比例的基本性质
- 格式:doc
- 大小:41.50 KB
- 文档页数:4
六年级数学比例重点知识汇总孔子曰:学而时习之。
课后作业也是学习和巩固数学的重要环节。
下面是小偏整理的六年级数学比例重点知识汇总,感谢您的每一次阅读。
六年级数学比例重点知识汇总(一)比例的意义和基本性质1、比例的意义:表示两个比相等的式子叫做比例。
如:2:1=6:3组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
2、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
3、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例有基本性质,它是解比例的依据。
4、解比例:根据比例的基本性质,把比例转化成以前学过的方程,求比例中的未知项,叫做解比例。
例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。
(二)正比例和反比例1、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x,y和x成正比例,因为:y÷x=5(一定)。
⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。
2、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
比例的意义和基本性质课件比例是用来描述两个或多个相关事物之间的关系的工具。
它可以帮助我们理解和解释实际生活中的各种现象和问题。
比例可以应用在各个领域,如数学、经济、物理、地理等等。
以下是比例的一些常见应用和意义:1.商业和经济:在商业和经济中,比例可以用来分析销售额、市场份额、成本和利润等。
比如,我们可以计算出家公司的市场份额与竞争对手的比例,从而了解其在市场上的地位。
此外,比例还可以用于预测销售额的增长趋势、市场规模的变化等。
2.地理和地图:地图上的距离比例尺可以帮助我们了解实际距离和地图上的距离之间的关系。
比如,如果地图上的一厘米代表实际世界中的一公里,那么我们就可以根据比例计算出实际距离。
3.科学和物理:在科学和物理中,比例可以用于描述原子和分子的相对大小、力和速度的比例关系等。
4.艺术和设计:在艺术和设计中,比例是非常重要的。
比例可以用于描述物体和人物的尺寸、形状和位置之间的关系。
比如,在绘画中,艺术家使用比例来创造出真实和美观的画作。
5.算术和数学:比例是数学中的基本概念之一,它可以帮助我们理解和解决各种数学问题。
比如,我们可以使用比例来解决关于百分数、比例关系、均值问题等。
比例的基本性质:对于比例,有一些基本性质是需要了解的:1.反比例:如果两个量之间存在着反比关系,那么它们的比例一定是一个常数。
比如,当一个人的速度增加时,所花的时间就会减少,即速度和时间之间存在着反比关系。
2.线性关系:如果两个量之间存在着线性关系,那么它们的比例一定是一个线性函数。
比如,当一个物体的质量增加时,所受的重力也会相应增加,即质量和重力之间存在着线性关系。
3. 比例的性质:比例具有传递性、互换性和扩大或缩小性的性质。
比例的传递性意味着如果a∶b=b∶c,那么a∶c也成立。
比例的互换性意味着如果a∶b=c∶d,那么b∶a=d∶c也成立。
比例的扩大或缩小性意味着如果a∶b=c∶d,那么ka∶kb=kc∶kd也成立。
比例性质及比例线段(初二4.16)一、知识点与方法概述:1、比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.2、(成)比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.3、黄金分割:如图,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.注意:1、AC 0.618AB;2、0.618叫做黄金比;3、一条线段有两个黄金分割点.4、平行线分线段成比例定理:三条平行线截两条直线,所得的线段对应成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(三角形一边平行线的性质)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(三角形一边平行线的判定定理)5、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况(如图1-图5):推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.已知:在梯形ACFD 中,CF AD //,AB=BC求证:DE=EF推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.已知:在△ACF 中,CF BE //,AB=BC 求证:AE=EF6、三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
人教版六年级数学下《比例》课堂笔记
一、比例的定义
1.定义:表示两个比相等的式子叫做比例。
2.比例的书写形式:a:b=c:d 或a/b=c/d。
二、比例的基本性质
1.比例的内项之积等于外项之积。
即,在比例a:b=c:d 中,有ad=bc。
2.比例中,如果两个外项的积是1,那么两个内项也互为倒数。
三、解比例
1.解比例的基本依据是比的性质和比例的基本性质。
2.解比例的方法:根据比例的基本性质,将比例转化为方程,然后解方程求出未
知数。
