高压共轨电喷发动机
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
电控高压共轨喷射系统及其喷油器研发生产方案1. 实施背景随着全球能源结构的转变和环保意识的提高,燃油喷射系统在汽车工业中的地位日益重要。
电控高压共轨喷射系统(HPDI)作为新一代燃油喷射技术,具有更高的燃油喷射压力和更精确的喷油控制,能够显著降低燃油消耗和排放。
目前,HPDI技术在国外汽车企业中得到了广泛应用,但在中国,此技术尚处于起步阶段。
因此,开展HPDI技术的研发生产具有强烈的现实意义和广阔的市场前景。
2. 工作原理电控高压共轨喷射系统主要由高压油泵、高压油轨、喷油器和电控单元组成。
工作原理是:高压油泵将燃油加压至100MPa以上,通过高压油轨将燃油输送至喷油器。
在喷油器内,高压燃油通过电磁阀控制喷出,经过雾化后与空气混合,实现燃油喷射。
电控单元根据发动机工况和传感器信号,精确控制喷油量和喷油时刻。
3. 实施计划步骤3.1 技术研究:进行HPDI技术的深入研究和实验验证,包括高压油泵的设计与制造、高压油轨的材质与加工、喷油器的结构设计、电磁阀的控制逻辑等。
3.2 生产工艺制定:根据技术研究结果,制定生产工艺流程和质量控制方案。
3.3 设备采购与调试:采购生产所需的设备,并进行安装调试。
3.4 产品试制:按照制定的生产工艺和质量控制方案,进行小批量试制。
3.5 产品测试与验证:对试制的产品进行性能测试和可靠性验证,并对存在的问题进行改进。
3.6 扩大生产:经过验证后,逐步扩大生产规模,并考虑与汽车企业进行合作。
4. 适用范围本研发生产方案适用于汽车、发动机等领域,特别是适用于燃油经济性要求较高和排放标准严格的领域。
未来,HPDI技术还可应用于船舶、航空等领域的燃油喷射系统。
5. 创新要点5.1 高压油泵的设计与制造技术:实现燃油的高压化,提高燃油喷射压力。
5.2 高压油轨的材质与加工技术:选择合适的材质和加工工艺,确保高压燃油的输送安全可靠。
5.3 喷油器的结构设计技术:优化喷油器的结构,提高喷油的雾化效果和均匀性。
高压共轨工作原理介绍高压共轨系统是一种现代柴油发动机燃油喷射系统,它采用了一种高压油泵将燃油送往一个共轨(称为油轨)上,再通过电控单元对喷油嘴进行精确控制,实现燃油喷射。
高压共轨系统具有高效、节能、环保等特点,是现代柴油发动机的主流燃油喷射系统。
高压共轨系统由几个关键部件组成,包括高压油泵、共轨、喷油嘴等。
设备的工作原理如下:高压油泵:高压油泵是高压共轨系统的核心部件,主要用于将柴油从油箱抽送到油轨中。
高压油泵内部有一个可变泵量调节装置,通过控制这个装置,可以实现对油泵的流量和压力进行调节。
高压油泵将燃油推送到油轨上,使油轨内的压力保持在一个高压水平。
共轨:共轨是一个高压油管,位于柴油发动机的缸体上方。
它连接着高压油泵和喷油嘴,起到燃油储存和传输的作用。
共轨内部的压力由高压油泵提供,可以实现非常高的压力水平。
燃油进入共轨后,会被保持在高压状态,等待喷油嘴的控制信号。
喷油嘴:喷油嘴位于发动机缸体上方,负责将高压能量释放出来,将燃油喷射到气缸中。
喷油嘴的喷油量和喷油时间由电控单元精确控制,可以根据发动机负载和转速的变化来进行调节。
当接收到控制信号时,喷油嘴会打开,将压力释放出来,喷射燃油。
电控单元:电控单元是高压共轨系统的控制中心,负责接收车速、转速等传感器的信号,并根据这些信号控制喷油嘴的喷油时间和喷油量。
通过精确控制燃油喷射的时间和量,电控单元可以实现对发动机的燃油喷射过程进行精确调节,以获得最佳的燃烧效果。
高压共轨系统的工作原理是基于电控技术和高压燃油的高效利用。
它能够实现对燃油喷射过程的高精度控制,提高发动机的燃烧效率,减少能源消耗和废气排放。
