数、有理数和代数式都是数学的基础内容,对于学生来说,掌握这些知识点对于后续的学习至关重要。
在学习过程中,需要注重理论与实践相结合,灵活运用数学知识解决问题,培养自己的逻辑思维能力和数学建模能力。
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
第二十一章 一元二次方程本章知识结构图21.1 一元一次方程1. 等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次) 的方程,叫做一元二次方程。
一元二次方程的一般形式是:a χ²+b χ+c=0 (a ≠0)其中,a χ²是二次项,a 是二次项系数;b χ是一次项,b 是一次项系数;c 是常数项。
2. 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
21.2 解一元一次方程1. 通过配成完全平方形式来解一元二次方程的方法,叫做配方法。
2. 配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
3. 一般地,式子b ²-4bc 叫做一元二次方程a χ²+b χ+c=0 根的判别式,通常用希腊字母“△”表示它, 即△=b ²-4bc 。
3. 当△>0时,方程 a χ²+b χ+c=0 (a ≠0)有两个不相等的实数根;当△=0,方程a χ²+b χ+c=0(a ≠0)有两个相等的实数根;当△<0,方程 a χ²+b χ+c=0(a ≠0)无实数根。
4. 一般地,对于一元二次方程a χ²+b χ+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为χ=ab 24ac -2b √±)(-这个公式叫做一元二次方程的求根公式。
利用求根公式,我们可以由一元二方程的系数a ,b ,c 的值直接求得方程的解,这种解一元二次方程的方法叫做公式法。
5. 把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,从而实现降次,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。
6. 配方法要先配方,再降次;通过配方法可以推出求根公式,公式法直接利用求根公式解方程;因式分解法要先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0。
人教版九年级数学上册知识点总结第二十一章 二次根式 21.1 二次根式知识点一 二次根式的概念 (1) 一般地,我们把形如a (a ≥0)的式子叫做二次根式。
二次根式a 的实质是一个非负数a的算术平方根。
其中“”叫做二次根号。
(2) 正确理解二次根式的概念,要把握以下几点: ① 二次根式是在形式上定义的,必须含有二次根号“”。
如4是二次根式,虽然4=2,但2不是二次根式。
② 被开方数a 必须是非负数,即a ≥0.如3-就不是二次根式,但式子)3(-2是二次根式。
③ “”的根指数为2,即“2”,一般省略根指数2,写作“”,注意,不可误认为根指数是“1”或“0”。
提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。
知识点二 二次根式的性质(1)a (a ≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥(a ≥0),我们把这个性质叫做二次根式的非负性。
(2)(a )2= a (a ≥0),这个性质可以正用,也可以逆用,正用时常用于二次根式的化简和计算,可以去掉根号;逆用时可以把一个非负数写成完整平方数的形式,常用于多项式的因式分解。
(3)a2= a (a ≥0),这个性质可以正用,也可以逆用,正用时用于二次根式的化简,即当被开方数能化为完全平方数(式)时,就可以利用该性质去掉根号;逆用时可以把一个非负数化为一个二次根式。
知识点三 代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。
21.2 二次根式的乘除知识点一 二次根式的乘法法则一般地,对二次根式的乘法规定:a ·b=ab (a ≥0,b ≥0),即二次根式相乘,把被开方数相乘,根指数不变。
知识点二 积的算术平方根的性质 ab =a ·b(a ≥0,b ≥0),积的算术平方根等于积中各个因式的算术平方根的积。
知识点三 二次根式的除法法则一般地,对二次根式的除法规定:ba =ba (a ≥0,b >0),即两个二次根式相除,把被开方数相除,根指数不变。
知识点四 商的算术平方根的性质ba=ba (a ≥0,b >0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
知识点五 最简二次根式 必须满足以下两个条件:(1) 被开方数不含分母;(2) 被开方数中不含能开得尽方的因数或因式。
21.3 二次根式的加减知识点一 二次根式的加减二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式合并,二次根式加减法的实质是将被开方数相同的二次根式合并,合并时只把系数相加减,根指数和被开方数不变。
知识点二 二次根式的混合运算(1) 二次根式的混合运算顺序与整式的混合运算顺序相同:先乘方开方,再乘除,最后加减,有括号的先算括号里面的。
(2) 在二次根式的运算中乘法法则和乘法公式仍然适用。
22.1 一元二次方程知识点一 一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二 一元二次方程的一般形式 一般形式:ax2+ bx + c = 0(a ≠ 0).其中,ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
知识点三 一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