四、正比例与反比例
1.正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量
中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系。
用字母表示y/x =k(一定)。
2.反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量
中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系。
用字母表示xy=k(一定)。
五、课堂总结
本节课主要介绍了比例的定义、基本性质、解比例的方法以及正比例与反比例的概念。
通过本节课的学习,我们不仅掌握了相关的数学知识,还了解了这些知识在实际生活中的应用。
在今后的学习中,我们将继续努力掌握更多的数学知识,为未来的学习和生活打下坚实的基础。
比例的性质文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]比例的性质或许你在某个地方听说过比例,可你是否了解比例呢我想没有。
来吧,跟随我们的脚步,跨入比例的大门!首先我们来了解什么是比。
什么是比比:两个数相除又叫做两个数的比比值:比的前项除以比的后项所得的商,叫比值。
比只有两个项:比的前项和后项。
比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
知道了什么是比,接下来就是更有趣的——比例的性质一、合比性质1、合比性质的用途合比性质是数学计算中常用的性质之一,属于中的三大性质之一(包括合比性质、分比性质和合分比性质)。
主要运用于等计算。
2、合比性质的表达文字:在一个比例里,第一个比的前后项的和与它后项的比,等于第二个比的前后项的和与它的后项的比,这称为比例中的合比定理,这种性质称为合比性质。
字母:已知,且有,如果,则有。
3、推导过程4、典型例题如图,在△ABC中,AD为∠BAC的角平分线,EF是AD的垂直平分线且交AB于E,交BC的延长线于F,求证:DC·DF=BD·CF分析:欲证:DC·DF=BD·CF即证:DC/CF=BD/DF即证:(DC+CF)/CF=(BD+DF)/DF若连结AF,则AF=DF故即证:AF/CF=BF/AF只需证△FAB∽△FCA证明:连结AF,则AF=DF,∠FAD=∠FDA∵AD平分∠BAC∴∠BAD=∠CAD∴AF=DF∴∠FDA=∠FAD又∵∠FAD=∠CAD+∠CAF,∠FDA=∠B+∠BAD∴∠B=∠CAF∴△FAB∽△FCA。
二、分比性质1、表达文字:在一个比例等式中,第一个比例的前后项之差与第一个比例的后项的比,等于第二个比例的前后项之差与第二个比例的后项的比。
字母:已知,且有,如果,则有。
2、推导过程三、合分比性质1、表述文字:在一个比例等式中,第一个比例的前后项之和与第一个比例的前后项之差的比,等于第二个比例的前后项之和与第二个比例的前后项之差的比。
解比例的依据是比例的基本性质:两外项的积等于两内项的积.如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项.比例的基本性质:①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项.比例的四个数均不能为0.比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项.比例有四个项,分别是两个内项和两个外项.②比,如:教师和学生的~已经达到要求.③比重,如:在所销商品中,国货的~比较大.④比例写成分数的形式后,那么,左边的分母和右边的分子是内项左边的分子和右边的分母是外项.⑤在一个比例中,两个外项的积等于两个内项的积,这叫做比例的基本性质.⑥正比例与反比例的相同点与不同点相同点不同点关系式正比例两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的比值一定,两种量就叫做正比例的量,他们的关系叫做正比例的关系.如果用字母x、y表示两种关联的量,用k表示它们的比值正比例关系可以用下面式子表示:y÷x=k(一定)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果两种量中,相对应的两个数的积一定,这两种量就叫做反比例的量他们的关系叫做反比例关系.如果用字母x、y表示两种关联的量,用k表示它们的乘积反比例关系可以用下面式子表示:x×y=k(一定)比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构.比例分为比例尺和比例.表示两个比相等的式子叫做比例.判断两个比能不能组成比例,要看它们的比值是不是相等.组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.在比例里,两个外项的积等于两个内项的积.求比例的未知项,叫做解比例.