高压共轨系统还具有响应速度快、噪音低、可靠性高等优点,成为现代柴油发动机的首选燃油喷射系统。
电喷柴油发动机的工作原理和使用方法电喷柴油机的工作原理高压共轨(Common Rail)电喷技术是指在高压油泵、压力传感器和电子控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。
它是由高压油泵将高压燃油输送到公共供油管(Rail),通过公共供油管内的油压实现精确控制,使高压油管压力(Pressure)大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速变化的程度.共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。
ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。
高压共轨系统利用较大容积的共轨腔将油泵输出的高压燃油蓄积起来,并消除燃油中的压力波动,然后再输送给每个喷油器,通过控制喷油器上的电磁阀实现喷射的开始和终止。
其主要特点可以概括如下:共轨腔内的高压直接用于喷射,可以省去喷油器内的增压机构;而且共轨腔内是持续高压,高压油泵所需的驱动力矩比传统油泵小得多。
通过高压油泵上的压力调节电磁阀,可以根据发动机负荷状况以及经济性和排放性的要求对共轨腔内的油压进行灵活调节,尤其优化了发动机的低速性能。
通过喷油器上的电磁阀控制喷射定时,喷射油量以及喷射速率,还可以灵活调节不同工况下预喷射和后喷射的喷射油量以及与主喷射的间隔。
高压共轨系统由五个部分组成,即高压油泵、共轨腔及高压油管、喷油器、电控单元、各类传感器和执行器。
供油泵从油箱将燃油泵入高压油泵的进油口,由发动机驱动的高压油泵将燃油增压后送入共轨腔内,再由电磁阀控制各缸喷油器在相应时刻喷油。
预喷射在主喷射之前,将小部分燃油喷入气缸,在缸内发生预混合或者部分燃烧,缩短主喷射的着火延迟期。
电控高压共轨直喷柴油机技术图文教程●Pizezo喷射器(压电式喷油器)Piezo 喷射器具有极快和精确的燃油量分配。
Piezo喷射器的响应时间是原系统的4倍,允许在预喷和主喷之间更短和更多可变距离的喷射。
图为Piezo喷射器由于通过能量恢复获得必需的触发能的可能,必需的触发能会相当地减少。
另外,通过简单的电控制,可达到忍受较大的电磁和基本减少感应错误。
Piezo喷射器安装在油轨上,将燃油喷入燃烧室。
每冲程的喷入量由预喷量和主喷量构成。
这种分层喷射使得柴油机燃烧过程变得柔和。
由于Piezo喷射器的配置,使其具有极快的响应速度(时间)。
因此,喷射的燃油量和剂量可以非常准确的控制,而且确保极好的循环。
喷射器由发动机控制单元控制(ECU)。
与以前的系统比较,Piezo喷射器需要相当小的触发能,它可通过可能的能量恢复得到。
注意:在发动机工作期间,连接线束连接器到发动机控制装置,喷射器必须连接可靠,否则有损坏发动机的危险。
在维修工作时,喷射器不应拆散。
每个件都不许被松动或没有拧紧,否则将引起喷射器的损坏。
●柴油共轨泵DCP柴油共轨泵由布置在一个单一壳体里的下列部件组成:内置传输泵ITP内置叶片泵的作用是将燃油从燃油箱经过燃油滤抽出,供给带有柴油的高压燃油泵。
除此之外,还有润滑高压油泵的目的。
柴油共轨泵DCP是需求控制中心,由凸轮盘驱动具有相差120°的三个排量装置的柱塞泵。
DCP提供体积流量以保证油轨正常的高压,同时也提供喷射器在发动机所所有工作条件下必需的燃油量和在DCP里的燃油压力。
油箱中的柴油完整的内置传输泵ITP(1)经燃油滤清器抽出。
燃油也被传送至润滑阀(6)和体积控制阀(2)。
平行位于燃油供应泵里的预压控制阀,当体积控制阀关闭时打开,使燃油再次到燃油泵的吸入端。