22.2 降次——解一元二次方程 22.2.1 配方法知识点一 直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x 2=a(a ≥0)的方程,根据平方根的定义可解得x 1=a ,x 2=a .(2) 直接开平方法适用于解形如x 2=p 或(mx+a)2=p(m ≠0)形式的方程,如果p ≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
22.2.2 公式法知识点一公式法解一元二次方程(1)一般地,对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=a acb b24 2-±-,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。
(2)一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的过程。
(3)公式法解一元二次方程的具体步骤:①方程化为一般形式:ax2+bx+c=0(a≠0),一般a化为正值②确定公式中a,b,c的值,注意符号;③求出b2-4ac的值;④若b2-4ac≥0,则把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,则方程无实数根。
知识点二一元二次方程根的判别式式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.△>0,方程ax2+bx+c=0(a≠0)有两个不相等的实数根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根根的判别式△<0,方程ax2+bx+c=0(a≠0)无实数根22.2.3 因式分解法知识点一因式分解法解一元二次方程(1)把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。
(2)因式分解法的详细步骤:①移项,将所有的项都移到左边,右边化为0;②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;③令每一个因式分别为零,得到一元一次方程;④解一元一次方程即可得到原方程的解。
知识点二用合适的方法解一元一次方程22.2.4 一元二次方程的根与系数的关系若一元二次方程x 2+px+q=0的两个根为x 1,x 2,则有x 1+x 2=-p,x 1x 2=q. 若一元二次方程a 2x+bx+c=0(a ≠0)有两个实数根x 1,x 2,则有x 1+x 2=,ab -,x 1x 2=a c22.3 实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:(1) 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。
(2) 设:是指设元,也就是设出未知数。
(3) 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。
(4) 解:就是解方程,求出未知数的值。
(5) 验:是指检验方程的解是否保证实际问题有意义,符合题意。
(6) 答:写出答案。
知识点二 列一元二次方程解应用题的几种常见类型 (1) 数字问题三个连续整数:若设中间的一个数为x ,则另两个数分别为x-1,x+1。
三个连续偶数(奇数):若中间的一个数为x ,则另两个数分别为x-2,x+2。
三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c ,则这个三位数是100a+10b+c. (2) 增长率问题设初始量为a ,终止量为b ,平均增长率或平均降低率为x ,则经过两次的增长或降低后的等量关系为a (1x ±)2=b 。
(3)利润问题利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率 (4)图形的面积问题根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
第二十三章 旋转 23.1 图形的旋转知识点一 旋转的定义在平面内,把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角。
我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。
知识点二 旋转的性质旋转的特征:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。
理解以下几点:(1) 图形中的每一个点都绕旋转中心旋转了同样大小的角度。
(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。
(3)图形的大小和形状都没有发生改变,只改变了图形的位置。
知识点三 利用旋转性质作图旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等,它是利用旋转的性质作图的关键。
步骤可分为: ① 连:即连接图形中每一个关键点与旋转中心;②转:即把直线按要求绕旋转中心转过一定角度(作旋转角)③截:即在角的另一边上截取关键点到旋转中心的距离,得到各点的对应点;④接:即连接到所连接的各点。
23.2 中心对称知识点一中心对称的定义中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
注意以下几点:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。
知识点二作一个图形关于某点对称的图形要作出一个图形关于某一点的成中心对称的图形,关键是作出该图形上关键点关于对称中心的对称点。
最后将对称点按照原图形的形状连接起来,即可得出成中心对称图形。
知识点三中心对称的性质有以下几点:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。
知识点四中心对称图形的定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。