比如:x:3=9:27解法:x:3=9:2727x=3×927x=27x=1⑥这有两道数学题,试着做做看吧!125% :7=4 :x125%x=4×71.25x=28x=28÷1.25x=22.513.5 :6=x :46x=13.5×46x=54x=54÷6x=9⑦比例具有如下性质:若a:b=c:d(b.d≠0),则有1) ad=bc2) b:a=d:c (a.c≠0)3) a:c=b:d ; c:a=d:b4) (a+b):b=(c+d):d5) a:(a+b)=c:(c+d) ( a+b≠0,c+d≠0)6) (a-b):(a+b)=(c-d):(c+d) ( a+b≠0,c+d≠0)证明过程如下令 a:b=c:d=k,∵a:b=c:d∴a=bk;c=dk1)∴ad=bk*d=kbd;bc=b*dk=kbd∴ad=bc2) 显然b:a=d:c=1/k3) a:c=bk:dk=b:d ;结合性质2有c:a=d:b4) ∵a:b=c:d∴(a/b)+1=(c/d)+1∴(a+b)/b=(c+d)/d=1+k ;即 (a+b):b=(c+d):da+b≠0,c+d≠0时,结合性质2有b:(a+b)=d:(c+d)且b/(a+b)=d/(c+d)=1/(k+1) ……①5) ∵b/(a+b)=d/(c+d)∴1- b/(a+b)=1- d/(c+d)=1-1/(k+1)∴a/(a+b)=c/(c+d)=k/k+1 ……② 即a:(a+b)=c:(c+d) a+b≠0,c+d≠0时,结合性质2有 (a+b):a=(c+d):c6) ②-①,等式两边同时相减得 (a-b)/(a+b)=(c-d)/(c+d)=(k-1)/(k+1)7) 做做此题:一个长方形,比例为2:3,长方形的面积是36平方厘米,求它的长和宽.(有意者,请做在后面.)假设长方形宽为2,长为3,那么:宽:2x2=4 长:3x3=9答:长方形的长是9,宽是4.将36分解质因数,发现有2和3的倍数,利用它们,得到结果.很累的(一)比例的性质定理:(1)a/c和b/c(a/c):(b/c)=(a/c)*(c/b)=a:b即(a/c):(b/c)=a:b(2)b/a和d/cb/a=1/(a/b)=1/(c/d)=d/c即b/a=d/c(即都倒过来仍相等)(3)(a+b)/b和(c+d)/d(a+b)/b=a/b+b/b=a/b+1=c/d+1=c/d+d/d=(c+d)/d即(a+b)/b=(c+d)/d(同理(a+b)/a=(c+d)/c(为下一题做准备))(4)(a+b)/(a-b)和(c+d)/(c-d) (a≠b,c≠d)因为(a+b)/b=(c+d)/d及(a+b)/a=(c+d)/c根据(2)的结论,所以有b/(a+b)=d/(c+d)和a/(a+b)=c/(c+d)两个等式相减所以a/(a+b)-b/(a+b)=c/(c+d)-d/(c+d)即(a-b)/(a+b)=(c-d)/(c+d)根据(2)的结论,有(a+b)/(a-b)=(c+d)/(c-d)表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个.在比例里,两个外项的即等於两个内项的积,这叫做比的基本性质.比表示两个数相除;只有两个项:比的前项和后项。
《比例的基本性质》教学设计《比例的基本性质》教学设计15篇作为一名教学工作者,通常会被要求编写教学设计,教学设计是实现教学目标的计划性和决策性活动。
那么应当如何写教学设计呢?以下是小编整理的《比例的基本性质》教学设计,仅供参考,大家一起来看看吧。
《比例的基本性质》教学设计1【教材分析】《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。
教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。
引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:“2.4×40○1.6×60”。
在此基础上,发现规律,揭示比例的基本性质。
“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。
个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。
【教学目标】1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
【教学重点】探索并掌握比例的基本性质。
【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。
【教学设想】:1、教学情境的呈现创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。
为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。
教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。
《比例的基本性质》教学设计
【教学内容】《义务教育课程标准实验教科书数学》(人教版)六年级下册第34页比例的基本性质。
【教材分析】
这部分内容是在学生学习了比例的意义基础上进行教学的,是对比例的意义的深化和发展,是后面学习解比例知识的基础。
它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。
【教学目标】
1、使学生进一步理解比例的意义,懂的比例各部分名称。
2、能运用比例的基本性质判断两个比能否组成比例。
3、经历探索比例基本性质的过程,在理解并掌握比例基本性质的基础上初步培养学生
观察、分析、比较、判断和综合概括的能力。
【教学重点】探索并掌握比例的基本性质。
【教学难点】发现并概括出比例的基本性质。
【设计理念】
数学课程标准指出:数学课堂教学要从学生已有的知识经验出发,创设有助于学生自主学习、合作交流的情境,让学生经历观察、分心、归纳、判断、总结、反思等数学活动,获得基本的数学知识与技能,进一步激发学生的兴趣,发展学生的思维能力。
本节课的教学紧紧围绕这一理念,先让学生学习比例的各部分名称,再探究比例的基本性质,最后通过简炼的分层练习,深化比例的基本性质,体验比例基本性质的应用价值,渗透、验证、优化等解决问题的策略和方法。
【教学预设】
一、旧知铺垫
1、什么叫做比例?