燃油经润滑阀(6)到泵里边,并从那到燃油回油管。
体积控制阀由发动机控制装置控制,计量输送到高压元件(3)的燃油量,同时到高压泵HPP。
高压共轨的工作原理
高压共轨系统是一种现代柴油发动机的燃油供给系统,其工作原理如下:
1. 准备阶段:燃油从油箱被油泵抽取,并经过滤后被送入高压共轨。
高压共轨是一根管道,其内径较大,可以容纳所有喷油嘴需要的燃油量。
2. 压力调节阶段:在高压共轨中的燃油被送入高压泵。
高压泵会增加燃油的压力,使其达到要求的功率水平。
高压泵的工作原理类似于柱塞泵,通过减少柱塞直径来增加燃油的压力。
3. 压力积累阶段:高压泵将燃油送回高压共轨。
随着燃油的不断流入,高压共轨中的压力逐渐增加。
在这个阶段,高压共轨中的压力通常需要达到几百至数千巴的水平。
4. 喷油阶段:通过控制电磁阀或压力调节器,高压共轨中的燃油被喷出到喷油嘴中。
喷油嘴由电磁控制器控制,可以根据发动机的要求进行开关。
通过调整电磁阀的开关时间和频率,可以控制喷油嘴喷出燃油的量和喷射时间。
5. 点火阶段:当燃油被喷出到喷油嘴中后,它与空气混合,并被压缩在气缸中。
最后,喷油嘴喷出的燃油会被点火系统点燃,从而引发燃烧过程。
这个过程产生的能量被转化为驱动发动机的力和动力。
总之,高压共轨系统通过高压泵和喷油嘴的配合,可以将燃油
以高压和适量的方式喷入气缸,从而实现高效燃烧,提高燃油利用率和发动机的性能。
高压共轨燃油喷射系统高压共轨燃油喷射系统是一种用于柴油发动机的燃油供应系统,可以提高燃油的喷射效率和燃烧效率。
它采用了高压共轨技术,能够在高压下将燃油喷射到燃烧室中,从而实现更好的燃烧效果。
下面是关于高压共轨燃油喷射系统的相关参考内容。
1. 工作原理:高压共轨燃油喷射系统由高压油泵、高压油管、喷油嘴和电控单元等部件组成。
工作时,高压油泵将燃油压力提升至非常高的数千巴,然后将高压燃油通过高压油管输送至喷油嘴。
电控单元控制喷油嘴的喷油时间和喷油量,喷油嘴将高压燃油以非常高的速度喷射到燃烧室中,从而实现高效燃烧。
2. 优势:高压共轨燃油喷射系统相比传统的喷油系统具有以下优势:- 更高的燃油压力:传统喷油系统中,燃油的压力由燃油泵产生,这可能导致燃油在输送过程中的压力损失。
而高压共轨系统中,燃油压力已经提前被提升至非常高的数千巴,因此输送过程中的压力损失非常小。
- 更精确的喷油控制:高压共轨系统利用电控单元对喷油嘴进行精确控制,可以准确控制喷油时间和喷油量,从而实现更好的燃油雾化和燃烧效果。
- 更低的噪音和振动:传统喷油系统中,喷油嘴的工作压力较低,容易引起喷油过程中的喷油冲击和噪音。
而高压共轨系统中,燃油已经被提升到非常高的压力,喷油过程更加平稳,可以减少噪音和振动。
- 更高的燃烧效率:高压共轨系统可以实现更好的燃油雾化效果,燃油更容易与空气混合,从而实现更好的燃烧效果。
这不仅可以提高发动机的功率和扭矩输出,还可以降低燃油消耗和排放物的排放。
3. 应用领域:高压共轨燃油喷射系统广泛应用于柴油发动机中,提供燃油喷射的精确控制和高效燃烧。
它在汽车、重型卡车、工程机械等领域得到了广泛应用。
特别是在汽车领域,高压共轨系统已经成为现代柴油发动机的标配。
4. 发展趋势:随着环保和能源效率的要求不断提高,高压共轨燃油喷射系统也在不断发展。
未来,高压共轨系统可能会采用更高的燃油压力和更精确的喷油控制技术,以进一步提高燃烧效率和抑制排放物的产生。
『专业知识』柴油发动机高压共轨电控燃油喷射技术1. 柴油机高压共轨电控燃油喷射技术的发展历程燃油喷射系统是柴油发动机的核心组成部分。
它是在一定的压力下,利用喷油器将一定数量的燃料直接喷入气缸或进气道内的燃油供给装置。
自1897年德国发明家鲁道夫·狄塞尔发明第一台柴油发动机以来,燃油喷射系统经历了由蓄压式到机械式再到电控式的发展历程。
图1 世界燃油喷射系统发展历程从电子技术控制燃油喷射的角度,经历了3个阶段。
表1展示了柴油机喷射阶段及特点。
表1 柴油机电控燃油喷射阶段及特点2. 柴油机高压共轨电控技术的工作原理及组成高压共轨电控喷油系统的主要部件包括:燃油泵、高压油轨、喷油器、ECM和各种传感器等组成。
图2 高压共轨燃油系统工作图图2是共轨燃油系统的原理图,显示了机械,流体,电气和所有关键要素之间的联系。
燃油首先由低压泵通过入口计量阀供应给高压泵,然后由高压泵产生满足要求的高压燃油,再由高压泵传递给共轨管。
共轨管主要是用于储存高压燃油的容器,为喷油器喷射做准备。
最后喷油器按照ECM的指令去控制一定量的燃油喷射到汽缸。
•高压燃油泵高压油泵将低压系统中的清洁燃油进行加压,使其产生足够的压力冲破出油阀的限制,其结构如图3所示。
图3 高压油泵结构图图4 高压油产生简图工作原理:吸油行程中,柱塞随着凸轮的转动,柱塞由上止点移动到下止点,过程中柱塞腔内容积不断增大,压力不断减小,输油泵提供的燃油不断被吸入到柱塞腔中,直至柱塞移到下止点,进油阀关闭,切断了低压燃油与柱塞腔之间的油路,吸油结束。
凸轮轴继续转动,柱塞由下止点移动到上止点,过程中柱塞腔容积不断减小,腔内燃油不断被加压至阀门预设值,此时阀门开启,腔内燃油流入共轨管中。
图4为高压油的产生简图。
•喷油器喷油器是高压共轨燃油系统中最复杂和最关键的部件,它能根据ECM传送的电子控制信号,将共轨内的高压燃油以最佳的喷油定时、喷油量、喷油率和喷雾状态喷入发动机燃烧室中进行燃烧。
柴油车高压共轨电喷发动机传感器的详细参数与故障检测在现代汽车上,传感器的使用越来越普遍,为了方便维修人员对发动机的检修,现将发动机常见的十几种传感器的检测方法介绍如下。
一、进气歧管压力传感器进气歧管压力传感器是D型(速度密度型)燃油喷射系统中非常重要的传感器,其作用是将进气歧管内的压力变化转换成电压信号,控制电脑(ECU)依据该信号和发动机转速(由装在分电器内的发动机转速传感器提供的信号)来确定进入气缸内的空气量。
1、安装部位与接线端子由于歧管压力传感器内部有放大电路,故需要电源线,地线和信号输出线共三根导线,它们相应地在接线端子上有三个接线端,分别为电源端子(Vcc)、接地端子(E)和信号输出端子(PIM),三个端子通过导线连接器及导与控制电脑ECU相连。
为了减少进气歧管压力传感器内部电子元器件的振动,它通常安装在车辆振动相对较低小的信置上,并处于进气总管的上方,以防来自进气歧管的窜气侵入压力传感器,另外进气歧管压力传感器从下边接受进气管压力也可防止信号传感器部分不受污染,,因此通过橡胶胶管从进气歧管靠近节气门处所采集的进气管气体,是从歧管压力传感器下端接入的。
2、单体检测(1)外观检视检视时,只需从进气歧管靠近近节气门端找到橡胶管,便可在汽车上找到歧管压力传感器。
首先在半闭点火锁的状态下,检查进气歧管压力传感器导线连接器的连接是否良好橡胶软管是否脱落,然后启动发动机,检查橡胶软管有无密封不严和漏气现象。
(2)仪表测试A、接通点火开关(ON)用万用表的直流电压挡(DCV-20)测试接线端子Vcc与E2之间的电压值,该电压值即为ECU加在歧管压力传感器上的电源电压值,其正常值应为4.5-5.5V之间,若该值不正确,则应检查蓄电池电压或导线间的连接情况,有时问题也可能出在控制电脑ECU上。
B、接通点火开关,(ON)位,并从进气歧管压力传感器上拔下真空橡胶软管。
使进气歧管压力传感器的进气口与大气相通,此时测试线端子输出电压信号,(PIM与地线E2之间的电压值)其正常值为3.3-3.9V之间,若输出电压过高或过低,均说明进气管压力传感器有故障,应予更换。
高压共轨电喷发动机
根据各方网站资料,对于高压共轨电喷发动机作出整理:
1、什么是共轨技术,为什么要采用共轨技术?