2、应用比例的意义判断下面的比能否组成比例?
4:50和0.2:2.5 2:5和5:2 24:3和6:1 0.2:0.8和1:4
(师生比赛:让学生用比例的意义判断,老师心里用比例的基本性质判断,发现学生总是慢了一点,师问:你们知道是为什么吗?师:其实我和你们判断的方法不一样,我是利用了另一种更为简便的方法快了你们一点,对了,这种方法就是我们今天所要学习的新内容比例的基本性质。
板书:比例的基本性质)
【设计意图:复习比例的意义及形式,为认识比例各部分名称和探索比例的基本性质作
了良好的铺垫。
】
二、探究比例的基本性质
1、认识比例的各部分名称。
(1)让学生自己说出几个比值相等的比,并且组成比例。
(2)让学生观察自己刚才举的比例,通过学生提前预习的知识,自己动口说出比例的项、以及内项和外项。
(3)你能指出下面比例的内项和外向吗?
4.5:2.7=10:6 6:10=9:15 ( ):( )=6:4 0.6:0.2=():()
(简洁的情境,简单的回答,准确定位教学的起点,沟通比例的各部分名称,为新知的探究打下良好的基础。
)
2、观察(出示几组比例)
2:4=5:10 3:1.5=8:4 ():()=():()
仔细观察这几组等式,你发现了什么?(通过观察学生发现两个外项的积等于两个内项的积)
3、验证(出示例题2.4:1.6=60:40)
(1)用算一算的方法验证是不是所有的比例都有这样的特点呢?
(2)小组合作。
①以小组为单位。
②每组找一位同学同学写出一个比例,小组内交换验证。
③通过举例验证,你们能得出什么结论?(在比例里,两个外项的积等于两个内项
的积)
4、归纳
同学们真聪明其实你们的发现与数学家不谋而合,他们也发现在“比例中,两个外项的积等于两个内项的积”,并且给它起了个名字,叫做比例的基本性质。
5、完善
(1)思考:把你们刚才写的比例写成分出的形式,比例的外项和内项位置有什么变化呢?
等号两边的分子和分母分别交叉相乘,所得的积有什么关系?
(2)同学们进一步通过讨论、验证、并且明确,如果把比例改写成分出行式,等号两边的分子和分母分别交叉相乘,乘积任然相等。
(强调读法)
【设计意图:把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探讨,充分尊重学生主体。
教师的举例示范,为学生小组合作举例验证比例的基本性质搭建支点,意在让学生经历“观察——验证——归纳——完善”的知识探究过程,激发学生探究欲望,充分体现了学习的自主性和主动性,有利于探究和创新意识的培养。
】
三、巩固练习,应用比例的基本性质
1、请学生用最快的速度判断出每组中的两个比能否组成比例,为什么?你依据什么判
断的?
6:9和9:12 1.4:2=7:10 :和:和
(1)先让学生尝试判断,再交流,明确判断方法。
(2)还可以用什么方法来判断?(生:比例的意义)
(3)这两种方法,你更喜欢哪种?为什么?
(强调:判断两个比是否能组成比例有两种方法①比例的意义②比例的基本性质)
2、“猜猜我是谁”
①
②4:5=8:( ) 120:24=( ) :( )
③如果a:b=5:8那么()×()=()×()
④():0.36=2:()
⑤比例的两个内项的积,除以两个外项的积,商是()。
3、下面四个数可以组成比例吗?把组成的比例写出来.(能写几个写几个)
2 3 4 和 6
(小组合作,交流汇报,把最好的方法推荐给大家。
)
四、分享收获,拓展延伸
(一)课堂小结:
谁能整理一下这节课我们都学习了哪些知识?(学生自主发言,教师小结。
)
(二)拓展延伸:
师:同学们都知道,在一天的同一时间里,物体越高它在太阳下的影子也就越长。
我们的校长知道我今天要和大家共同探讨《比例的基本性质》这一节内容,特意给我们留了一个作业,让我们应用今天所学的知识算出学校旗杆的高度,但我想破了脑袋都没有想出一个好的办法,现在我请大家共同解决这一难题,好吗?
【设计意图:通过这个拓展延伸,让学生把课堂上所学到的知识应用到我们实际生活中
去,充分体现了“数学来源于生活,用运与生活”的理念。
】
五、板书设计
比例的基本性质
2.4:1.6=60:40
在比例里,两个外项的积等于两个内
项的积,这叫做比例的基本性质。