在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。
由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。
油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。
此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。
为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称为“共轨”的技术。
共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。
ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。
2、在电控喷射方面柴油机与汽油机的主要差别
(1)电喷汽油机
电喷汽油机的电控喷射系统控制的是空燃比(汽油与空气的比例),柴油机的电控喷射系统则是通过控制喷油时间来调节输出的大小,而柴油机喷油控制是由发动机的转速和加速踏板位置(油门拉杆位置)来决定的。
因此,基本工作原理是计算机根据转速传感器和油门位置传感器的输入信号,首先计算出基本喷油量,然后根据水温、进气温度、进气压力等传感器的信号进行修正,再与来自控制套位置传感器的信号进行反馈修正,经过处理计算按照最佳值对喷油泵、废气再循环阀、预热塞等执行机构进行控制,驱动喷油系统,使柴油机运作状态达到最佳。
柴油机实现电喷后,排放大大降低,是继机械喷射、增压喷射后的又一里程碑。
(2)柴油共轨技术的发展
柴油机共轨技术经历了三代。
第一代共轨高压泵总是保持在最高压力,导致能量的浪费和很高的燃油温度。
第二代可根据发动机需求而改变输出压力,并具有预喷射和后喷射功能。
预喷射降低了发动机噪音。
在主喷射之前百万分之一秒内少量的燃油被喷进了气缸压燃,预加热燃烧室,预热后的气缸使主喷射后的压燃更加容易,缸内的压力和温度不再是突然地增加,有利于降低燃烧噪音。
在膨胀过程中进行后喷射,产生二次燃烧,将缸内温度增加200~2 50℃,降低了排气中的碳氢化合物。
第三代是压电式(piezo)共轨系统,压电执行器代替了电磁阀,压电式执行元件像一个在电压下立即就能充电的电容器,其关键元件是陶瓷压电薄膜,它在加上电压以后的0.1ms以内就会发生晶体晶格的畸变。
喷油器内30mm长的执行器是由300多层薄膜组成,每层的厚度只有80μm。
压电元件加上电压后会膨胀大约40μm,通过
杠杆比为1∶1.5的杠杆,使得控制腔回油通道中的阀开启。
于是,控制腔内的压力下降,喷油嘴针阀开启。
与电磁阀相比,压电执行器具有:没有滞后时间;喷射控制迅速而且精确;可重现性非常好;工作非常稳定等优点;没有了回油管,在结构上更简单,压力从200~2 0 00Pa弹性调节,最小喷射量可控制在0.5mm3,减小了烟度和NOX的排放。
3、传统柴油机与共轨技术的主要区别
传统柴油机主要缺陷是由于柴油机的运转速度很高,其燃油喷射时间很短,只有千分之几秒,并且在喷射过程中高压油管各处的压力随时间和位置的不同而变化,同时由于柴油的可压缩性和高压油管中柴油的压力波动,使得实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。
油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象。
由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物的排放量,油耗增加。
此外,每次喷射循环后,高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。
共轨技术的应用则克服了传统柴油机的主要缺陷。
共轨技术的核心是在由高压油泵、压力传感器和电脑控制单元(ECU)组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式。
具体过程是由高压油泵把高压燃油输送到油轨,然后才由油轨送入喷油器,所有气缸的喷嘴都连接着油轨,油轨里始终有恒定的压力(一般在180MPa),电控单元ECU根据负荷转速等信号确定应有的喷射压力和喷油时刻从而控制喷油器的开启。
其特点是可以自由控制喷油量和压力、自由控制喷油速率和喷油正时。
通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化而造成的压力波动,从而克服了传统柴油机燃油压力变化的缺陷。
柴油机共轨式电控燃油喷射技术是一种全新的技术,因为它集成了计算机控制技术、现代传感检测技术以及先进的喷油结构于一身。
共轨式燃油喷射技术有助于减少柴油机的尾气排放量,以及改善噪声、燃油消耗等方面的综合性能;它在有利于地球环境保护的同时,也必将促进柴油机工业、汽车工业及与之相关工业的发展。